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Abstract
Integratedmanagement of food–energy–water systems (FEWS) requires a unified, flexible and
reproducible approach to incorporate the interdependence between sectors, and include the risk of
non-stationary environmental variations due to climate change.Most of the recently developed
methods in the literature fall short of one ormore aspects in such integration. In this article, we
propose a novel approach based upon fundamentals of decision theory and reinforcement learning
that (1) quantifies andpropagates uncertainty, (2) incorporates resource interdependence, (3) includes
the impact of uncontrolled variables such as climate variations, and (4) adaptively optimizes
management decisions tominimize the costs and environmental impacts of crop production.
Moreover, the proposedmethod is robust to problem-specific complexities and is easily reproducible.
We illustrate the framework on a real-world case study inVentura County, California.

1. Introduction

In recent years, there has been significant research
interest in realizing sustainable infrastructure through
integrated operation of food, energy, and water
systems (FEWS) (Al-Saidi and Elagib 2017, Veldhuis
and Yang 2017, Helmstedt et al 2018, Liu et al 2018).
Fundamental elements of integrated FEWS include
uncertainty, the interdependence between sectors, risk
and impact of climate change, and a generalized
framework that enables scalability to a multitude of
applications (Howarth and Monasterolo 2016, Cai
et al 2018). A recent review paper byAlbercht, Crootof,
and Scott (2018) identifies two fundamental gaps in
FEWS analysis: (1) the methods are generally not
reproducible and are problem-specific; (2) they
usually fall short of incorporating the interdependence
across sectors as well as resource interdependence.
More specifically, recent literature in FEWS manage-
ment either focus on optimizing the food process and
identifying optimal strategies for such management,
or focus on the flow of information and resources
among the different sectors involved in the operations,
ignoring the optimization of the process due to
computational complexity.

Optimizing the operations of FEWS requires iden-
tifying the management objective, constraints to the
manager, strategies available to her, utilities corresp-
onding to the operational costs, revenue, as well as the
effect of exogenous (or uncontrolled) variables such as
environmental variations. Once these are quantified,
several approaches can be used to identify themanage-
ment strategies and outcomes of such implementa-
tions on the FEWS operations in long-term, including
mathematical programming (Rong et al 2012, Yu and
Nagurney 2013, Zhang et al 2018, Bieber et al 2018),
life-cycle assessment (Sherwood et al 2017, Wang et al
2017, Bell et al 2018), and scenario planning
(Ramaswami et al 2017, Chaudhary et al 2018, Karan
et al 2018). Although most of these studies focus on
optimizing the crop production or food process
life cycle, recent studies have focused on utilizing
similar approaches to model and optimize the inter-
connected sectors. Examples are modeling inter-con-
nection of energy and food sectors towards utilization
of food bi-products for energy purposes (Cuellar and
Webber 2010, Boyer and Ramaswami 2017, Breunig
et al 2017, Wang et al 2018), flow of energy and water
within a FEWS network, as well as design of network
topology itself (Kurian et al 2018, Tsolas et al 2018,
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Daher et al 2019, Liang et al 2019), and the inter-
dependence with social aspects of FEWS (Givens et al
2018). Another important factor in integrated FEWS
analysis is risk imbued by climate change. A few recent
studies have evaluated the effect of climate change on
crop production and operation within an integrated
FEWS using dynamic forward simulation (Conway
et al 2015, Berardy and Chester 2017, Baker et al 2018,
Bieber et al 2018). Nevertheless, current efforts that
incorporate climate change effects in FEWS analysis
mostly rely on management strategy evaluation
(Smith 1994), which is also known as scenario plan-
ning. Although management strategy evaluation can
evaluate the effect of fixed management strategies on
long-term FEWS operations under pre-defined reali-
zations of random events, they cannot generate the
optimal solution in a stochastic sense.

