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Abstract
Forests play a central role in addressing climate change, and accurate estimates of forest carbon are
critical for the development of actions that reduce emissions from forests and thatmaximize
sequestration by forests.Methodological challenges persist regarding howbest to estimate forest
carbon stocks andflux at regulatory-relevant scales. UsingCalifornia, USA as a case study, we compare
two approaches to stock-difference forest carbon estimation for aboveground live trees: one based on
ground inventories and one on land cover classification of remotely-sensed data. Previous work
using ground inventory data from the Forest Inventory andAnalysis Program (FIA) showed net
aboveground carbon (AGC) sequestration by live trees inCalifornia forests, while estimates using land
cover classification from the Landscape Fire andResourceManagement Planning Tools (Landfire)
showed net reductions in live tree AGCover a similar time period.We examined the discrepancy by
re-analyzing the FIA inventory data through the lens of a category-change analysis based on Landfire.
This analysis showedmore than 50%of the live tree AGC in fewer than 4%of Landfire-equivalent
categories and that the overwhelmingmajority (>80%) of forest area did not change height category
betweenmeasurement periods. Despite the lack of categorical change, themajority of FIA plots
increased in both 95th percentile tree height and in live tree AGC. Thesefindings suggest that an
approach based on observing categorical changes risks undercounting AGC sequestration resulting
fromgrowth and thus overstating the relative importance of AGC reductions that result from
disturbances. This would bias AGCflux estimates downward, leading us to validate the conclusion
that live trees inCalifornia were a net sink of aboveground carbon in the decade ending in 2016.Our
findings suggest an inventory-based or hybrid approach is preferable tomethods that depend on
categorical bins for estimating AGC in disturbance-prone forest ecosystems.

1. Introduction

Forests contain one of the largest stocks of stored
carbon on the planet. Tropical forests alone are
estimated to store 247 GtC, equivalent to 28.4 years of
global carbon emissions from fossil fuel burning and
industrial processes at 2010 levels (Saatchi et al 2011,
IPCC 2014a). Deforestation and forest degradation
were responsible for 12.5% of global greenhouse gas
emissions from 1990 to 2010 (van der Werf et al 2009,
Houghton et al 2012). Despite large emissions, forests
globally sequestered more carbon than they emitted
between 1990 and 2007 (Pan et al 2011). In the United

States (US), forests and forest products were net sinks
of carbon between 1990–2012, with net sequestration
in 2012 of 236.5 TgC contributing 88% of the total
sequestration fromUS land use in 2012 (Williams et al
2016,US EPA2018).

Forest carbon stocks thus present both tre-
mendous climate risks and benefits depending on
changes in forest extent and use. As such, forests have
figured prominently in discussions surrounding cli-
mate change mitigation, particularly in the context
of tropical forests and REDD+(Gibbs et al 2007,
Petrokofsky et al 2012). In the 2015 Paris Climate
Agreement, land use and forests play a significant role
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in many Nationally Determined Contributions
(NDCs). Avoiding land use change or improving exist-
ing land use were the source of one quarter of the pro-
posed emissions reductions under the announced
NDCs (Grassi et al 2017). Griscom et al (2017) esti-
mate that actions to conserve, restore, and improve
land management could contribute one third of the
most cost-effective solutions to keep global average
temperature increase under 2 °C, and that forest-
based activities are the largest potential contributors.

In a context where high-profile policy priorities
are designed around specific targets, it is important to
get the measurement right (Grassi et al 2017). Carbon
accounting has implications for prioritization among
economic sectors as well as spatial prioritization
among locations for project activities and investment
(Law et al 2015). The Intergovernmental Panel on Cli-
mate Change recognizes two categories of methodolo-
gies for estimating carbon dynamics: gain-loss and
stock-difference (IPCC 2006). Gain-loss focuses on
the dynamics of change in forest carbon stocks-esti-
mating amounts of increase and decrease in specific
carbon pools, whether through sequestration, emis-
sion, or movement of carbon from one pool into
another. Gain-loss estimation thus provides valuable
insights into processes of growth and disturbance by
documenting flows of carbon among pools (Stinson
et al 2011, Kim et al 2017). Stock-difference, on the
other hand, estimates carbon stocks at two or more
time-points, and evaluates the change between the
time points. Stock-difference approaches rely on for-
est inventory data that are frequently resource-inten-
sive to acquire; however, in cases where inventories
exist, a stock-difference approach can be efficient
(IPCC 2006).

