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Abstract
Crop residues contribute to themaintenance of soil organic carbon (SOC) stores, a key component of
soil fertility and soil-based climate changemitigation strategies, such as the ‘4 per 1000’ initiative.
Residues are also in demand in sectors coupled to crop production, such as the supply chain of
livestock and bioenergy production. Ongoing debate revolves around balancing these competing uses,
but science-based assessments of the long-term sustainability of residue exploitation are rare. This
work uses biophysical simulationmodelling to explore the likely response of SOC to different
management strategies, using the land area ofNorth Rhine-Westphalia (Germany) as a case study.
Four strategies are tested: zero, one third and 100% removal of cereal residues, plus an approach
proposed by the State farm advisory service. Simulations are carried out for the period 1971–2050 and
19 crop rotations coincident with land use throughout the study area. Uncertainty associatedwith the
modelled SOC changes is explored by sampling values of relevant parameters for SOC turnover and
running an ensemble ofmodel configurations. Simulated SOC is used to trace time-dependent
response functions following a change in residuemanagement under different soil textures, initial
SOC levels and crop rotations. Results highlight a general exponential decrease in SOC,with relative
changes in 2050 distributed between+10%and−40%with respect to a reference period. SOC loss
can be buffered or offset by returning all crop residues to the soil. Under suchmanagement, an SOC
increase can be achieved on clayey soils characterized by a low initial SOC.Undermoderate crop
residue removal, positive SOC trends are limited to a few crop rotations. In this context, 4 per 1000
increase rate in SOC appears largely out of reach through residuemanagement, calling for additional
measures tomeet the targets of land-basedmitigation of anthropogenic emissions.

1. Introduction

Soil organic carbon (SOC) is among themost important
indicators of soil quality and agricultural sustainability.
It enhances soil structure, biodiversity and the retention
of water and nutrients while decreasing the risks of
erosion and soil degradation (Lal 2009). Global SOC
stocks amount to approximately three times the current
atmospheric CO2 and 240 times the annual fossil fuel
emissions (Batjes 1996, Ciais et al 2014), often putting
SOCpools in the spotlight for climate changemitigation

strategies (Smith 2012, Paustian et al 2016). This is at the
foundation of the ‘4 per 1000—Soils for Food Security
and Climate’ initiative, recently launched to increase
global SOC stocks by 0.4% per year as a compensation
for anthropogenic emissions of greenhouse gases (Min-
asny et al 2017). As most agricultural soils have been
considerably depleted with respect to their original SOC
content (Davidson andAckerman 1993), they constitute
a primary target for such initiatives.

In agricultural soils, the SOC balance is largely dri-
ven by land management (Van Wesemael et al 2010),
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which modulates crop production, carbon inputs to
the soil and the decomposition of soil organic matter
(Ogle et al 2005, Liu et al 2006). Practices such as
organic fertilization (Triberti et al 2008), inclusion of
cover crops in rotations (Poeplau and Don 2015) and
retention of crop residues on and in fields (Lehtinen
et al 2014) increaseC input and can sustain SOC. Crop
residues are, however, also a primary resource for a
number of competing off-farm uses (Lal 2005). They
appear particularly attractive in the bioenergy sector as
their use is not directly or indirectly related to land-use
change (Daioglou et al 2016) and increases the value of
agricultural output (Panwar et al 2011). The alternate
uses of crop residues leave an open question regarding
the amount of residues that can be removed from
fields without jeopardizing the substantial ecosystem
services that are provided by soils.

Addressing this question requires quantification of
the response of SOC to different agricultural practices
in a variety of soils and climate conditions. Long-term
field experiments are fundamental in providing
insights into the drivers of SOC changes that are inher-
ently slow (Schmidt et al 2011). Experimentation is,
however, impractical for the testing of multiple agri-
cultural practices over large areas (Zhao et al 2013). At
this scale, quantificationmethods based on simulation
models hold promise because they embody the pro-
cess-based understanding of SOC dynamics and
coherently respond to a wide range of climatic and
management conditions (Conant et al 2011). On the
other hand, uncertainties stemming from model for-
mulation and imperfect knowledge about parameters,
initial values and input data may challenge the con-
fidence placed in the results of model-based analysis
(Ogle et al 2010). This is particularly important with
regard to model parameters, known to contribute the
most to overall uncertainty in the investigation of
long-term SOC dynamics (Post et al 2008). Control-
ling these uncertainties is key to the improvement of
decision-support tools for the design of policies pro-
moting soil-based mitigation strategies (Paustian et al
2016).