FEWS integrated management requires a combina-
tion of economic-based management strategy evalua-
tion, with optimization that incorporates environmental
impacts and risk of climate change. Decision theory and
reinforcement learning make this integration possible;
recent advancements in these fields have shown great
promise in modeling complex dynamics of inter-
dependent systems (Littman 2015) in many real-world
applications such as human-level control in gaming
(Mnih et al2015, Silver et al 2017), natural resourceman-
agement (Memarzadeh and Boettiger 2018, 2019), and
robotics (Porta et al 2005, Francois-Lavet et al 2018). In
this article we develop a dynamic optimization approach
basing upon fundamentals of decision theory and
model-based reinforcement learning, to adaptively con-
trol and optimize operation of integrated FEWS. The
novelties of the proposed approach are the ability to
(1) quantify and propagate uncertainty and stochasticity
in the dynamics of each sector, (2) incorporate resource
interdependence, (3) include the impact of the uncon-
trolled variables such as climate variations, and (4) adap-
tively optimize the management decisions to minimize
the costs and environmental impacts of the agricultural
production.Moreover, the proposedmethod is robust to
problem-specific complexities and is easily reproducible.
We evaluate its performancewith a real-world case study
of aFEWS inVenturaCounty,California.

2.Methods

In order to fill the gapsmentioned above, we develop a
dynamic Bayesian network (Barber 2012) to optimize
the management of FEWS under the effect of climate
variability. Dynamic Bayesian network is a specific
family of model-based reinforcement learning. When
modeling a problem using this approach, one needs to
define the state space, actions available to themanager,
the dynamics of the system, and the utility function.
We define each next (for detailed definitions refer to
table A4).

The state space represents the time-varying condi-
tion (or status) of the FEWS. We factorize the state
space into two sets of variables. (1) Let xäX represent
the status of the water and energy resources, as well as
the food (i.e. crop production) state (it should be
noted that food state in this article solely correspond to
the agricultural production and not the state of food
processes in the entire life cycle). These are controlled
states, where X is the entire domain of the state space,
which is a Cartesian product of the water and energy
states with crop production state, i.e. X=F×
E×W. (2) Let s ä S represent the climate and seaso-
nal variations, defined as an exogenous variable
(sometimes also called uncontrolled variable). For
example, s could represent different seasons, annual
changes in the temperature, or seasonal and annual
changes in precipitation. Similarly, S represents the
entire domain of the exogenous variables. Conse-
quently, the entire state space is defined in a factorized
space of controlled and uncontrolled variables: ( )X S, .
The manager (also sometimes referred to as the deci-
sion-maker or the agent) of the system may select dif-
ferent actions corresponding to different sources of
water and energy, aä A, where A represents the entire
domain of actions available to themanager.

The dynamics of the crop, energy, and water vari-
ables are modeled as a stochastic process, i.e. =+xt 1

z++( )f x a s, ,x t t t t
x

1 , where t denotes the time index,
and ζt

x is a random variable representing the stochasti-
city in the dynamics. It should be noted that the
dynamics of the FEWS variables depend on actions
taken by manager, as well as exogenous state variables
(e.g. temperature, precipitation, season) st+1. The state
of the uncontrolled variable st also evolves stochasti-
cally, z= ++ ( )s f st s t t

s
1 . We assume that the uncon-

trolled variables affect the dynamics of the crop
production, energy and water variables, but the man-
ager has no control over their dynamics and as a result,
themanager just observes their changes.

The quality of the strategies that themanager takes
is quantified by a pre-specified utility function that
maps state and action spaces to real-value numbers:

´ ( ) ( )u x s a X S A, , : ,t t t . Specifically, we define
utility as follow

= - -( ) ( ) ( ) ( )u x s a C a P x s, , Rev , , 1t t t t t t

where we assume that Rev is the constant revenue
achieved from agricultural productions, C(at) is the
costs of actions taken by the manager (which is
comprised of energy cost (MJ/kg of the crops pro-
duced), GHG emissions (kgCO2/kg of the crops
produced), and operational costs ($/kg of the crops
produced)), and P(xt, st) is the loss of revenue
(i.e. penalty) due to failure of the agricultural produc-
tion and not yielding the crops. Since the revenue is
assumed to be constant, the optimal management
strategy that maximizes the profit in agricultural
production, i.e.the utility function defined above, is
equivalent to themanagement strategy that minimizes
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the operational costs of the production. As a result, we
define the objective of the optimization problem by
minimization of the costs.

