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Abstract
Adecarbonized futurewill require a transition to lower carbon fuels for personal transportation.
We study consumer preferences for combustion fuels including gasoline, diesel, natural gas, and E85
(85%ethanol and 15%gasoline)using consumer choice survey data from two settings: online
(n=331) and in-person at refueling stations (n=127). Light-duty vehicle owners were asked in a
series of choice tasks to choose among fuels that varied in type, price, CO2 emissions, and location of
origin for a hypothetical vehicle that could accept all fuels.We find that themajority of gasoline and
E85 users are willing to substitute towards other fuels at today’s prices and attributes, while diesel users
have a strong preference for diesel fuel.We alsofind that respondents are willing to pay on average
$150/tonCO2 avoided from fuel consumption—more thanmost estimates of the social cost of
carbon. Thus, communicating the climate benefits from alternative fuelsmay be an important strategy
for decarbonizing the transportation sector.

1. Introduction

The transportation sector is now the largest contributor
to anthropogenic greenhouse gas emissions in the US—
60% of which are from light-duty vehicles [1]. If the
ambitious decarbonization goals such as those set by the
Paris Agreement are to be realized, the transportation
sector—and in particular light-duty vehicles—must
transition away from carbon-intensive fuels such as
gasoline and diesel. Fortunately, emerging vehicle
powertrains are beginning to expand the fuel choices
consumers have at the pump. Ethanol, natural gas,
electricity, and hydrogen are all becoming part of the
energymix of light-duty vehicles in theUS (seefigure 1).

Nonetheless, since most consumers have histori-
cally never had a choice beyond oil-based fuels at the
pump, less is known about how consumers perceive
other alternative vehicle fuels. Existing research on
consumer preferences for alternative fuels spans litera-
tures on how consumers value (1) alternative vehicle
fuels, (2) alternative fuel vehicles (AFVs), (3) alternative
fuel attributes in non-automotive applications, such as
the energy sector.

Much of the work examining consumer pre-
ferences for alternative vehicle fuels examines differ-
ent blends of ethanol with gasoline, with origins dating
back to the introduction of ethanol blends in the US in
the 1970s. Results are often presented in terms of
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‘willingness-to-pay’ (WTP) for a specific feature, hold-
ing all other features constant. Previous studies have
found that, on average, survey respondents stated a posi-
tive WTP for higher percentages of ethanol-blended
over regular gasoline [3, 4] and that respondents per-
ceived ethanol-blended gasoline as having a positive
influence on the environment, the economy, and
national security [4, 5]. Other studies have estimated
high own-price elasticities for E85, suggesting con-
sumers may not view gasoline and E85 that differently
beyondprice [6]. Consumers alsomay value ethanol dif-
ferently depending onhow it is sourced [4, 7–9]; in part-
icular, there is concern that corn-sourced E85 (a blend
of 85% ethanol and 15% gasoline) may compete with
food sources, and some studies find that consumers are
willing to paymore for E85 sourced from alternatives to
corn, such as cellulosic sources [7–9]. In this study, we
examine differences in WTP for ethanol derived from
corn and natural gas, another potential ethanol source
forwhich there has been recent interest [10].

The literature on consumer preferences for differ-
ent AFVs has found that US consumers prefer some
vehicle technologies over others, such as plug-in
hybrid over battery electric vehicles [11, 12], and these
preferences can be influenced by government incen-
tives [13–15]. Research has also found that preferences
for different vehicle types can be influenced by a num-
ber of attributes unrelated to specific vehicle technolo-
gies, such as the behavior of neighbors [16, 17] as well
as consumer characteristics such as personality, life-
style, travel attitude, and environmental awareness
[18, 19]. A related study on car sharing suggests that
the associated emissions of AFVs are also important to
consumers, with car sharing users stating a slightly
higherWTP for vehicles with lower emissions [20].

Finally, research in the energy industry (where
diverse fuel sources are common) has shown that con-
sumers are willing to pay premiums for different fuel

sources if they lead to reduced air emissions [21–23] or
if they are perceived as more environmentally friendly
than other sources [24]. Similar to the AFV preference
literature, consumerWTP for these attributes can vary
by demographic variables [25] as well as the informa-
tion shown to respondents, such as annual cost [26] or
emissions reductions [22]. These studies suggest that
consumers are sensitive to specific attributes of differ-
ent fuels, such as their origin and environmental
impacts. In this study, we use a controlled experiment
to quantify and disaggregate preferences for different
vehicle fuels from their associated attributes.