This study aims at assessing, by means of simula-
tion modelling, the response of SOC to different resi-
due management strategies. A case study was set up in
the German state of North-Rhine Westphalia, char-
acterised by intensive agriculture in a humid tempe-
rate climate, to outline likely trajectories of future SOC
across a typical spectrum of environmental and man-
agement conditions. By leveraging parameter uncer-
tainty, the simulation outputs from the case study are
translated into practical functions that represent chan-
ges in SOC resulting from changes in land manage-
ment. Such functions contribute to the literature on
carbonmanagement response curves (West et al 2004)
and can be applied to similar environments to tailor
agricultural management to current land-based miti-
gation targets.

2.Methods

2.1. Study area
North-Rhine Westphalia (NRW), comprising about
1.3×106 ha of cropland in Northwestern Germany,
provides a case study of pervasive and intensive
agriculture in a humid, temperate climate in Europe.
Annual rainfall ranges between 700mm in the lowland
and 1350 mm in the highlands, with average tempera-
tures between 8 °C and 10 °C. Agriculture is the
dominant land use (over 60%of land area), with arable
land covering 73% of the utilized agricultural area.
The major crops are cereals (about 60% of arable
land), maize (17%, used either as silage fodder, corn
cobmix or for bioenergy conversion), root crops (8%)
and oilseed rape (6%; Eurostat 2016), all mainly rainfed.
Prevailing soil types areCambisols, Luvisols and Stagno-
sols (WRB 2014), with less fertile, sandy soils character-
izing the Northwest sub-region, where highly intensive
animal husbandry is responsible for considerable nitro-
gen loads (up to 190 kg N ha−1 yr−1; Landwirtschafts-
kammer Nordrhein-Westfalen—LWK NRW 2014,
figure S1 is available online at stacks.iop.org/ERL/14/
094008/mmedia). The heterogeneity of NRW results in
several distinct agro-ecological zones, each characterized
by different pedoclimatic conditions (Roßberg et al
2007) and representative rotations of cash crops
(figure S2, Burkhardt and Gaiser 2010). Climate
(1971–2050) and soil data ofNRWused in this study are
presented inS3.

2.2. Cropping systemmodelling
2.2.1. Simulation setup and scenario assumptions
Simulations were performed with the Model for
Nitrogen and Carbon dynamics in Agro-ecosystems
(MONICA, Nendel et al 2011, S4). In this study, nine
crops were ordered into 19 representative rotations
distributed across NRW (figure S2). Within each agro-
ecological zone, simulation units were identified as the
distinct combinations (n=1653) obtained by over-
laying maps of representative soil profiles and esti-
mated organic nitrogen load (S1) with climate raster
cells. In these units, crop rotations were simulated
continuously, without re-initialization of soil vari-
ables, over the 70 year period; permutations of each
rotation were generated by shifting the initial crop to
include all the crop-year (weather) combinations
(Teixeira et al 2015). Water and nitrogen limitations
to crop growth were activated to depict limited
production levels (van Ittersum et al 2003). Typical
sowing and harvest dates in the different agro-
ecological zones were retrieved from state variety trials
(Bundessortenamt 2000) and from the recommenda-
tion by the German Association for Technology and
Construction in Agriculture (KTBL 2004) and used to
set model parameters. For each agro-ecological zone
and crop, sowing dates were set to the average of those
recorded and harvest dates were used as a proxy for
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physiological maturity to calibrate phenology para-
meters accordingly.