Since actions taken by a manager have both
immediate and long-term effects on the system
dynamics, the optimization objective need to be sensi-
tive to both immediate and long-term outcomes. As a
result, the goal of the optimization process is to mini-
mize operational costs and environmental impacts, in
some sense, over the entire FEWS network life-span.
This is mathematically given by the weighted sum of
costs over each time step: gå += ( ( ) ( ))C a P x s,t

T t
t t t0 ,

where T is the life-span of the system (or management
time horizon). Symbol g Î [ )0, 1 is the discount fac-
tor, relating future costs to their net present value. We
usually set T to infinity to model long-term manage-
ment problems. The management strategy (sometime
also referred to as policy) can then be defined as a
mapping from the state space to the action space,
p ( )X S A: , . For an arbitrary strategy, π, one can
calculate the long-term expected cost over the net-
work’s life-span, which we denote by Vπ, and it is cal-
culated recursively as:

å å

p

g

p

= +

+

p

p

Î
+

Î
+

+ + +

+ +

⎡
⎣
⎢⎢

⎤
⎦⎥

( ) ( ( )) ( )

( ∣ ) ( ∣

( ) ) ( )

( )

V x s C x s P x s

p s s p x

x x s s V x s

, , ,

, , , , ,

2

t t t t t t

s
t t

x
t

t t t t t t

S X
1 1

1 1 1

t t1 1

where p( ( ))C x s,t t is the immediate costs associated
with the strategy π, ( )P x s,t t loss in revenue (if
incurred), and p(x|y) is the probability of event x
conditioned on event y. The conditional probabilities
p(st+1 | st) and p+ +( ∣ ( ) )p x x x s s, , ,t t t t t1 1 corres-

pond to the respective dynamics z+( )f ss t t
s and

z++( )f x a s, ,x t t t t
x

1 , respectively. Figure 1 visualizes
the probabilistic graphical model of the factorized
dynamic Bayesian network.

The difference between the method proposed here
and previous attempts based on scenario planning are
two-fold: (1) we seek to optimize the management
objective and find the optimal management strategy,
and not just evaluate a set of pre-determined strategies,
and (2) uncertainty is elegantly handled by directly
incorporating statistics into the strategy design, instead
of evaluating strategies on a finite set of randomly gen-
erated scenarios. The optimal strategy can be found by
minimizing the long-term expected costs and environ-
mental impacts of operating the system over its entire
life-span (defined in equation (2)) as follows

*

*å å

p

g

= +

+ ¢ ¢ ¢ ¢ ¢

Î

¢Î ¢Î

⎡
⎣⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦
⎥⎥

( ) ( ) ( )

( ∣ ) ( ∣ ) ( )

( )

x s C a P x s

p s s p x x a s V x s

, argmin ,

, , , .

3

a

s x

A

S X

Equation (3) is the well-known Bellman equation
(Bellman 1957), and we use dynamic programming
(Sutton and Barto 1998) to find the optimal solution.
The algorithm is reported infigure 2.

3. Results and discussion

We first explain the real-world case study—a FEWS in
Ventura County that is used for illustrating the proposed
method.Thenwewill discuss themainfindings.

Figure 1.The probabilistic graphicalmodel of a food–energy–water system. Circles represent randomvariables, squares represent
decision variables, and diamonds represent the utility variables. As can be seen, the state space is factorized into two sets: crop
production, energy, andwater states,X, and the uncontrolled state, S, comprised of seasonal changes,λ, changes in temperature,ΔT,
and precipitation, r. The expressions on the edges correspond to the dynamics of the uncontrolled variable, p(st+1 | st), dynamics of the
controlled state variables, p+ +( ∣ ( ) )p x x x s s, , ,t t t t t1 1 , utility variables, ( )u x s a, ,t t t (as defined in equation (1)), and action selection
according to amanagement strategy,π*. For example, the action at time step t is denoted as *p= ( )a x s,t t t .
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3.1. Ventura county FEWS
We focus on four crops in Ventura County, California
—strawberry, lemon, avocado, and celery, which on
average account for 33% of California’s total produc-
tion of these crops and 30% of total US production for
these crops, with a gross value of $1.18 billion
(Ross 2015) (for details refer to table A1). We denote
the water level available for irrigation at each time step
t by Î [ ]w 0, 1t , normalized to the maximum capacity
so it takes values between 0 and 1. Similarly, the
available energy amount is denoted by Î [ ]e 0, 1t . The
seasonal water demand dw,t and energy demand de,t for
each of the four crops are obtained from the work of
Bell et al (2018). The data of seasonal precipitation, rt,
is obtained from theWestern Regional Climate Center
(https://wrcc.dri.edu) for Ventura County. In the first
analysis we only focus on quantifying the effect of
seasonal changes on the optimal management strategy
of FEWS operations. Later on, we extend the formula-
tions to incorporate the effect of climate change,
specifically the changes in temperature and precipita-
tion, on the optimalmanagement strategy aswell.