Organic carbon in forests is present in multiple
pools: aboveground live trees and understory vegeta-
tion, root systems alive and dead, dead standing trees,
woody debris, and the soil. However, aboveground
carbon (AGC) is frequently the focus of state-level or
project-level monitoring efforts because of more lim-
ited data availability on the other pools (Gonzalez et al
2015, Tyukavina et al 2015; Neeti and Kennedy 2016).
In the case of California, the focus of the current study,
the AGC stored in live trees (2006–2015) was esti-
mated to be 52.1% of the total carbon in forest lands
while soil carbon was the second-largest pool with
24.8% (Christensen et al 2017). The share of live tree
AGC in overall carbon flux was higher still: over a
10 year period from 2001–2005 to 2011–2015, the
increase in AGC in live trees was 69.5% of the net
increase across all carbon pools (Christensen et al
2017). This compares to the results for the United
States as a whole where AGC accounted for 55.0% of
the forest ecosystem flux and 46.9% of the total forest
and forest products flux (USEPA2018).

In California, two different stock-difference forest
carbon estimation efforts have become prominent in
policy discussions around forest carbon. One is based

on remotely-sensed (RS) data from Landfire (Ryan
and Opperman 2013, Gonzalez et al 2015) while the
other is based on national-scale forest inventory data
collected from plots on a five-kilometer grid by the
Forest Inventory and Analysis (FIA) program (Chris-
tensen et al 2017). In general terms, on-the-ground
inventories provide the most accurate picture of car-
bon stocks for a given location but since many plots
must be used to provide statistically valid estimates,
the method does not provide a statistically-valid
detailed map product. A land classification based on
RS data allows greater scalability while producing spa-
tially-explicit data. Analysis based on land classifica-
tion is generally more cost-efficient at large scales,
especially if good estimates of carbon density for forest
types have already been established (Petrokofsky et al
2012).

Despite the apparent cost and scale advantages of a
RS-based land classification over a ground-level
inventory system, there are trade-offs with accuracy.
This trade-off becomes more pronounced in cases
where the goal is to estimate change over time in car-
bon stocks rather than to estimate stocks at a specific
time. Repeated measurements of fixed-area perma-
nent plots provide themost accurate estimate of chan-
ges in carbon stock (Brown 2002). However, given the
increasing availability and low costs of RS data, many
analyses of changes in biomass carbon have beenmade
based solely on changes over time in RS-based land
categories without ground-truthing the estimates of
carbon density (e.g. Lai et al 2016, Zomer et al 2016).
Some of this is due to the fact that large-scale forest
inventory data exists in few places and are expensive to
maintain.

To our knowledge, there have not been direct
comparisons at large scale of results from these two
contrasting approaches to a stock-difference metho-
dology. To fill this gap, using the forests of California
as a case study, we compare and contrast ground-
based stock difference and RS land cover classifica-
tion-based stock differencemethods, identify themost
likely reasons for discrepancies seen between the two
approaches, evaluate potential bias, and discuss policy
implications.

We are motivated by the fact that recent estimates
of change in carbon stocks in California forests reveal
significant discrepancies among estimates (table 1).
Differences are evident in two prominent estimates
used by California state regulatory: one suggests that
California’s forests are a net sink of carbon while
another estimates they are a net source. Gonzalez et al
(2015) estimated that between 2001 and 2010, Cali-
fornia lost 4.8 Tg of live tree AGC per year, represent-
ing an annual rate of change of −0.58%. In contrast,
Christensen et al (2017), using forest inventory data,
estimated an increase in live tree carbon of 6.5 Tg
annually from 2001–2005 to 2011–2015–an annual-
ized change of +0.61% relative to 2006–2015. While
there are differences in the time range covered
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Table 1.Comparison of estimates for California-wide aboveground carbon (AGC) and for rates of change in AGC.

Source of estimate Base data Land covers included Year (s)
Statewide estimate for live

tree AGC

Time period for carbon flux

estimates

Annual net change in live

tree AGC Annual% change

Wildland ecosystems (all land excluding crops
and settlements)

2001 920±240Tg 2001–2010 –6.9±1.5 Tg –0.83±0.18%

2010 850±230Tg
Gonzalez et al (2015) Landfire Trees and shrubland 2001 915±250Tg 2001–2010 –7.1±1.9 Tg –0.86±0.23%

2010 840±210Tg
Trees only 2001 830±190Tg 2001–2010 −4.8±1.4 Tg –0.58±0.17%

2010 780±180Tg
Christensen et al

(2017)
FIA Trees only (including foliage) 2006–2015 1062Tg 2001–2005 to 2011–2015 +6.5 Tga +0.61%a