Table 1 provides an overview of the simulation
setup. Four residue management scenarios were
explored: (i) the removal of 33% of the aboveground
biomass left after crop harvest, assumed as the baseline
scenario (LWK NRW 2014); (ii) a variable rate based
on the humus balance approach (LWK NRW 2015,
S5), which intends to prescribe the amount of residues
that are removable from the system in a sustainable
manner (Haase et al 2016); (iii) 100% and (iv) 0%
removal of residues. These residue management sce-
narios were only applied to cereal crops because resi-
dues from other crops currently have limited
alternative uses (Weiser et al 2014) and were therefore
completely returned to the soil. Additional organic
matter was provided with the incorporation of winter
cover crops (i.e. mustard, sown the autumn before a
summer crop) and the application of organic fertilizer
(slurry) according to current practice. Three scenarios
were generated by altering the frequency of cover crop
plantings: one cover crop for every four opportunities
(25%) was chosen as a baseline, with two additional
scenarios increasing the rate to 50% and 100% (con-
stant winter cover). Despite the agronomic and envir-
onmental potential of summer cover crops (e.g.
during the off-season between subsequent winter cer-
eals), only winter cover crops were considered here, as
their adoption is rewarded by the European Union
through greening subsidies. The amount of organic
fertilizer applied each year to the main crop was
retrieved from data on organic nitrogen load (LWK
NRW 2014) available at the district level for the study
region, and was kept constant across scenarios. Addi-
tional mineral N fertilizer was applied according to
recommendations provided to farms in NRW (LWK
NRW2016).

2.2.2.Model spin-up
MONICA subdivides SOC into different pools (S4).
Depending on the initial partitioning ofC among these
pools, SOC decomposition rates are variable (Basso
et al 2011). In order to reduce the influence of the
initial parameterization, the historical time frame
(1971–2005) was used for model spin-up to allow the
fast pools to approach equilibrium (Lugato et al 2014).
Baseline management for both residue management
and cover cropping was assumed for the spin-up
phase, which provided the initial conditions (SOC
concentrations and partitioning among the pools) for
the subsequent projection period (2006–2050). For
each combination of spatial unit×crop rotation×
parameter set (see section 2.3), the calibration of initial
(1971) SOC made it possible to obtain, by the end of
spin-up, SOC concentrations (hereafter reference
SOC) consistent with those reported in the soil
database (S6).

2.3. Ensemblemodelling via parameter
perturbation
An ensemble of model configurations was created by
sampling from a probability distribution of para-
meters (Wallach et al 2016) affecting the simulation of
SOC dynamics. In a first step, a subset of key
parameters related to soil organic matter, crop resi-
dues and organic fertilizer was identified via sensitivity
analysis. For each combination of spatial simulation
unit and crop rotation, the Morris method (Morris
1991) as implemented in the python library SALib
(Herman and Usher 2017) was used to rank para-
meters. The ranking was based on their mean effect on
SOC dynamics during the projection period according
to the baseline scenario. Seven parameters out of 27
were identified as highly relevant based on sensitivity
indices (S7), quantifying (i) the decomposition of

Table 1. Summary of the factors considered in the simulation study, divided into spin-up and projection periods. Details about parameter
uncertainty are presented in section 2.3.

Period Spin-up (1971–2005) Projection (2006–2050)

Scope Equilibration of fast SOCpools, calibration of

initial SOC (1971) tomatch database values at

the end of the period (2001–2004)

Assessment of the impact of changes inmanage-

ment on SOC

Management scenarios Baseline assumptions for residuemanagement

(33% removal) and cover crop presence (25%
frequency before summer crops)

4 residuemanagement strategies (0%, 33%, 100%

removal and humus balance approach)×3
cover crop frequencies (25%, 50%and 100%

presence before summer crops)
Crop rotations 9main crops allotted to 19 representative rotations

distributed among 9 agro-ecological zones

Same rotations as spin-up. Additionally, permuta-

tions of each rotations were considered by shift-

ing the initial crop (e.g. for rotation a–b–c, also
b–c–a and c–a–bwere simulated)

Simulation units 1653 combinations of soil profiles×organicN
load×climate cell

Same as spin-up

Parameter uncertainty 15 parameter sets based on the posterior distribu-

tion of 7 key parameters related to SOC turnover

Same as spin-up

Distinct combinations (num-

ber ofmulti-year

simulations)

73 005 2754 720
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organic matter under standard conditions, (ii) the
conversion efficiency of added organic matter into
microbial biomass and (iii) the partitioning ofC-fluxes
from a decomposing pool into different pools.