The crop production state, which corresponds to
the status of agricultural production, is given by ft ä
{0, 1}. We assume production takes place only if the
level of water and energy available are above the
demands4, i.e.

 =
< <⎧⎨⎩ ( )f

w d e d

w d e d

0 if or

1 if and
. 4t

t w t t e t

t w t t e t

, ,

, ,

Manager has four actions available corresponding
to utilizing the conventional or recycled water

resources, Î = { }a A Conv , Recw t w w w, , and utilizing
the conventional or renewable wind energy resources,

Î = { }a A Conv , Rene t e e e, . We assume that the con-
ventional water source in the region is coming from
runoffs in the nearby river aswell as local wells, and the
conventional energy source is mostly natural gas (Bell
et al 2018). It should be noted that we aggregate the
two sources of water available for irrigation (water
from runoffs in the nearby river and groundwater
resource) in this case study for simplicity. However, as
illustrated byMarston and Konar (2017), farmers tend
to switch between these two resources according to
seasonal changes and specially in drought conditions.
This effect is currently ignored in this case study due to
lack of data. Consequently, the action vector at is given
by at=(aw,t, ae,t) ä Aw×Ae. The current capacity of
recycled water in the region is estimated to be only suf-
ficient to provide water for 25% of the agricultural
productions for these four crops (Bell et al 2018). Simi-
larly, we have assumed that the hypothetical wind
power capacity is sufficient for 25% of the total agri-
cultural production. This means that, for example,
action (Recw, Rene) corresponds to combining max-
imum amount of recycled water and renewable energy
available (i.e. 25%) with conventional resources
(75%). Of course, the projections indicate that we will
have (or should invest on)more renewable sources of
water and energy available in the future and we quan-
tify the economic benefits of increasing capacity of
such renewable resources later on.

As mentioned before, the quality of the strategies
that the manager takes is quantified by a pre-specified
utility function, defined in equation (1). The costs
associatedwithmanagement actions, i.e.C(at), is com-
prised of energy cost (MJ/kg of the crops produced),
green house gas (GHG) emissions (kgCO2/kg of the
crops produced), and operational costs ($/kg of the

Figure 2.The value iteration algorithm for solving the optimization problem in equation (3). It should be noted that this algorithm is a
variation of the original value iteration algorithm (Sutton andBarto 1998), as the changes of the state variables from time step t to
t+1, depends on the observed uncontrolled variables at time step t+1, i.e. st+1.

4
It should be noted that, in this setting where the crop production

state is binary, the state space can be implemented as a Cartesian
product of only water and energy states, however, for illustration
purposes we include the crop production state explicitly here.
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crops produced). We characterize costs associated
with four actions in a normalized unit-less manner.
This means that the cost associated to using conven-
tional water is assumed to be 1, and the additional
costs associated to using the recycled water is reported
in table A2. Similarly, costs associated with the energy
resource choices is comprised of environmental GHG
emissions and operational cost. Values are reported in
table A3. The penalty for not yielding the crops and
loss in revenue, i.e. P(xt, st) in equation (1), due to lack
of water or energy resources is set to a very large num-
ber. This generates management strategies that meet
both water and energy demands at all times, and thus
ensures sustainable agricultural production, i.e. ft=1
for all t. The value of the penalty is an arbitrarily large
number, and the results are not sensitive to the choice
of penalty, as long as it is sufficiently large with respect
to the costs.