2.Methods

Given the challenges of eliciting preferences for
technologies or products that might not yet be
available in the market, a common method applied
across related prior literature is to model preferences
by estimating discrete choice models on survey data
collected through controlled experiments. In this
study, we apply this approach by fielding choice-based
conjoint surveys that ask respondents to choose from a
set of different combustion fuels: gasoline, diesel,
compressed natural gas (CNG), and E85. We chose to
focus on combustion fuels in order to avoid conflating
fuel choice with important vehicle attributes asso-
ciated with fuel choice, such as the limited range or
slow refueling time of electric vehicles. The fuels we
selected can all be used in variants of internal combus-
tion engines, and most of the vehicle attributes can be
reasonably held constant across each fuel (an excep-
tion is cargo space, which may be reduced for CNG
and E85 given the larger tank required to drive similar
ranges as the other fuels). This makes the fuel choice
task more consistent with the survey respondents’
prior refueling experiences and also facilitates our
research interest in studying fuel preferences separate

Figure 1.Energy consumption by fuel and powertrain for all light-duty vehicles in theUS in 2016. Figure developed by the authors
using data from table 38 in [2]. Detailed assumptions are included in section 3 of the supplementary information is available online at
stacks.iop.org/ERL/14/084035/mmedia.
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from powertrain preferences. While we considered
including other combustion fuels, such as biodiesel,
our experimental design limited the number of fuels
that could be included as additional alternatives
require more data to achieve a given level of statistical
significance inmodel parameters.

Several preliminary steps were taken prior to
designing and fielding the final survey. We first con-
sidered the results of an online survey conducted by
Civic Science, a Pittsburgh-based firm, that asked 1129
respondents in the greater Pittsburgh area about con-
verting or buying natural gas-powered vehicles. The
insights into drivers’ considerations and concerns
about alternative vehicle fuels were used to design and
field a pilot conjoint survey distributed on Amazon
Mechanical Turk (MTurk) in December 2015, obtain-
ing 100 responses. The results suggested that partici-
pants understood the choice tasks with no particular
areas of confusion, and coefficients from a multi-
nomial logit (MNL)model on these pilot data showed
reasonable results (see table 6 in section 1 of the sup-
plementary information). We based our final survey
design on this pilot survey with only minor aesthetic
changes.

The final survey included 13 choice tasks of three
choice options each, including one fixed question with
an obviously dominant choice (i.e. lowest price, lowest
emissions, and no difference in other attributes) used
for checking attention. We used a randomized design
of experiment where each choice set was randomly
chosen (without replacement for each respondent)
from the full factorial design to ensure that interaction
effects could be captured. Participants were provided
with initial instructions that explained each fuel attri-
bute and described the choice task as choosing
between gasoline, diesel, CNG, and E85 for a hypothe-
tical vehicle that can run on any of these fuels. The
attributes included in the choice tasks were origin
(local, national or from abroad), emissions (grams of
CO2 per mile), price ($/tank of fuel), and fuelType
(gasoline, diesel, E85, or CNG).

To mitigate selection bias, we provided respon-
dents with incentives, and respondents accepted or
rejected the invitation to participate in the survey
before knowing that the survey would ask about alter-
native fuels. Additionally, it is known that hypothetical
consumer choices in a survey context may not be con-
sistent with purchase choices in a market context
[27, 28]. To try and mitigate this potential source of
bias, we designed the aesthetics of the choice questions
to mimic an actual fuel pump and used labeling that is
consistent with typical consumer refueling experi-
ences. For example, we adopted the way that emissions
are displayed in EPA vehicle fuel economy labels in
order to retain familiarity to consumers and provide
the respondent with the same reference to scale.
Figure 2 shows an example choice task, and a full copy
of the survey is included in section 6 of the supplemen-
tary information.