The uncertainty of these parameters was explored
in a second step. Prior distributions of the parameters
were assumed to be normally distributed, with mean
values equal to the defaultMONICA parameterization
and standard deviations set to 25% of the mean. For
each parameter, a sample of 1000 values was drawn
from the prior distribution, and the DE-MCZ

algorithm (Differential Evolution Markov Chain;
Smith andMarshall 2008) implemented in the python
SPOTPy package (Houska et al 2015)was used to sam-
ple sets of parameters and identify their optimal
values. Posterior distributions of model parameters
(figure 1) were derived by selecting the top 10%, in
terms of achieving the highest likelihood in the simu-
lation of SOC measured in the long-term field experi-
ments (Rogasik et al 2004, S8). The number of
parameter sets used to provide insight into model
uncertainty was constrained to 15 (figure 1) due to the

Figure 1.Parameter posterior distribution (continuous lines) and sample used in this study (bins) after uncertainty analysis of key
parameters influencing SOC simulation. AOM: added organicmatter; SMB: soilmicrobial biomass; SOM: soil native organicmatter;
‘fast’ and ‘slow’ referring to the turnover rate of a subpool.
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already large number of simulations required by the
design of the experiment (table 1).

2.4. Analysis of temporal dynamics of SOC
2.4.1. Random forest regression
Random forest regression (Liaw andWiener 2002)was
used to estimate the relative importance of factors
associated with the change in SOC from the beginning
to the end of the projection period. The importance of
a factor was determined by the increase in mean
squared-error of predictions resulting from the omis-
sion of that factor from the decision trees. This
information was used to define regression models
representing the simulation results (see 2.4.2) and as a
key for their interpretation (see 3.1).

The factors considered in the analysis include (i)
the aspects of the cropping system that vary across
locations (crop rotation, organic fertilization) or sce-
narios (residue management, cover crop frequency),
(ii) the input variables characterizing the pedoclimatic
conditions of the simulation units (soil texture, refer-
ence SOC, average temperature and precipitation) and
(iii) themodel parameterization (identifier of the para-
meter set). Reference SOC and organic fertilization
were organized according to their distributions, with
the interquartile, the upper and the lower quartiles

labelled as ‘medium’, ‘high’ and ‘low’, respectively.
The resulting range of the ‘medium’ categories span-
ned from 1.11% to 1.44% for reference SOC and from
88 to 135 kg N ha−1 yr−1 for organic fertilization. The
31 soil texture classes from the German soil-classifica-
tion system (Eckelmann et al 2006) were aggregated
into light (sandy), medium (silty and loamy) and heavy
(clayey) soils. Crop rotations were typified following
the approach proposed by Stein and Steinmann
(2018), producing three structural classes (based on
the number of distinct crops) orthogonal to four
functional groups identified by the proportion of
(i) broadleaf crops—in contrast with cereals—and of
(ii) spring-sown (or autumn-sown) crops (S9).

2.4.2. Carbon response functions (CRFs)
CRFs are simplemodels to describe the change in SOC
stock over time following a change in land manage-
ment (West et al 2004) or land use (Anderson‐Teixeira
et al 2009, Poeplau et al 2011). Here, they are used to
provide a simple and transparent overview of simula-
tion results and to compare SOC dynamics under a
variety of conditions. CRFs are developed by choosing
a regression line to represent the estimated trend in
SOC over time, and are usually based on relative
changes in SOC with respect to a reference point. This

Figure 2. Simulated SOCdynamics in the topsoil (0–30 cm) during the spin-up (1971–2005) and projection (2006–2050) periods.
Results are averaged over four-year periods, and presented as relative change (%) compared to the period 1999–2002. Results are
grouped according to themain factors associatedwith variability in SOCdynamics in this study: residuemanagement (colour of the
boxplot), reference SOC at the grid cell (rows) and soil texture (columns). Soils with reference SOC< 1.11% and>1.44% are labelled
as ‘low’ and ‘high’, respectively. Light soils are characterised by the following silt (s) and clay (c) contents: s< 10%and c< 17%,
s< 40%and c< 12%, s<50%and c<8%.Heavy soils belong to one of the following texture classes: c> 45%, s> 30%and c> 35%,
s> 50%and c> 30%, s> 65%and c> 25%. The percentage of agricultural land area represented by each panel is reported in the
bottom left corner.
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is to allow for comparisons of soils with different levels
of SOC. In this study, the estimated SOC in the
uppermost soil layers (0–30 cm) at the end of the spin-
up phase was used as reference, and CRFs were
developed to describe the relative SOC change in the
projection period under alternative management sce-
narios. Simulation outputs from different permuta-
tions of the same rotations were averaged, and the
changes in SOC were evaluated as a four-year moving
average based on the duration of the longest crop
rotation. A qualitative screening of these outputs led to
discarding some candidate regression models (e.g.
polynomial functions), and focus the analysis on linear
(equation (1)) and exponential (equation (2))models,
as proposed by Poeplau et al (2011). For the sake of
simplicity, no interactions among explanatory vari-
ables were considered:

D = + +¼+ ´( ) ( )C c x c x tSOC , 1p p1 1

D = + +¼+ ´ - - ´( ) ( )
( )

( )C c x c x eSOC 1 ,

2
p p

k t
1 1

where x is the explanatory variable, C is either the
relative SOC variation in the linear model (ΔSOC%
yr−1) or the relative SOC stock difference at the
equilibrium in the exponential model (ΔSOC%), c the
effect of the explanatory variable onC, t the number of
years after a change in management and k a shape
coefficient. Regression coefficients for linear and non-
linear models were fitted using nls function from the
R-stats package (R Core Team 2018). The selection of
explanatory variables to be included in the CRFs was
guided by the importance of factors for the prediction
of SOC (see 2.4.1). Explanatory variables, ordered by
decreasing importance, were sequentially added to the
CRFs, with a threshold for inclusion determined by
the importance achieved by model parameterization.
Values falling below this threshold indicate that the
contribution of a variable is shrouded in uncertainty.
For each explanatory variable added to the CRFs, the

Akaike Information Criterion (AIC, Akaike 1974) was
used to determine which model, either linear or
exponential, was more likely to be correct. Modelling
efficiency (Nash and Sutcliffe 1970; optimum and
maximum=1, minimum=–∞) was used as an
overall accuracymeasure of theCRFs.

3. Results

3.1.Model configurations and simulated SOC
changes
Simulation results show a systematic tendency toward
decreasing SOC in the topsoil (0–30 cm), with relative
changes during the projection period (i.e. between
2006 and 2050) roughly between +10% and −40%,
depending on the conditions (figure 2). The most
pronounced negative rates are associated with light
soils and high SOC levels, where a substantial amount
of SOC is readily available for mineralization. Con-
versely, the optimal conditions for SOC conservation
are in heavy soils and a low initial SOCbudget. In these
situations, an increase in SOC is to be expected if all
crop residues are left in the field.

Results indicate that the management of crop resi-
dues strongly modulates the rate of SOC change. Non-
removal (0%) of residues delineates an upper limit for
strategies targeting the conservation of SOC through
residue management. The baseline scenario of 33%
residue removal consistently outperforms the humus-
balance approach, which is associated with higher
removal rates across environments (S10). In all simu-
lations and as expected, a further diminishing of SOC
is associatedwith the ongoing and complete extraction
of useful crop residues from the field.

The random forest regression indicates that the
management of crop residues is the single most
important factor associated with SOC changes during
the projection period (figure 3). The reference SOC of

Figure 3.Ranking of the importance of factors for predicting relative SOC change between the end of the spin-up and the end of the
projection period. Importance is based on the increase inmean square error (MSE) of predictions upon the omission of a factor in a
random forest regression.

6

Environ. Res. Lett. 14 (2019) 094008



a grid cell, soil texture and crop rotation functional
type follow respectively in importance ranking. All
these factors appear to be more relevant than para-
meter uncertainty, and together explain just over 70%
of the variation in simulated SOC. Including model
parameterization and the other low-ranking factors
such as climatic drivers, crop rotation structure, level
of organic fertilization and cover-crop frequency, the
explained variability increases to over 86% of total.
Overall, the contribution of parameter uncertainty to
the variability of model output is less than 3%. It
increases, however, up to almost 25% of the residual
variability not explained by factors more relevant than
model parameterization (S11).

3.2. Response curves of SOCafter changes in crop
residuemanagement
CRFs help to disentangle the incremental influence of
each factor, and its level, on the evolution of SOC
stocks through time, in conjunction with a change in
fieldmanagement practices. Table 2 presents the CRFs
developed in this study, in order of increasing
complexity, representing the number of explanatory
variables considered. The simplest CRFs (M0,M1 and
M2) are described in supplementary materials (S12).
Regardless of the complexity, AIC and EF metrics
consistently indicate that an exponential function is
more suitable than a linear form for describing
expected SOC dynamics in the agricultural soils
ofNRW.