The interdependence of the water and energy states
is characterized by the strategy that the manager choo-
ses. Recycling water is assumed to consume more
energy, and similarly conventional energy is assumed to
consume more water than wind energy. The exact
interdependence is quantified later on in equations (5)–
(6). It should benoted that in this articlewe onlymodel
resource interdependence among the water, energy,
and agricultural production and do not incorporate the
comprehensive sectoral interdependence.

In the next sections, we first discuss the findings at
a seasonal level, where each time step of the process is
assumed to be one day to consider the effect of season-
ality on the optimal FEWS operations, ignoring the
long-term effects of climate change. Next, we extend
the formulations to incorporate the effect of climate
change, specifically the changes in temperature and
precipitation, on the optimal management strategy,
where FEWS operation is projected to the year 2050
and each time step is assumed to be one season.

3.2. Seasonal changes
In the dynamic Bayesian network formulation
depicted before, we define two sets of state spaces as
follows: (1) season is an uncontrolled variable, λ ä
{Spring, Summer, Fall,Winter}, and (2)water, energy,
and crop production states are controlled variables,
X=F×E×W. The water level is discretized into
51 values, Î [ ]w 0, 1t with step 0.02. The dynamics of
the water state for each crop i and season λ is
formulated as follows



 z
= - + -

+ +

l l
+ · ( )

· ( ) ( )

( ) ( ) ( )w w d r w a

w a , 5
t

i
t

i
w t
i

t e e t

w w t t

1 ,
,

Conv ,

Rec ,

e

w

where ( )wt
i is the water level for crop i at time step t,

l( )dw t
i
,
, is the water demand at time t for crop i in season

λ, l( )rt is the seasonal precipitation, we is water
consumed when using conventional energy (which is
fixed to 10%),  ( )ae tConv ,e

is the indicator function
which returns 1 if ae,t=Conve, and 0 otherwise, ww is

the boost in the water state due to using a recycled
water resource (which is maximum of 25% in Ventura
County (Bell et al 2018)),  ( )aw tRec ,w

is the indicator
function which returns 1 if recycled water is used.
Finally, ζt is the stochasticity in the dynamics, which is
assumed to be normal distribution with a known
standard deviation, truncated at zero to avoid negative
state values, i.e. z s~ =+¥ ( )[ ]N 0, 5%t 0, . It should
be noted that although the parameters ww and we are
being fixed here based on the data obtained for
Ventura County, including uncertainty in these para-
meters is straight-forward and one can treat them as
random variables with a known prior probability
distribution. For example, in the next section we
incorporate the uncertainty and variability in the
precipitation variable due to changes in climate.

The energy level is discretized into 51 values,
Î [ ]e 0, 1t with step 0.02. The dynamics of energy

state for each crop i is formulated as follows



 z
= - -

+ +
+ · ( )

· ( ) ( )

( ) ( ) ( )e e d e a

e a , 6
t

i
t

i
e t

i
w w t

e e t t

1 , Rec ,

Ren ,

w

e

where +
( )et
i

1 is the energy level for crop i at time step t,
( )de t
i
, is the energy demand at time t for crop i, ew is

consumed energy for using recycled water (which is
fixed to 10%), and ee is the boost of energy due to using
wind energy (which is assumed to be a maximum of
25%). It should be noted that the energy dynamics do
not depend on seasonal variations in this case study
due to lack of data, however extension to include such
seasonal dependence is straight-forward. Figure 3
provides a schematic visualization of Ventura Coun-
try’s FEWS (It should be noted that, in this case study
where the crop production state is binary, the state
space can be implemented as the Cartesian product of
only water and energy states, and as a result we have
not included the crop production state in the figure).

Figure 4 visualizes the optimal management strat-
egy for each crop in each season. Management strate-
gies are calculated by minimizing the objective
function in equation (3) using the algorithm in
figure 2. Axes correspond to the energy and water
states, and different shapes denote different manage-
ment actions. The general trend is that managers tend
to utilize recycled water (green triangle and magenta
cross) more aggressively in the high water-demand
seasons compared to low water-demand seasons (For
example, in the case of strawberry, the manager uses
the renewable water source 100%more in high water-
demand seasons compared to low water-demand sea-
sons. These differences are 134% for lemon, 85% for
avocado, and 51% for celery).