Trees only (excluding foliage) 2001 917 Tg 2001–2011 +6.3 Tg +0.67%

These results FIA 2011 980 Tg

Trees only (excluding foliage) 2001–2006 963 Tg 2001–2006 to 2011–2016 +4.5 Tg +0.46%

2011–2016 1008Tg

a The net change value is converted from an annual average for net flux of CO2 from standing live trees carbon presented by Christensen et al. 2017 for the 2001–2005 to 2011–2015 period (p. 41). Percentage change is relative to the

2006–2015 average stock because values for 2001–2005 were not given. Christensen et al. calculate AGC for each of the five ten-year periods in the year range above and report the average annual change between each of those years. We

compare the two six-year periods and divide theAGCdifference by the ten years between the two periods. This difference in calculation approach has the effect ofmaking our estimate of sequestrationmore conservative than the estimate by

Christensen.
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between these two estimates, there are several reasons,
discussed below, to conclude that the discrepancy
results from differences in estimation methodologies.
Gonzalez et al (2015) is based on data from the Land-
scape Fire and Resource Management Planning Tools
(Landfire) (Ryan and Opperman 2013; supplementary
data, available online at stacks.iop.org/ERL/14/
074008/mmedia), a land cover classification product
based largely on RS data, whereas Christensen et al
(2017) is based on the Forest Inventory and Analysis
(FIA) National Program (Bechtold and Patter-
son 2005; supplementary data).

Climate mitigation targets in California are asso-
ciated with policies stipulating that the state’s forests
be managed to maintain net sequestration. California
Assembly Bill Number 1504 (AB-1504; 2010) and the
initial Climate Change Scoping Plan (California Air
Resources Board 2008) estimated that, as of 2006,
California’s forests sequestered roughly five million
metric tons of CO2 (1.36 TgC) annually. AB-1504 sti-
pulates that sustainable management practices should
be used to maintain this rate of sequestration through
2020. In recent years, California’s forests have been
subject to several interlinked stressors: extreme
drought (Williams et al 2016), bark beetle outbreaks
(Kurz et al 2008, Hart et al 2015), and extreme fire
seasons (Dennison et al 2014, Abatzoglou and
Williams 2016).

The goal of this paper is to understand the major
source of the differences between the Gonzalez et al
(2015) study that estimated a net loss in aboveground
live tree carbon in California’s forests and Christensen
et al (2017) that estimated net sequestration in the
same carbon pool over a similar time period. While
the plot-based approach of Christensen et al (2017) is
explicitly designed for monitoring changes in biomass
and carbon stocks over time (Thompson et al 2015),
the Landfire product used by Gonzalez et al (2015) is
not. The Landfire product was created to provide wall-
to-wall information on vegetation and fuels in close-to
real time in order to support policy makers in the
management of fire risk (Ryan and Opperman 2013);
it was not designed as an inventory tool or a tool for
inter-temporal comparison. Policy makers in Cali-
fornia have asked for an inventory tool that provides
wall-to-wall coverage, a request which is central to the
motivation for Gonzalez et al (2015) to adapt Landfire
for the purposes of a carbon inventory. However,
Landfire risks introducing significant bias into carbon
estimates, particularly by undercounting growth in
large trees; this risk is recognized butminimized by the
studies that have used to it estimate carbon change
over time (Battles et al 2013, Gonzalez et al 2015). Our
goal with this manuscript is to provide a more robust
assessment of the potential for bias in a Landfire-based
approach and to determine whether turning to the
Landfire product because of its other benefits—wall to
wall coverage, ease of use, relative frequency of updat-
ing—is a reasonable approach or whether it risks

introducing too much bias to the estimates. Our
approach to evaluating this question is to take the FIA
data set used by the Christensen et al (2017) inventory
and to re-analyze it using the category-based approach
applied to the Landfire data (Gonzalez et al 2015). This
assessment of methods is relevant both to policy dis-
cussion in California and more broadly to the discus-
sion of how measurement approaches to carbon
accounting can have policy implications for the man-
agement of forests.