For origin, we chose ‘Home State’, ‘United States’,
and ‘Rest of World’, where ‘Home State’ was dynami-
cally replaced with the respondent’s stated home state.
Levels for the emissions and price attributes were cho-
sen to reflect the variation in historical values of fuel
prices and fuel economy, as summarized in table 7 in
section 2 of the supplementary information. We col-
lected the fuel economy for all 2015 model vehicles
from fueleconomy.gov, and we collected historical
fuel prices from afdc.energy.gov, with the mean price
taken from the most recent six months prior to the
survey fielding and the upper and lower bounds taken
from 2009 to 2015. We chose three levels for emissions
(170, 355, and 530 gCO2/mile)which spanned the full
range of best and worst values from the Environ-
mental Protection Agency (EPA) ratings of light-duty
vehicles, with the average rate for model year 2015
vehicles being 358 g CO2/mile [29]. These emissions
values reflect tailpipe emissions, which exclude
upstream emissions from fuel production and dis-
tribution (life-cycle emissions are considered in a sen-
sitivity analysis). We presented price in terms of the
cost to fill a tank that can propel the vehicle 300 miles.
Because the fuels considered are measured in different
units, have different energy densities, and are asso-
ciated with vehicle powertrains that differ in effi-
ciency, fixing the driving range allows the tank size and
fuel efficiency to vary without creating alternatives
that are inconsistent with the true energy densities of
each fuel. Given the limits of today’s technology, some
vehicle attributes, such as trunk space, may be com-
promised to accommodate the fuel tank required to
drive 300 miles, and these vehicle attributes may have
additional value to consumers that we do not measure
in our study. Nonetheless, we instructed respondents
to consider only the different fuel attributes presented
holding all else equal. The levels for price ($25, $30,
$35, $40, $45, $50, $55, $60) were chosen by examin-
ing themean cost to fill a tank that can propel a vehicle
300 miles using the mean fuel prices and mean vehicle
fuel economy values from each fuel type, which ranged
from $26 for diesel fuel to $63 for E85. Finally, for fuel-
Typewe included gasoline, diesel, E85, andCNG.

Since previous studies found differences in con-
sumer preferences for ethanol depending on the
source [7–9], we randomized participants so that half
are informed that the ethanol is derived from corn
while the other half are informed that the ethanol is
derived from natural gas. Although ethanol is not cur-
rently produced from natural gas in the US, there has
been interest in understanding the potential for this
process [10].

Our target population was light-duty passenger
vehicle drivers who regularly refuel their vehicle. Sur-
veys were fielded using two samples: (1) online using
MTurk in January, 2016 (n=331), and (2) in-person
at refueling stations in San José and Fullerton, Cali-
fornia in April and May, 2016 (n=127). The two-
sample approach was used to balance trade-offs
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between obtaining a larger and more diverse sample
size at lower cost (online) with collecting responses in
the same context where fuel purchase decisions are
made (in-person at refueling stations). We chose Cali-
fornia to field the in-person surveys due to the avail-
ability of refueling stations with multiple fuels,
partnering with Propel Fuels—the largest E85 retailer
in California. In an effort to attract a diverse group of
consumers and mitigate selection bias, in-person par-
ticipants were given $20 Amazon gift cards for com-
pleting the survey. Online respondents were paid
$0.50 for completing the survey onMTurk (a rate of $3
to $6/h if completed in 5–10 min). Themean comple-
tion times were 8.7 min in-person and 8.4 min online.
Sawtooth Software was used to design and field the
surveys online, and in-person respondents took the
surveys using web-connected tablet devices [30].
Compared to the in-person sample, the online survey
respondents had lower incomes, similar levels of edu-
cation, a more even balance between male and female
respondents, more liberal political views, and fewer
E85 or diesel users. Details about the survey fielding
process and sample are provided in section 5 of the
supplementary information.

We estimate different MNL and mixed logit
(MIXL)models on the choice data using a randomuti-
lity model specified in the willingness-to-pay (WTP)
space [31]:

l eb= ¢ - +( ) ( )u px , 1j j j j

where the model parameters b are the WTP for
marginal changes in non-price attributes x and l is
the scale of the deterministic portion of utility relative
to the standardized scale of the error term. Price is p,

and the error term, e, is an IID random variable with a
Gumbel extreme value distribution of mean zero and
fixed variance of p /6.2 This specification enables us to
directly estimate WTP for marginal changes in non-
price attributes and also facilitates the direct compar-
ison of model coefficients across different model
specifications [32].