In the previous section, we mentioned that the
current recycling water unit in Ventura County can
output up to 25% of the total agricultural production.
Similarly, we also assumed that wind energy can pro-
vide up to 25%of total energy need. Figure 5 quantifies
the expected economic value (EV) of doubling the size
of both the water recycling facility as well as the wind
energy capacity to allow coverage for up to 50% of the

5
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total agricultural production in the region. The EV is
calculated as follows

* *= -[ ( ¯ ¯) ( ¯ ¯)] ( )(¯ ¯) V Vx s x sEV , , , 7I IIx s,

where, (¯ ¯)x s, is the sample mean over N=100
sampled trajectories of uncontrolled and controlled
state variables = ¼(¯ ¯) {( ) ( ) ( )}x s x s x sx s, , , , , , ,T T0 0 1 1 .
The time span T is set to arbitrary large number for the
value to converge (due to discounting future costs),
*VI is the optimal value for the 25% capacity case, and
*VII is the optimal value for the 50% capacity case. As it

can be seen the EV is significantly higher (118%) for
high energy-demand crops (i.e. strawberry and avo-
cado) compared to low energy-demand crops (i.e.
lemon and celery).

3.3.Management under the risk of climate change
In this section,we incorporate the effect of climate change
(i.e. variations in temperature and precipitation) on the
management strategies for operating the integrated
FEWS inVentura County.We define two climate change
scenarios: (1) the Low climate change which models the
changes in temperature according to RCP2.6 (data
obtained from IPCC (2014), figure 6(A)), and changes in
precipitation according to RCP4.5 (data obtained from
Pierce et al (2018), figure 6(B)); and (2) the High climate
change which models the changes in temperature and
precipitationboth according toRCP8.5.

In order to incorporate the changes in these cli-
mate variables, the uncontrolled variable is defined as
the Cartesian product of temperature changes, pre-
cipitation, and seasons S=ΔT×r×λ, where λ ä
{Spring, Summer, Fall,Winter} is the variable indicat-
ing the season changes. As it can be seen in figure 6(B),

the projections of the precipitation under the climate
change only affects the variability of the rainfall
amount and not its expected value (the data is
for Ventura County and this trend is not general to
other locations). As a result we model the effect of
climate change on the precipitation amount in each
season, λ, as: l m s s~ = =l+¥( ) ( ¯ )[ ]r t N r, , M t0, , ,
where l̄r is the average seasonal precipitation amount
currently (obtained from Western Regional Climate
Center, https://wrcc.dri.edu), and s tM, is the stan-
dard deviation in the precipitation projected up to
2050, t ä [2018, 2050], according to each model,

Î { }M RCP4.5, RCP8.5 . The values of these varia-
tions is estimated according to the projections based
on three different climate models of HadGEM2-ES,
CNRM-CM5, and CanESM2 (Pierce et al 2018)
(figure A1). The controlled state variables are modeled
as before:X= F× E×W, as well as the actions.

The water dynamics in equation (4) are re-for-
mulated to account for trans-evaporation and other
losses due to temperature rise, as well as changes in the
precipitation variations




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h z

= - +
-

+ - D +

l

b

+ ( )
· ( )
· ( ) ( ) ( )

( ) ( ) ( )w w d r t

w a

w a T

,

, 8

t
i

t
i

w t
i

e e t

w w t t t

1 ,
,

Conv ,

Rec ,

e

w

where, symbol l( )dw t
i
,
, is the seasonal water demand for

crop i in season λ, r(λ, t) is the precipitation at time
step t and season λ defined as above, we is consumed
water for using conventional energy (which is fixed to
10%), and h D b( )Tt is the nonlinear effect of temper-
ature change on water losses at time t, with constant
parameters η and β fixed at 0.1 and 1.75, respectively.
Effect of climate change can be similarly incorporated

Figure 3.This figure provides a schematic visualization of the dynamics of Ventura County’s FEWSoperations. The controllable states
include available waterwt and energy et. The actions includewhichwater resource to use (conventional or recycled) aw,t andwhich
energy resource to use (conventional, i.e. natural gas, or renewable, i.e. wind) ae,t. Thewater and energy demand to produce each crop
is denoted by dw,t and de,t, respectively.
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in energy dynamics as follows
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where, h¢ D b¢( )Tt models the effect of temperature rise
in deterioration of energy resource due to increased
energy demand for irrigation pumping and air con-
ditioning. However, in this case study, we disregard

Figure 5.Economic value (EV) for doubling the size of the recyclingwater and renewable energy units on the operation cost of the
Ventura County FEWS. The bars show average economic value based on 100 independent simulations. Top of the bars show the
mean, the black line shows themedian, the bottom and top of the boxes show 25%and 75%percentiles, andwhiskers correspond to
highest and lowest values excluding the outliers.