2.Methods

We used FIA data (Bechtold and Patterson 2005) to
produce estimates of statewide change in aboveground
carbon (AGC) in live trees in California from
2001–2006 to 2011–2016. We also re-classified FIA
plots to approximate Landfire classifications (Ryan
andOpperman 2013) in order to examine how looking
at the FIA results through the lens of a Landfire
classification influences the final estimate of net
carbon change in the AGC pool. Landfire is not
designed to monitor inter-temporal changes in car-
bon, and there are reasons to expect a priori that it may
introduce bias into carbon accounting by undercount-
ing growth (Battles et al 2013, Gonzalez et al 2015). We
test one likely source of that bias—its use of coarse
height bins—in order to assess the degree of that bias
and whether or not it can explain differences in
estimates obtained by the twomethodologies.

2.1. FIA and Landfire data
In California, the first complete ten-year cycle for the
FIA program was 2001–2010 (Christensen et al 2017).
The most recent data available for the analysis was for
the 2016 sampling year. Estimates of carbon contained
in different pools—in this study we are focusing on
aboveground live tree carbon—can be made from FIA
data in a way that is designed to be statistically
representative and comparable between time periods
(methodology described in the supplementary data).
Throughout this analysis, estimates of change will be
comparing the totals from the six measurement years
2001–2006with the equivalent totals from2011–2016.

Landfire includes data at two time-points—2001
and 2010—and on three characteristics of land cover:
(1) type, (2) canopy height, and (3) percent forest
canopy cover (Ryan and Opperman 2013). Variables
in Landfire are reported in a finite number of cate-
gories: 850 vegetation types across the USA (412 of
which are tree cover), three to five height categories for
each of herb, shrub, and forest and ten categories for
vegetation canopy cover. We describe the Landfire
data as well as the methods used by Gonzalez et al
(2015) to adapt it to carbon accounting in the supple-
mentary data.
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2.2. Classifying FIAdata into Landfire-equivalent
categories
To compare FIA-based and Landfire-based measure-
ment approaches, we took FIA data and categorized it
to replicate an analysis using Landfire categories. Since
the Landfire analysis (Gonzalez et al 2015) considered
only aboveground live carbon, we only used that pool
for our FIA analysis. While a perfect match is not
possible between the variables in these two different
datasets, there are FIA variables that provide a very
good approximation of the variables that underlie
Landfire classifications. We describe our cross-walk
between these variables in the supplementary data.

2.3. Evaluating distribution and concentration of
AGCamong Landfire-equivalent classes
We evaluated the degree of concentration in the
distribution of carbon in categories defined by the
three variables used by Landfire: vegetation type,
percent cover, and canopy height. We completed
this aggregation at the scale of conditions in the
FIA database. The cross of vegetation*height*cover
resulted in 576 unique categories. For the two largest
(by AGC) vegetation types—California mixed conifer
and redwoods—we present the AGC total in each
height*cover category. For the totals in each category,
since measurement data is only available for six out of
ten measurement panels. we scaled values by a factor
of 10/6 to approximate statewide values and to
facilitate comparisonwith other studies.

2.4. Comparing the estimates net change in live AGC
achieved by eachmethodology
We calculated AGC at the plot level using equations
described in FIA documentation (Thompson et al
2015). The estimates we present exclude foliage, thus
differing from Christensen et al (2017) who use ratios
from Jenkins et al (2003) to estimate foliage carbon.
For each of five ten-year panels presented in Christen-
sen et al (2017), our without-foliage values were 4%–

5% lower than the with-foliage ones. For statewide
change in AGC, we calculated total stock in the initial
measurement period and subtract that from the total
stock in the re-measurement period, using appropriate
expansion factors for each period. Although in figure 3
we present values for change in AGC for individual
plots, this is primarily for illustrative purposes; when
we present population-level estimates for change in
AGC, this is always calculated as a difference between
time-periods so that appropriate expansion factors
can be used. Once we established estimates for AGC
change, we examined how that change was distributed
among groups that would have changed Landfire
category versus those that would not have changed
category, and how an estimate of statewide net change
would be affected by that distribution.

2.5. Evaluating potential sources of bias in
estimationmethodologies
Growth in forests is incremental, while disturbance
events cause large and sudden changes. Given this
dynamic where increases in carbon can be expected to
be small from year to year while losses—when they
happen—are large, we can expect that an approach
that focuses on category transitionsmay bemore likely
to capture carbon emission and less likely to capture
carbon sequestration. As category bins become larger
and carbon is more concentrated in a smaller number
of categories, transitions among categories will
becomemore infrequent and the relative undercount-
ing of growth is likely to becomemore pronounced. In
order to quantify the magnitude of this relative under-
counting, we took data from re-measured FIA plots,
classified them according to categories that reflect
Landfire categories, and compared net change in
carbon in the groups of plots that either did or did not
change Landfire categories.