M3 and M4 adequately capture the range of simu-
lated values, in particular the increase of SOC occur-
ring when specific soil conditions are combined with
the most conservative residue management (0%
removal). Both these models take into account the
influence of soil texture type, with clay limiting
organic matter decomposition in heavy soils. M4,
which adds rotation functional type to the list of expla-
natory variables, provides the most accurate repre-
sentation of the simulated SOC trends (EF up to
0.827), and indicates that rotations with a prevalence
of typical winter and leaf crops are optimal for the
maintenance of SOC stocks.M4 estimates that an SOC
increase can be achieved in the near future adopting
0% residue removal in the following conditions:
(i) heavy soils and low reference SOC (with any rota-
tion), (ii) heavy soils andmedium reference SOC (with
two rotation functional types) and (iii) medium soils
and low reference SOC (only with the best performing
rotation type). A positive ΔSOC appears compatible
with baseline residue management only when asso-
ciated with two rotation types (Hleaf-Lspring and
Lleaf-Lspring, table 2), heavy soils and low reference
SOC. The target of 4‰ yr−1 increase is achieved by
Hleaf-Lspring rotations on heavy soils with low refer-
ence SOC during the first ten years after the adoption
of 0% residue removal.

4.Discussion

4.1. Cropping systemmanagement for carbon
sequestration
Results of this study confirm the importance of crop
residue management for the preservation of organic
carbon stocks in agricultural soils. Despite providing a
significant C input, however, crop residues alone may
not be adequate to maintain SOC levels (Liu et al
2006): even the 0% removal strategy, exploring the
lower end of the impacts of residue exploitation on
SOC, does not guarantee the maintenance of SOC
stocks. Notable exceptions are soils characterized by
higher clay content—which tend to have a longer
turnover time for organic matter (Müller and
Höper 2004)—and by lower initial SOC, where even
the baselinemanagement can be sustainable.

The central role of residue removal and initial SOC
content in relation to SOC stock changes is consistent
with results from Zhao et al (2013), who found that
these two factors display the strongest (negative) cor-
relation to ΔSOC in Australian wheat systems. Also
there, systematic increases of SOC were simulated
only in association with low initial SOC content or 0%
residue removal. In a similar study, Tang et al (2006)
indicate the increase of residues return rate (from 15%
to 50%) as the most effective management strategy to
mitigate SOC decline in cropping systems across
China. Long-term field experiments suggest that resi-
due removal should be considered only when SOC can
be maintained with consistent addition of organic
amendments, and that the amount of residues that can
be sustainably harvested vary with initial SOC, tillage
practices and climate (Gollany et al 2011). The results
of the current study further stress the role of soil in the
modulation of the response of SOC to residue
removal. This questions the reliability (Kolbe 2010,
Lindorfer et al 2014) of a simplified humus balance
approach—that does not account for soil properties—
as a panacea solution to estimate the sustainable rate of
residue removal.

This study suggests that crop residue management
by itself is unlikely to produce SOC accumulation, but
it can provide immediate benefits until other C-miti-
gation initiatives are implemented. In selected envir-
onments, returning all crop residues to the fields from
which they originate could even be a viable option to
temporarily meet the ambitious targets set for land-
based remediation of anthropogenic emissions (Min-
asny et al 2017). However, the exponential response
outlined by simulation output suggests that the poten-
tial for soil C sequestration may be finite in capacity
and time (Lal 2004, West and Six 2007), and likely
diminish after a few decades of bestmanagement prac-
tices as SOC stocks approach a new equilibrium (a
steady-state where C additions and losses are
balanced). Exploiting such potential for C mitigation
may require the integration of multiple land manage-
ment strategies (e.g. no-till farming, incorporation of
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Table 2.Parameters and evaluationmetrics of theCRFs identified through regression analysis. Exploratory variables were added in a stepwisemanner, withmodelsM1–M4 inheriting parameters fromprevious ones. See section 2.4.2 for
the explanation ofmodel parameters. Parameters ofmodelM4 refer to the relative abundance of leaf and spring crops in the rotation (H: high; L: low; figure S9).