Figure 4.Visualization of the optimalmanagement strategies as a function of the water and energy states, for each crop across four
seasons. Red dots represent conventional water and energy, green triangle represents recycledwater and conventional energy, cyan
square represents conventional water and renewable energy, andmagenta cross represents recycledwater and renewable energy.
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this effect due to lack of data to adjust such effect. Once
such data is available, it can be used to estimate
parameters η′ and β′, and include the effect in energy
dynamics according to equation (9). Moreover, the
effect of climate change on wind energy is also ignored
due to lack of data. The expectation is that the amount
of available wind energy will be increasing, due to
decreasing costs and increasing policy incentives, and
we quantify the expected value of increasing the
capacity of renewable sources later on (figure 7(B)).

As a result, the energy dynamics are equivalent to
equation (6), assuming ew to be 10% to represent the
energy consumption for recyclingwater. It isworthmen-
tioning that, in this section, we have discretized thewater
and energy state space into 21 values Î [ ]w e, 0, 1t t with
step 0.05 for computational efficiency.

To understand the impact of different climate sce-
narios, we evaluate the risk of not adapting the FEWS
management strategy to climate change in figure 7(A).
Here, we compare the value of operating the network
according to the optimal strategy that considers future
projections of temperature rise and changes in pre-
cipitation (labeled as Optimal), with the strategy that
assumes climate stays the same (ΔTt=0, rt=r0, " t ,
labeled as Ignoring, where r0 is the current observed
precipitation). It is clear that ignoring climate change
in the management strategy design results in sig-
nificant increase in FEWS operational cost, on average
for all crops around 24% and 115% more under Low
andHigh climate scenarios, respectively5.

We further quantify the EV of doubling the water
recycling and renewable wind energy capacities so they
can provide water and energy for up to 50% of the total

operational needs, calculated using equation (7)
(figure 7(B)). As it can be seen, in Low climate scenario,
the EV is close to negligible across all crops (14 on aver-
age with low standard deviation). However, the EV is
significantly higher for all crops in the case of High cli-
mate scenario (135.78 on average with a very high stan-
dard deviation. For example, in the case of strawberry
the EV can be as high as 270). This is an interestingfind-
ing as current policy-makers must decide whether to
invest in increasing the capacity of water recycling and
renewable energy sources or not, given the uncertainty
as to which one of these (and many other) climate pro-
jectionswill best represent the future reality.

4. Conclusions

Wehave developed a dynamic optimization approach,
based upon the fundamentals of decision theory and
model-based reinforcement learning, to adaptively
control and optimize operation of integrated FEWS.
Fundamental elements to integrated FEWS manage-
ment are uncertainty, connectivity of the sectors and
resource interdependence, risk and impacts of climate
change, and generalizability of the methods. Most of
existing quantitative literature fall short of one ormore
of these aspects. The novelty of our approach is to
create a flexible and reproducible method that is able
to quantify and propagate uncertainty in the dynamics
of each sector, incorporate the resource interdepen-
dence, include the impact of uncontrolled variables
such as climate variations, and adaptively optimize the
management decisions to minimize the costs and
environmental impacts of crop production.

We illustrated the method on a real-world case
study in Ventura County, California, by evaluating the
effects of seasonal changes and annual environmental

Figure 6.Thisfigure shows theprojectionof the changes in (A) temperature and (B)precipitationbyyear 2050.Thedata areobtained from
IPCC (2014) for temperature andPierce et al (2018) forprecipitation. It shouldbenoted that the temporal resolutionof the temperaturefigure
(A) is seasonal.Theannual variations in theprecipitationare estimated according to theprojectionsbasedon threedifferent climatemodelsof
HadGEM2-ES,CNRM-CM5, andCanESM2 (refer tofigureA1). After estimating the annual variations, it is translated into the standard
deviationof the seasonal variationswith aknownmeanfixedat the expected seasonal precipitation: l m s s~ = =l+¥( ) ( ¯ )[ ]r t N r, , M t0, , ,
whereM={RCP4.5,RCP8.5} and l̄r is obtained fromWesternRegionalClimateCenter, (https://wrcc.dri.edu).