We matched plots from the 2001–2006 panels
with their re-measured values in 2011–2016. After
matching, we assessed change in canopy height and
predominant vegetation type. For height, we also
assessed whether the change would have caused a cate-
gory change between Landfire categories. Please see
the supplementary data for further details on the
assigning of plots to change categories as well as for
information on the small portion of plots that were
measured in only one period.We were not able to per-
form a similar change analysis for percent canopy
cover because the FIA program only introduced the
canopy cover variable in 2011. For vegetation type, the
FIA reports it at the level of condition rather than plot;
because condition classes are not explicitly mapped
between measurement periods, it is impossible to cre-
ate a precise transition matrix. Instead, we report
changes in the largest single vegetation type on
each plot.

3. Results

3.1. Concentrated distribution of live tree AGC
among categories
Live tree AGC in California is concentrated in a small
number of forest types. Three forest types accounted
for the majority (52.26%) of live tree AGC in
California’s forests in the 2011–2016 period: Califor-
nia mixed conifer (MC; 36.60%), redwood (7.95%),
and tanoak (7.72%).Within those forest types, live tree
AGC is concentrated in a small number of height*-
cover categories. In MC, 64.9% is in the 25 m–50 m
height category, while themajority (57.8%) is in the six
largest height*cover categories (figure 1(a)). Concen-
tration is even greater in redwood forests, with the
>50 m and 25–50 m height categories capturing
46.2% and 47.7%, respectively, of total live AGC and
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the majority of total live AGC (60.5%) in only two
height*cover categories (figure 1(b)).

Looking at all three characteristics reported as part
of Landfire data (height, cover, vegetation type), there
are 576 categories present in California. Despite the
large number of categories, live tree AGC is highly
concentrated: the ten largest categories alone have
37.37% of the total, and the top 20 contain the major-
ity (50.37%; table S1 in the supplementary data).

3.2. Net change inCalifornia’s aboveground live tree
carbon, 2001–2006 to 2011–2016
Measurements of 2011–2016 FIA plots lead to a
statewide estimate of 1008 Tg of live tree AGC in
California’s forests after scaling for expansion factors
and for number of years sampled. This compares with
2001–2016 measurements estimating 963 Tg. This
statewide increase of 45 Tg in live tree AGC over ten
years is equivalent to an annualized increase of 0.46%.

3.3. IncreasingAGC in plots that did not change
Landfire height category
The vast majority of plots did not change categories
betweenmeasurement periods. Of plots that had some
forest cover in both the initial period and in the re-
measurement period, 82% of those plots were domi-
nated by the same forest type in both periods.
Additionally, 71.2% of plots stayed in the same height
category between measurement periods (A), while
8.6% and 4.8% moved up (B) or down (C) in height

categories, respectively (figure 3 and table 2). The
remainder were 2.4% of the plots that had no forest
cover in the first period but had some when they were
re-measured (D) and 13.0% of the plots that had some
forest cover in thefirst time period but nonewhen they
were re-measured (E).

Plots that stayed in the same height category (A)
represented 77.3% (94 957km2) of statewide forest
area and 85.2% (860 Tg) of live tree AGC for the
2011–2016 period. By contrast, the plots that changed
height category (groups B and C) or that showed a
transition between forest and non-forest (D and E)
represented 17.6% of forest area and 11.2% of live tree
AGC. Plots that stayed in the same height category
sequestered carbon at a rate of 0.92% annually, those
that moved to a higher category sequestered at 2.21%
annually, and those that moved to a lower category
emitted carbon at 4.63% annually. Because the esti-
mates presented here are for live tree AGC, plots that
saw a transition from forest to non-forest or vice-versa
were registered as either 100% increase or 100%
decrease in the AGCpool. A relatively small set of plots
were either measured in the first period but not in the
second, for reasons not linked to the condition of the
plots (plots of the former type represented 8.1%of for-
est area and 5.8% of live tree AGC in the first time per-
iod; supplementary data).

When we take the total sums across groups (A)–
(E), we find annual net sequestration in the live tree
AGC pool of 0.77%, including forest loss and forest

Figure 1.Carbon distribution among height and cover categories in (a)Californiamixed conifer and (b) redwood forest types
(2011–2016). Height categories (labeled on right) represent groupings of plots based on the 95th percentile tree height on the plot.
Cover classes are percent canopy cover broken into 10% increments. Height of bars represent teragrams (Tg;millions of tonnes)
statewide of aboveground live tree carbon in each categorywhile printed percentages are the percentage of the total carbon in that
forest type that is found in a particular category.
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Table 2.Carbon stocks and net carbon flux in categories of plots determined by their transition status (i.e. whether they changed height categories or not). Although the statewide total of all plots indicates net sequestration of 9.79 Tg, the net
change that would have been captured by focusing on height transitions alonewould be−67.48Tg.