We first estimate a MNL model (model 1) with all
mainWTP effects as described in table 1.We then esti-
mate a MIXL model (model 2) to capture patterns of
heterogeneity and relax the Independence of Irrele-
vant Alternative property of the MNL model [33]. We
assume each main WTP effect has an independent
normal distribution and the scale parameter has a log-
normal distribution in order to impose positivity.
Model fit is conducted via maximum likelihood using
simulation for MIXL models [34]. To explore the het-
erogeneity inWTP for different fuel attributes, we also
estimatemultipleMNLmodels interactingmain effect
variables with different socio-demographic variables,
including with the current primary fuel respondents
use (model 3a), self-described political views (model
3b), and self-described concern for the environment
(model 3c). All data input, output, formatting, calcula-
tions, figures, and tables were handled using theR pro-
gramming language, and all models were estimated via
maximum likelihood estimation in R using the logitr
package [35].

In addition to estimates ofWTP for fuel attributes,
we use the estimated model coefficients to simulate
respondent choices for different fuels given today’s
fuel attributes. While WTP coefficients must be inter-
preted holding all other attributes equal, the simula-
tions approximate the same choice scenario posed in

Figure 2.Example survey choice question.
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our survey and account for differences in all other
attributes. To examine the robustness of our baseline
results, we conduct several sensitivity case simulations
using different assumptions for the fuel attributes.

3. Results

3.1. ConsumerWTP for fuels and fuel attributes
We assess consumer WTP for fuel attributes by
estimating five models shown in table 2. We present
the results in terms ofWTP for a 300 mile tank of fuel;
as a reference point, a 300 mile tank of gasoline at
$3/gallon for a 25 mpg carwould cost $36. Eachmodel
is estimated using the full dataset of choice observa-
tions from all respondents (i.e. online and in person at
refueling stations) except some omissions for missing
socio-demographic information in models 3a—3c.
Since each of the 458 respondents answered 12 choice
questions, our final data set includes 5496 choice
observations. Section 1 of the supplementary informa-
tion includes results from additional models that were
not statistically significant at the 0.01 level, including
models testing for differences between the online and
in-person samples, interactions between the main
effects, differences in WTP for E85 depending on the
ethanol fuel source (corn versus natural gas), and
differences in WTP depending on income levels,
education levels, and vehicle ownership. We find that
the key conclusions of the paper do not differ when
looking at these different groups.

Results suggest that respondents are sensitive to
different fuel types and origins. Model 1 suggests that,
on average, respondents are willing to pay: (1) $3.12 to
switch from a tank of diesel to a tank of gasoline (and
no statistically significant difference between gasoline
and CNG or E85) when all other attributes are equal;
(2) $1.26 to switch from nationally-sourced to locally-

sourced; and (3) $3.39 to switch from an imported to
locally-sourced, ceteris paribus. Consumers are also
willing to pay $4.63more to reduce CO2 emissions of a
300 mile tank by 100 g mi−1 (30 kg total), which is
about $150 per ton. In Model 2, WTP coefficients are
modeled as normally distributed across the sample
population, and the magnitude and significance of the
standard deviation coefficients suggests considerable
heterogeneity exists. In this model, theWTP to reduce
emissions has a mean of $4.52 and a standard devia-
tion of $2.62, suggesting that approximately 96% of
the survey population would be willing to pay a pre-
mium to reduce emissions. In contrast, the mean and
standard deviation of the fuel type and fuel origin coef-
ficients vary widely. Models 3a–3c explore this hetero-
geneity by examining variation in preferences for
different sub-groups in the sample.

Results fromModel 3a suggest that preferences for
fuel type vary widely depending on the primary type of
fuel the respondents use, which includes gasoline, die-
sel, and E85. Holding cost, emissions, and origin con-
stant, gasoline users are willing to pay $3.66 per
300 mile tank to avoid diesel but have no significant
WTP for CNG or E85 over gasoline. Diesel users hold
strong preferences for diesel fuel, with large, negative
WTP values for all alternatives: -$14.06 for gasoline,
-$29.66 for CNG, and -$20.68 for E85. Finally, E85
users are willing to pay $7.11 more for a 300 mile tank
of ethanol than for a 300 mile tank of gasoline, all else
equal. Figure 3 illustrates these differences. Note that
because E85 is less energy dense, more is required to
produce a 300 mile tank, so WTP per 300 mile tank (a
value of service metric) does not translate linearly to
WTP per gallon (a value of commodity metric). For
example, consider a flex-fuel vehicle with a 25 mpg
efficiency when running on gasoline and an 18 mpg
efficiency when running on E85 and gasoline at
$3/gal. In this case, a willingness to pay of $7.11more

Table 1.Description ofmodel variables.