Model parameters Evaluation

c
Linear Exponential Linear Exponential

Regressionmodel (CRF) Added explanatory variable (x) Estimate Std. error Estimate Std. error AIC EF AIC EF

M0 — C −6.28E-01 1.68E-04 −3.20E+01 4.23E-02 2.45E+07 0.371 2.43E+07 0.411

k 3.25E-02 7.40E-05

M1 Residuemanagement 0% 2.41E-01 2.76E-04 1.23E+01 1.32E-02 2.31E+07 0.577 2.28E+07 0.620

Baseline 8.23E-02 2.76E-04 4.20E+00 1.32E-02

Humus balance −8.42E-02 2.75E-04 −4.29E+00 1.32E-02

100% −2.36E-01 2.75E-04 −1.20E+01 1.32E-02

M2 Reference SOC Low 1.52E-01 2.55E-04 7.86E+00 1.21E-02 2.26E+07 0.641 2.21E+07 0.685

Medium −1.06E-02 1.79E-04 −4.26E-01 8.49E-03

High −1.29E-01 2.53E-04 −6.45E+00 1.20E-02

M3 Soil texture Heavy 3.07E-01 4.17E-04 1.58E+01 1.92E-02 2.15E+07 0.738 2.08E+07 0.784

Medium 5.95E-02 1.49E-04 3.18E+00 6.84E-03

Light −1.30E-01 1.71E-04 −6.49E+00 7.85E-03

M4 Rotation functional type Hleaf Lspring 1.78E-01 2.77E-04 1.03E+01 1.25E-02 2.08E+07 0.782 2.00E+07 0.827

Lleaf Lspring 1.04E-01 3.83E-04 6.75E+00 1.73E-02

HleafHspring 7.78E-03 1.78E-04 1.75E+00 8.02E-03

LleafHspring −6.41E-02 1.40E-04 −1.83E+00 6.31E-03
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manure and straw, agricultural extensification; Smith
et al 2000), whose applicability may, however, be con-
strained by economic considerations (Smith et al
2007).

In this study, the effects of the combined applica-
tion of organic fertilization and the increase of cover
crops in rotations are limited and masked by para-
meter uncertainty. As a result, they do not counteract
the losses associated with the reduced C inputs from
residues. This may, however, be an inconclusive result
due to the design of the case study: the application of
slurry was not a controlled factor, with the highest
rates occurring in areas with a prevalence of sandy soils
where mineralization is fostered. Moreover, achieving
C sequestration through organic fertilization may
require higher inputs of dry matter than those gen-
erally recorded across NRW (Poulton et al 2018). A
meta-analysis carried out by Poeplau and Don (2015)
demonstrates the potential for cover crops as green
manure, with expected benefits for SOC stocks
extending up to 150 years from their introduction into
a rotation. The apparent contrast with the limited
potential of cover crops estimated in the study region
can be explained by the clear prevalence of winter cash
crops in the rotations analysed, constraining the pre-
sence of cover crops even in the constant winter cover
scenario. Under these circumstances, untapped
potential may lie in amore pervasive adoption of sum-
mer cover crops, whose effects on SOC were not eval-
uated here.

Results suggest that specific rotations types hold
promise for buffering SOC loss while providing mar-
ketable yields, especially when they provide residues
that are returned to the soil regardless of the manage-
ment strategy applied to cereals (S10). In this study,
winter rapeseed shows greater efficacy in SOC con-
servation, owing to the conspicuous production of
residues. However, this advantagemay diminish in the
future, if alternative uses of residues (Nikvash et al
2010, Schlauß et al 2013) gain traction and thus reduce
the portion of crop residue returning to agricultural
soils. Structural diversity of crop rotations may play a
more relevant role in SOC conservation than results of
this study suggest. A meta-analysis (McDaniel et al
2014) revealed that adding crops in a rotation has a
positive effect on SOC, associated with the increase of
microbial biomass and soil biological activity. Captur-
ing the influence of crop diversity on these factors,
however, is largely beyond the capabilities of the
model adopted.