2001–2006 2011–2016 Change between periods
Grouping of plots according to the relationship between their

re-measured Landfire height category (2011–2016) and their
initial Landfire height category (2001–2006)

Forest area

(1000 s km2) AGC (Tg)
AGCper hectare

(Mg ha−1)
Forest area

(1000 s km2) AGC (Tg)
AGCper hectare

(Mg ha−1)
Absolute change in

AGC (Tg)
Annualized percent

change inAGC

A:No change in height category 95.87a 784.21 81.79 94.96 859.56 90.52 75.35 0.92

A1: Less than 25 mmax height 52.19 188.51 36.12 51.18 220.73 43.12 32.22 1.59

A2:>25 mand<50 m 40.97 504.52 123.15 41.03 546.36 133.15 41.84 0.80

A3: Greater than 50 m 2.72 91.18 335.18 2.74 92.47 337.38 1.29 0.14

B:Higher Landfire height cat 13.28 78.49 59.11 13.16 97.74 74.26 19.24 2.21

C: Lower Landfire height cat 3.75 20.05 53.41 3.58 12.47 34.81 −7.58 −4.63

D:Non-forest -> Forest 0.00 0.00 0.00 2.44 2.94 12.06 2.94 N/A

E: Forest ->Non-forest 6.88 17.47 25.40 0.00 0.00 0.00 −17.47 N/A

Totals for plots that changed height category (B–E) 24.65 116.01 47.06 21.63 113.14 52.30 −2.87 −0.25

Statewide totals (A–E) 120.52 900.22 74.69 116.59 972.70 83.43 72.48 0.77

a Note: each line of this table represents a constant set of plots between the two ranges of measurement years. However, forest area values change slightly between panels for one or both of two reasons: (1) proportion of forests on a plot

changed betweenmeasurements or (2) because of changes in the overall sample, the statewide adjustment factor of a given plot (EXPVOLor EXPCURR) changed between panels.
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gain. When we take the sum of only those groups that
involve a height category change or a change in forest
status (B)–(E), the calculation suggests net reductions
in live tree AGC of 0.25% annually. The difference
between these numbers is the exclusion of group A:
plots that stayed in the same height category. As dis-
cussed above, group A shows net sequestration and is
by far the largest category in the sample; as such, its
removal shifts the estimate for net change strongly
downward towards net reductions (table 2). We found
that plots that saw an increase in live tree AGC
between measurement periods represented 62.9% of
forest area and 22.1% of California’s total area. This
compared to 35.1% of forest area (11.7% of the state
area) for plots that saw a net decrease in live tree AGC
(table S2).

4.Discussion

4.1.Net change in live tree AGC inCalifornia’s
forests
Our estimate of 45 Tg of live tree AGC sequestered by
California’s forests over ten years is equivalent to 16.5
millionmetric tonsCO2 per year (table 1). This ismore
than the five million metric tons of CO2 sequestration
on forest land per year set as a target by AB-1504.
These results update and are consistent with Christen-
sen et al (2017) finding of a 6.5 Tg average annual
sequestration of live tree AGC for the 2001–2005 to
2011–2015 interval.

Gonzalez et al (2015) reported total 2001 live tree
AGC in California’s land under tree cover that is com-
parable with our estimate. Our estimate of 917 Tg is
within the 95% confidence interval of their estimate of
830 Tg±190 Tg. However, the Gonzalez et al (2015)
estimate for the second time period (2010) and the esti-
mate for net change in forest carbon differ sharply from
ours.Whilewe estimate 63Tg live tree AGC sequestered
for the 2001–2011 period and 45 Tg sequestered for the
2001–2006 to 2011–2016 period, Gonzalez et al (2015)
estimate net carbon reductions of 48 Tg from live tree
AGCon landunder tree cover, 2001–2010.