Effect Variable Description Units/Values

Price Price Price of one tank of fuel (300 miles driving range) Price in $USD

Emissions Emissions Per-mile CO2 emissions 100 g of CO2/mi

Fuel Type (base=gasoline) Diesel Dummy for diesel fuel type 1=Diesel; 0=Not diesel
cng Dummy for natural gas fuel type 1=CNG; 0=NotCNG
e85 Dummy for E85 fuel type 1=Ethanol; 0=Not ethanol

Origin (base=home state) National Dummy for nationally-sourced fuel 1=US; 0=NotUS
Imported Dummy for imported fuel 1=Imported; 0=Not imported

Socio-Demographic DieselUser Dummy for current diesel user 1=Diesel user; 0=Not die-
sel user

e85User Dummy for current E85 user 1=E85User; 0=Not E85 user
Conservative Dummy for self-described political view as ‘con-

servative’ or ‘very conservative’

1=Conservative; 0=Not
conservative

Liberal Dummy for self-described political view as ‘lib-

eral’ or ‘very liberal’

1=Liberal; 0=Not liberal

EnviroConcern Dummy for self-described environmental

concern

1=MoreConcerned; 0=Less
Concerned

Sample Online Dummy for whether respondent was fromonline

(MTurk) sample.

1=Online; 0=In-person
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Table 2.Parameter estimates forMNL andMIXLmodels. Coefficients represent averageWTP ($USD) for a 300 mile tank of fuel.

Model#: 1 2 3a 3b 3c

Model type: MNL MIXL MNL MNL MNL

Description: Main effects Random coeff. Fuel users Political views Enviro. views

Lambda 0.096 (0.002)*** 0.035 (0.001)*** 0.1 (0.002)*** 0.1 (0.002)*** 0.098 (0.002)***

100 gCO2/mile Emissions −4.633 (0.134)*** −4.516 (0.227)*** −4.684 (0.137)*** −4.804 (0.215)*** −3.4 (0.163)***

Fuel type (baseline=gasoline) Diesel −3.115 (0.567)*** −3.299 (0.836)*** −3.644 (0.586)*** −1.706 (0.97). −3.543 (0.753)***

cng −0.089 (0.549) −0.362 (1.557) −0.115 (0.563) 0.459 (0.945) −0.681 (0.727)
e85 0.598 (0.545) 0.393 (0.652) −0.172 (0.564) 2.246 (0.928)* −0.584 (0.727)

Fuel origin (baseline=home state) National −1.255 (0.444)** −1.479 (0.52)** −1.427 (0.458)** −2.047 (0.768)** −1.083 (0.589)
Imported −3.386 (0.459)*** −4.148 (0.534)*** −3.361 (0.472)*** −2.615 (0.775)*** −2.856 (0.607)***

Randomheterogeneity effects sd.lambda 0.016 (0.001)***

sd.emissions 2.623 (0.19)***

sd.diesel 7.336 (0.717)***

sd.cng 6.576 (0.219)***

sd.e85 5.95 (1.897)**

sd.national 4.754 (0.8)***

sd.imported 9.085 (0.569)***

Interaction effects: dieselUser Emissions −1.453 (0.894)
Diesel 17.689 (3.262)***

cng −15.493 (4.433)***

e85 −6.448 (3.851)
National −1.029 (3.083)
Imported 0.43 (3.089)

Interaction effects: flexUser Emissions 2.968 (0.531)***

Diesel 0.384 (2.668)
cng 3.196 (2.513)
e85 7.269 (2.469)**

National 1.696 (2.023)
Imported −0.62 (2.131)

Interaction effects: conservative Emissions 1.401 (0.308)***

Diesel −2.737 (1.453)
cng −1.154 (1.409)
e85 −3.123 (1.396)*

National 1.123 (1.136)
Imported −1.567 (1.174)

Interaction effects: liberal Emissions −0.42 (0.287)
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Table 2. (Continued.)