4.2.Modelling SOCdynamics: signals and
uncertainties
Scenarios depicted by the simulations are in line with
the analysis of available datasets, showing that (i) SOC
contents of the arable soils of NRW have been
decreasing in the past 30 years, (ii) such decay follows
an exponential trend and (iii) SOC has not yet reached

a new equilibrium (Steinmann et al 2016). This, in
addition to the satisfactory performance of MONICA
in reproducing SOC measured in long term field
experiments (RMSE<0.05%, S8), puts confidence
into using modelling as a surrogate laboratory (Challi-
nor et al 2009) to provide an educated guess about
future SOC dynamics under a variety of management
and environmental conditions.

Uncertainty in this study was leveraged to isolate
factors strongly related to SOC evolution from those
whose signal is indistinguishable from the noise pro-
duced by equally likely model parameterization. This
approach provides a way to interpret simulation
results, and allows for the translation of model
mechanics into practical and transparent CRFs (West
et al 2004) which may apply to agro-climatic condi-
tions comparable to those of NRW. To this end, it is
important to notice what appears as a dependency of
results on the scale of the case study: despite the known
influence of rainfall and temperature on SOC evol-
ution (e.g. Ogle et al 2005), such factors are overlooked
in the current analysis. On the other hand, an over-
estimation of parameter uncertainty may have con-
tributed to the obfuscation of a temperature response
of SOC decomposition in the study area. The analysis
of additional long-term field experiments could facil-
itate a verification of this hypothesis while providing
refined parameter distributions for follow-up studies.

The complete disentanglement of uncertainties is
beyond the scope of the present work. Other studies
have focused on this aspect, providing an overview and
quantification of different sources of uncertainty (e.g.
Post et al 2008, Ogle et al 2010). Here, the focus is
solely on model parameters identified as relevant for
SOC dynamics. Model structural uncertainty remains
unquestioned, as well as the estimation of C input
from crop residues, including the relative contribution
of roots and above-ground organs (Kätterer et al 2011)
to soil organic matter. Addressing such uncertainty
calls for the application of multi-model ensembles
(e.g. Martre et al 2015), ideally considering the
contribution of model structure, parameters and cli-
mate projections (Tao et al 2018) in the assessment of
future trajectories of SOC in agricultural lands. Multi-
model ensembles could also establish the basis for
standardized methods to determine the initial dis-
tribution of C among soil organic matter pools. Such
distribution influences the simulation outcomes, but
it can hardly be determined experimentally as the
pools often do not correspond to measurable entities
(Falloon and Smith 2000). Field history is determinant
for the direction (Poeplau et al 2011) and magnitude
(Franko and Ruehlmann 2018) of SOC variation after
a change in land use or management. The simulation
of site history therefore appears to be a rational
method for model initialization, ensuring consistency
across a range of models (Bruun and Jensen 2002).
Currently, the representation of historic management
varies considerably in the literature (e.g. Smith et al
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2007, Zhao et al 2013, Lugato et al 2014), and hampers
the comparison of modelling studies. In any case, past
management practices compose an added dimension
of uncertainty that propagates throughout the simu-
lated system to eventually influence the estimation of
potentialC sequestration in agricultural soils.

5. Conclusions

SOC sequestration is seen as a major target to mitigate
climate change through the compensation of anthro-
pogenic emissions. In agriculture, crop residues are a
principal component of the C cycle, and their removal
for uses other than maintaining or enhancing soil
quality contributes to the depletion of SOC pools. In
the majority of the agro-environmental conditions
explored here, returning all crop residues to the soil
appears as a necessary but not itself a sufficient
measure to achieve a land-based compensation of
emissions. However, the fact that even conservative
residuemanagementmay fall short of the targets set by
the 4 per 1000 initiative, does not detract from its
critical contribution to SOC sequestration. Retention
of crop residues in fields should therefore be integral
to any menu of options that aims at offsetting C
emissions in agriculture, buying time until more
effective strategies are implemented.

Conversely, as crop residue removal was shown to
exacerbate the ongoing SOC loss in agricultural soils of
the study region, indiscriminate residue exploitation
for other purposes may result in a precarious strategy
of extracting resources from within the soil. Results of
this study suggest that the goal of pursuing sustain-
ability through alternative uses of crop residues, such
as the bio-economy, requires the design of removal
strategies tailored to particular locations and cropping
systems. With climate change potentially aggravating
the figures outlined here, there is a need for further
modelling studies to identify the prospects and
boundaries of SOC sequestration in agricultural lands
and to support informed decisions on future action.
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