There are important differences between these esti-
mates, notably the range of years and the land types
included (table 1). However, it is unlikely that the differ-
ence in timing would explain the discrepancy: drought,
extreme fire seasons, and beetle outbreaks negatively
influenced California forests in the 2010–2016 period
and likely increased the rate of loss of AGC, thusmaking
it more likely that the Christensen et al (2017) estimate
and our estimate would bemore negative than theGon-
zalez et al (2015) one. In all three studies, changes in area
of tree cover are explicitly accounted for. In fact, the
FIA-based estimates are likely biased downwards
(towards carbon losses) by themanner they assess chan-
ges in forest area. A loss of forest area being reported as a
100% loss in AGC almost certainly overestimates the
impact of forest cover loss.

4.2. Sources of difference among estimates and
potential for bias
A key difference among these studies is that Gonzalez
et al (2015) covered all wildlands whereas Christensen
et al (2017) and our study only report results on forest
land under tree cover. The focus on tree-dominated
ecosystems alone is a limitation of the FIA data, and is
one reason why bringing in wall-to-wall data products
as Gonzalez et al (2015) have done with Landfire can
make an important contribution to ecosystem carbon
accounting. To assess whether or not differences in
overall estimates can be explained by differences in
coverage, we have disaggregated results fromGonzalez
et al (2015) to highlight values that are most compar-
able to FIA (table 1). This disaggregation clearly shows
that the differences in area do not resolve the
discrepancy among the estimates. Even for tree-
dominated forest land, Gonzalez et al (2015) report net
losses of carbon while FIA-based analyses estimate net
sequestration.

Because differences in areal coverage cannot
explain estimate discrepancies, we turned to potential
sources of bias in the use of the Landfire data product
—a data product that was not explicitly designed for
statistically-robust assessment of changes in carbon
stock as was the FIA. One likely candidate for dis-
crepancies is suggested by our findings on the distribu-
tion of live tree AGC stocks and changes relative to
categories of cover, height, and vegetation type. Gon-
zalez et al (2015), using land cover categorization from
Landfire, report 1083 unique combinations of vegeta-
tion*height*cover in California. Classifying FIA data
using variables and cut-points based on those from
Landfire, we found 576 unique categories. However,
despite the large number of categories overall, we
found the majority of carbon (50.4%) to be in only 20
categories. This high concentration raises the concern
that transitions among categories will be relatively
rare. This is problematic for an analysis of net flux that
only detects change when a transition occurs. In for-
ests, this leads to a lack of precision and potential bias
in the estimates, because it may be more likely to
detect a transition representing a large negative
change. Incremental growth, however, may frequently
leave a pixel in the same category, and thus not be
detected. Figure 2 shows the great majority of plots
remain in the same height category between measure-
ment periods. This means estimates of net change will
be biased downwards. Larger categories and less fre-
quent transitions will only amplify the problem.

To test this hypothesis, we analyzed net change in
plots compared against whether or not a given plot
changed its height category (figure 3). We found that
despite an overall increase in live tree AGC across all
plots, the net change in plots that changed height cate-
gory was negative. An accounting that uses all re-mea-
sured FIA plots showed 0.77% annualized increase in
live tree AGC; however, using only plots that changed
category leads to an estimate of a 0.25% annualized
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decrease. Although this is not a full re-analysis of Land-
fire, we consider it strongly suggestive that analyses
grounded in transitions among Landfire categories
would lead to a strong negative bias for estimates of net
change in live tree AGC. Looking at paired FIA re-
measurements plots, live tree AGC increased on
22.1% of total area and 62.9% of forest area, while it
decreased on 12.2% of total area and 35.1% of forest
area. This compares with results based on Landfire
(Gonzalez et al 2015) that suggested live tree AGC
increased on only 14% of the area of California’s wild-
lands and decreased on 20%of that area.

Another candidate for the differences is how the
carbon flux from wildfires is estimated. The Gonzalez
et al (2015)methodmodels carbon flux inside of wild-
fire perimeters as a total loss of live tree AGC via a per-
manent conversion from forestland to grassland
carbon densities, while the FIA method (Christensen
et al 2017) directly measured the stock-difference of
live tree AGC on the fire-affected plots. An earlier
study of FIA forest plots affected by wildfires noted
that high severity wildfires did kill trees representing
more than 97% of live tree AGC, but noted that only

21% of FIA plots that were remeasured on federal
lands burned at high severity (Eskelson et al 2016).
Low and moderate severity fires killed only 4% and
37% of live trees, respectively. The assumption that all
wildfire area should be modeled as a high fire severity
will substantially increase the carbon loss estimates
using the Landfiremethod.