Model#: 1 2 3a 3b 3c

Model type: MNL MIXL MNL MNL MNL

Description: Main effects Random coeff. Fuel users Political views Enviro. views

Diesel −0.778 (1.334)
cng −0.012 (1.301)
e85 −1.991 (1.291)
National 0.887 (1.053)
Imported −0.859 (1.074)

Interaction effects: enviroConcern Emissions −2.701 (0.245)***

Diesel 1.008 (1.128)
cng 1.206 (1.1)
e85 2.136 (1.091)
National −0.3 (0.885)
Imported −1.133 (0.915)

Log-likelihood: −3926.331 −3848.525 −3623.482 −3609.563 −3798.598

NumberObs.: 5496 5496 5244 5172 5436

Significance codes: ***=0.001, **=0.01, *=0.05.
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for a 300 mile tank of E85 over gasoline translates to a
WTP of $0.41 less per gallon for ethanol compared to
gasoline (see section 3 of the supplementary informa-
tion for details). To examine the robustness of these
results, we also re-estimated Models 1 and 3a after
removing respondents who always chose their current
primary fuel when it was in the choice set (see table 5 in
section 1 of the supplementary information). In both
models, removing these individuals has little effect on
themodel parameters.

Results also suggest that, on average, respondents
are willing to pay $4.63 (Model 1) or $4.52 (Model 2)
more to reduce CO2 emissions by 100 g mi−1, ceteris
paribus. These coefficients can be converted into
$/ton CO2 avoided by dividing by 30 kg CO2

(100 g mi−1 of CO2 over 300miles) andmultiplying by
1000 (kg to ton), resulting in an average WTP of
approximately $150/ton CO2 avoided. This is three to
fifteen times higher than the estimated social cost of
CO2 used by US government agencies, which ranged
from $10 to $50 in 2015 depending on the discount
rate [36].

Models 3a–3c reveal substantial heterogeneity in
theWTP to reduce CO2 emissions according to a vari-
ety of socio-demographic variables. We present this
heterogeneity in units of $/ton CO2 avoided. Respon-
dents that stated having more conservative political
views are willing to pay approximately $110/ton CO2

avoided whereas moderate and liberal respondents
have a higherWTPof $160/tonCO2 avoided. Respon-
dents that stated a greater concern for the environ-
ment are willing to pay $200/ton CO2 avoided
compared to a WTP of $110/ton CO2 avoided for
those who did not indicate concern for the environ-
ment. Results also suggested that E85 users had a lower
average WTP to reduce CO2 emissions of $60/ton

CO2 compared to diesel users ($200/ton) and gasoline
users ($160/ton). Figure 4 illustrates these differences.

3.2. Simulating consumer fuel choices
While the estimated model coefficients help explain
WTP for fuel attributes, direct interpretation only
explains preferences for each attribute while holding
all others fixed. To understand how the combination
of multiple attributes affects consumer response to
alternative fuels, we use the estimated model coeffi-
cients to simulate respondent choices for different
fuels. We use historical values for fuel prices and fuel
efficiencies for each fuel to compute the associated cost
and per-mile CO2 emissions of a 300 mile tank (see
table 8 in section 2 of the supplementary information).
In our baseline case, we use the mean fuel price for the
year prior to when the survey was fielded (May 2014–
May 2015) and we hold origin constant. For CO2

emissions, we use 2015 EPA tailpipe emissions factors
(g CO2 per gallon). In addition to this case, we conduct
five sensitivity cases: (1) we hold fuel efficiency
constant across the different fuels, (2–3) we compute
fuel price means from five- and ten-year periods prior
to fielding the survey, (4) we use life-cycle emissions
factors, which includes upstream emissions from fuel
production and distribution, and (5) we assume gaso-
line and diesel are imported, CNG has a national
origin, and E85 has a local (home state) origin. The
simulations were conducted by taking draws of
estimated parameters fromModels 1 and 2.

Figure 5 shows the resulting choice shares from
each simulation case. Error bars represent a 95% con-
fidence interval reflecting uncertainty in the model
parameters while holding the fuel attribute values con-
stant. Across each simulation, CNG was the most pre-
ferred alternative due to its lower per-mile CO2

Figure 3.Respondent averageWTPper 300 mile tank for alternative fuels relative to respondent primary fuel. Values are computed
from the parameter estimates inmodel 3a (n=5244). Negative values imply a preference for the respondent’s primary fuel. Error
bars reflect at 95% confidence interval computed using simulation (detailed calculations are included in section 3 of the
supplementary information).
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emissions and competitive price for a 300 mile tank.
Even when using life-cycle emissions (where the per-
mile emissions are similar to those of diesel), the
expected average choice share was 46% using Model 1
and 64% usingModel 2. Diesel fuel is the secondmost
preferred alternative in every case except for when the
fuel economy is assumed equal across all fuels. This is
because diesel’s higher fuel economy leads to lower
prices for a 300 mile range tank and lower per-mile
CO2 emissions; when that advantage is assumed away
(i.e. the equal fuel economy case), the lower-emitting
E85 captures some of the diesel share. The low

expected share of E85 (0%–4% inmost cases) is due to
its higher per-gallon price and lower fuel economy,
which both lead to a higher tank price.