5
It should be noted that these numbers are biased based on the

assumed penalty for loosing the crop production state. In this study,
we assumed the penalty to be 100.
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variations (temperature rise) on the optimal manage-
ment strategies. Generally, the intuitive observation is
that the management tends to lean towards renewable
water and energy resources more aggressively in high
water-demand seasons (around 92%more on average
for all crops, figure 4). Moreover, using a crudeMonte
Carlo scenario planning, we quantified the loss that
occurs to management that deviates from the optimal
strategy and ignores the future changes of the climate,
e.g. rises in temperature and changes in precipitation
(around 24% and 115% higher cost of management
under Low and High climate scenarios, respectively,
figure 7(A)). We also quantified the EV of increasing
the capacity of alternative water and energy sources
(figures 5 and 7(B)) and its effect on the operation cost
and environmental impacts. Specifically, we show that
the EV is significant (136% on average for all crops,
figure 7(B))underHigh climate scenario.

In practice, one can adapt the optimal manage-
ment strategy by re-computing the solution to
equations (2)–(6) as new information becomes

available, thus enabling optimal integrated FEWS
management that adapts to climate change. A logical
next step is to incorporate the inherent uncertainty
within climate projection models into the optim-
ization framework. Another future direction is to fur-
ther examine the functional form of the deterioration
models used for water and energy state variables
(equations (5)–(6)), and their dependence on climate
change (equation (8)). Moreover, the effect of energy
generation as a bi-product of the crop production sec-
tor (such as biofuels (Breunig et al 2017)) is ignored in
this study, providing another idea for future direction.
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Appendix. Additional tables andfigures

TableA1. Summary of VenturaCounty’s top crops in 2014 (source:
Ross 2015).

Crop

Gross

value

Ventura’s share

of California

California’s

share ofUS

Strawberry $628M 27% 91%

Lemon $269M 37% 91%

Avocado $128M 36% 95%

Celery $152M 31% 83%

Table A2.Additional costs associatedwith using the
recycledwater resource in terms of energy cost (MJ/kg
of the crops produced), GHGemissions (kgCO2/kg of
the crops produced), and operational costs ($/kg of the
crops produced) (source: Bell et al 2018).

Crop Energy GHG Operation

Strawberry +10% +14% +7%

Lemon +12% +7% +22%

Avocado +17% +9% +34%

Celery +54% +59% +25%

Table A3.Assumed costs associatedwith
different choices of energy resource.

Source GHG Operation

Conventional +1800% —-

Renewable —- +1000%

Figure A1.This figure shows the projections of changes in
precipitation by the year 2050 according to the three different
climatemodels ofHadGEM2-ES, CNRM-CM5, and
CanESM2, source: Pierce et al (2018).

TableA4.Variables used in this article and their definition.

Variable Definition

xäX Entire domain of state variables in the dynamic Bayesian network

fä {0,1} Crop production state correspondingwhether yield happens or not

eä [0,1] State of energy available for crop production

wä [0,1] State of water available for crop production

sä S Entire domain of exogenous variables corresponding to environmental variations

λä {Spring, Summer, Fall,Winter} Exogenous variable defining seasonal changes.

ΔT Exogenous variable defining changes in the temperature

r Exogenous variable defining variations in precipitation

aäA Entire domain of actions available tomanager

ζ Variable defining stochasticity

uäU Utility variable quantifying the quality ofmanager’s actions

C Cost variable defining costs ofmanager’s actions

P Penalty due to not yielding crops (loosing crop production state, i.e. f=0)
γä [0,1) Discount factor, relating future costs to their net present value

T Management time horizon, whichwe set to infinity in this article

V Long-term expected cost ofmanaging the system

π Management strategy chosen for the system

d Variable representing demands of water and energy imposed by the society
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