Since the WTP for each fuel type varied sig-
nificantly depending on the respondent’s current pri-
mary fuel, we also run a simulation separating out
choices by the respondent’s current fuel, using the
baseline case assumptions for fuel attributes and the
estimated coefficients in Model 3a. As shown in
figure 6, gasoline and E85 users have a similar market
response as the full population baseline simulation
where the top-two alternatives are CNG and diesel,

Figure 4.Respondent averageWTP to reduceCO2 emissions based on demographic variables. (a)WTPbased on current primary fuel,
fromModel 3a (n=5244). (b)WTPbased on stated political views, fromModel 3b (n=5172). (c)WTPbased on stated concern for
the environment, fromModel 3c (n=5436). Error bars reflect at 95% confidence interval computed using simulation (detailed
calculations are included in section 3 of the supplementary information).

Figure 5. Simulated choice shares for different fuel attribute assumptions. Values are computed from estimatedmodel parameters.
(a)Model 1 (MNL, n=5496). (b)Model 2 (MIXL, n=5496). Error bars represent a 95%confidence interval reflecting uncertainty
in themodel parameters while holding the fuel attribute values constant, computed using simulation (details are provided in section 3
of the supplementary information).
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but diesel users’ strong preference for diesel fuel
results in diesel obtaining an overwhelming majority
for diesel users. In addition, although gasoline users on
average have a negative WTP for diesel (all else equal),
these results suggestmore gasoline users would choose
diesel over gasoline. This is a result of the higher fuel
efficiency for diesel in our baseline simulation
assumptions, which results in diesel having a lower
tank price and lower per-mile emissions than gasoline.
In this case, the tank price and emissions attributes
overcome the negative WTP for the diesel fuel type.
While diesel users have the highest WTP to reduce
emissions, lower emissions from alternatives do not
overcome the largeWTP for the diesel fuel type. These
simulations suggest that there is considerable hetero-
geneity in the ability of lower CO2 emissions and lower
prices of some fuels to overcome some consumers’
preference for their current primary fuel.

Although our simulation results are robust to the
fuel attribute assumptions across the six different
cases, it is important to note that they assume the same
vehicle could take any of the fuels and thus do not
account for the real-world differences in vehicle prices
or other vehicle attributes, such as storage space, for
each fuel.

4.Discussion and conclusions

We measure and model consumer preferences for
different vehicle fuels by estimating discrete choice
models on data from choice-based conjoint surveys
fielded online and in-person at refueling stations in
2016. Our results suggest that consumers are, on
average, willing to pay premiums for gasoline over
diesel, for more locally-sourced fuels, and to reduce
the CO2 emissions associated with driving, all else
being equal.

On average, consumers were willing to pay $3.12/
tank for gasoline over diesel, and there was no statisti-
cally significant difference between gasoline and CNG
or E85, ceteris paribus. These preferences vary depend-
ing on the primary type of fuel the respondents use
(gasoline, diesel, or E85). While diesel users showed a
particularly strong preference for diesel fuel over all
alternatives in our survey, gasoline and E85 users alike
were willing to pay premiums to avoid diesel and had
no preference for or aversion to CNG or E85. It is
important to note that diesel fuel accounted for just
0.37% of all energy consumption by light-duty vehi-
cles in 2016, as opposed to the much larger contribu-
tions by gasoline (94.6%) and E85 (4.92%) [2]. Thus,
gasoline and E85 users’ aversion to diesel may out-
weigh diesel users’ preference for diesel in terms of
changes to the relative proportions of fuels consumed
for light-duty vehicles.

On average, respondents’ stated WTP to reduce
per-mile CO2 emissions from fuel consumption is
equivalent to $150/ton CO2 avoided, which is three to
five times higher than the estimated social cost of CO2

used by US government agencies [36]. To put this into
context, the average car in the US has a fuel economy
of 26 mpg (9.05 l/100 km) and a 12 gallon (45.4 l)
tank; to release 1 ton of CO2, the car would have to
drive 2960 miles (4,764 km), consuming 9.5 tanks of
gasoline. A WTP of $150 to avoid these emissions is
the equivalent of increasing the fuel cost to drive those
miles by 45% at an average price of $2.92/gallon.
Interaction models revealed substantial heterogeneity
in the averageWTP to avoid one ton of CO2, with poli-
tically moderate and liberal respondents having a
higher WTP compared to conservatives, and respon-
dents with a greater stated concern for the environ-
ment having a higher WTP compared to those who
did not indicate concern for the environment. In addi-
tion, despite their aversion to alternatives to diesel

Figure 6. Simulated choice shares for different fuels based on respondents’ current primary fuel. Values are computed from the
parameter estimates inmodel 3a (n=5244). Error bars represent a 95% confidence interval reflecting uncertainty in themodel
parameters while holding the fuel attribute values constant, computed using simulation (details are provided in section 3 of the
supplementary information).

10

Environ. Res. Lett. 14 (2019) 084035



fuel, diesel users were willing to pay just over three
times as much as E85 users ($200 compared to $60) to
avoid one ton of CO2 emissions.

The magnitude of these estimates may be affected
by the increased salience of the CO2 emissions attri-
bute in our survey—information that is not provided
at most refueling stations [37, 38]. Nonetheless, the
result does suggest the potential for consumers to
value CO2 emissions reductions if the relevant infor-
mation is available and salient when decisions are
made. More informative fuel labels at refueling sta-
tions (such as the emissions impact of different fuels)
may be effective in steering some consumers towards
choosing fuels with lower greenhouse gas emissions.
Also, if respondents judged the different emissions
levels categorically (i.e. ‘more polluting’ or ‘less pollut-
ing’) regardless of the actual amount displayed, then it
is possible these estimates are on the upper bound of
trueWTP since the levels shown spanned a wide range
of emissions levels.

Our choice simulations suggest that the majority
of gasoline and E85 users in our sample would be will-
ing to substitute towards CNG due to its lower CO2

emissions and lower prices. However, the benefits of
this substitution in terms of reducing greenhouse gas
emissions may be limited. The life-cycle emissions
assumptions in our simulations implies a savings of
just 8 kg CO2 over 300 miles by substituting from
gasoline to CNG, and prior research suggests that per-
mile life-cycle CO2 emissions from CNGmay actually
be higher than those of gasoline [36, 39]. Unfortu-
nately, although E85 can have far lower life-cycle emis-
sions (depending on the production process [40]), the
higher prices and lower fuel economy associated with
E85 reduces its attractiveness against other, higher-
emitting alternatives. It is important to note that our
simulations only consider the fuel attributes shown in
our survey and do not account for the different costs of
the vehicles that accept each fuel. In addition, these
simulations omit other alternative fuels, such as
hydrogen or electricity, that may produce even lower
per-mile CO2 emissions.

We find no statistically significant difference in
WTP for corn-derived versus natural gas-derived
ethanol. Prior literature has found mixed results on
whether consumers value ethanol differently by feed-
stock, with some finding significant differences [8] and
others not [9]. Respondents did prefer more locally-
sourced fuel to imported fuel, and this effect size is
similar to the average difference in WTP for different
fuel types. For example, in our baseline model, the
WTP to switch from diesel to gasoline is $3.12/tank
whereas the WTP to switch from imported fuel to
locally-sourced fuel is $3.39/tank, ceteris paribus. This
result agrees with Ulmer et al (2004) [5], which found
that reducing dependence on foreign oil was an
important factor in consumers’ decision to choose
ethanol-blended gasoline over regular gasoline.

As with all stated preference experiments, our results
are limited by the hypothetical nature of the choice task
on the survey. In particular, we frame our survey by ask-
ing consumers to consider refueling a hypothetical vehi-
cle that could take any of the different fuels included in
the survey. Since no such vehicle currently exists, it is pos-
sible that respondents might have not fully believed or
understood the choice task, although an examination of
the choice counts suggest many users were willing to
choose an alternative to their primary fuel when it was in
the choice set (see section 5 of the supplementary infor-
mation). Other fuel attributes that we did not include in
our survey (and thus did not observe) but which respon-
dents may have inferred about certain fuels may have
influenced their choices. In addition, the sample of in-
person respondents is from two refueling stations inCali-
fornia, and the online sample is from a random sampling
across the entire US; as a result, the sample is not repre-
sentative of all US drivers, and the heterogeneity in pre-
ferences for different fuels and fuel attributes that was
revealed in our results suggests that substantial hetero-
geneitymay exist in amore representative sample.
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