Gonzalez et al (2015) acknowledge that their
results may undercount forest growth, and they pro-
pose a correction factor (p.75). However, this value is
based on FIA-estimated increase in forest carbon
stocks (6%±1%) that is already a landscape-wide
estimate of net change (i.e. growth plus losses) rather
than an estimate of growth rates in those forest stands
that are sequestering. Themost robust way to generate
an estimate for net changes is to go directly to the plot-
level data, as we have done is this study.

It is also important to point out that neither the
Gonzalez et al (2015) or the Christensen et al (2017)
method followed the latest good practice guidance for
forests and forest products (IPCC 2014b) that expli-
citly require the use of available data on harvested
wood carbon used for energy and longer-lived

Figure 2.Height categories based on the 95th percentile tree height in each FIA plot, grouped according to the Landfire-equivalent
height category of the plot in the initial (2001–2006)measurement period. Alternating grey andwhite horizontal bands show the
height categories. Light blue (left of each pair) shows the distribution of 95th percentile heights in the initialmeasurement period (by
definition, boundedwithin each height category)while dark blue (right of each pair) shows the distribution of 95th percentile heights
in the re-measurement period.
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products in use and in landfills when that data is avail-
able. Because California imports the majority of its
wood products that eventually end up in California’s
landfills, the inclusion of wood product tracking could
add considerable complexity. However, not including
products results in a state level accounting system that
implicitly penalizes sustainable forestry operations
that produce large volumes of harvested wood pro-
ducts per unit of forest area.

4.3. Improving landscape-scale carbonflux
estimates for California and other jurisdictions
No system of measurement is perfect. Gonzalez et al
(2015) correctly state that a statewide assessment of
ecosystem carbon flux needs to include all ecosystems
rather than focusing solely on forests (p. 69).We agree,
and we recognize that FIA data is limited in that it only
assesses AGC in tree-dominated areas. However, given
that lands under tree cover account for more than
90% of California’s aboveground ecosystem carbon
(Gonzalez et al 2015), ensuring unbiased estimates of
change on those lands is paramount. With respect to
the two approaches evaluated in this study—both of
which use the stock-difference approach to estimate
carbon dynamics—our analysis finds that the inven-
tory-based FIA approach is less likely to introduce bias
into an estimate of changes in live tree AGC in
California. The problems of estimating change from
RS data are well-known in the tropical forest literature
(Brown, 2002, Mitchard et al 2014). An approach

examining transitions among land cover categories
can be effectively used to identify sites and volume of
losses—as has been done recently with Landfire
specifically (Zheng et al 2011, Powell et al 2014)—but
is less appropriate as an estimator of net change in
forest carbon. For estimating net change on forested
land, an inventory-based approach such as the FIA,
when the data is available, is likely to be more reliable
than an approach relying on category changes such as
one based on Landfire.

An approach to statewide carbon accounting that
combines the RS- and inventory-based methods will
likely provide a more accurate estimate of change in
live aboveground carbon than either method in isola-
tion. In California, this could mean relying on FIA
data for the tree-dominated landscapes that constitute
roughly 28% of area and 90% of its ecosystem carbon
but turning to Landfire or an equivalent product to
estimate change in the remaining area. Alternatively—
or complementarily—process-based models that
relate RS variables such as leaf-area index have shown
success inmodeling soil properties and growth rates to
levels of accuracy within the range of plot-based mea-
surement error (Coops et al 2012). Although a pro-
cess-basedmodeling approach would have higher data
requirements than Landfire or FIA which are both
publicly available, it does offer the opportunity for a
more unbiased approach to modeling forest growth
while still allowing wall-to-wall coverage as policy
makersmay require.

Figure 3.Change in aboveground live tree carbon in FIA plots versus change in 95th percentile tree height in the same plots. Colors
showdifferent categories of transition status as described in the legend. The smaller sub-charts on the left each show a single category
from the larger overall chart on the right. The dotted line on the full chart shows the average change per hectare in AGC across all FIA
plots included in this analysis, while dotted lines on the sub-charts indicate the average change for each height-change category (see
table 2 for percent change in each category).
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Combining (1) the present study’s FIA-based esti-
mates of net change in live tree AGC for forest land (45
Tg for 2001–2006 to 2011–2016), (2) Christensen et al
(2017) estimates of change in non-tree live AGC on
forest land (3.0 Tg for 2001–2005 to 2011–2015), and
(3) Landfire-based estimates for live AGC in non-for-
est wildlands (−21 Tg per Gonzalez et al 2015 for
2001–2010) gives an estimate of net sequestration of
live AGC in California’s forests and wildlands of 27 Tg
over ten years (if one assumes the same time periods).
Although this is moremodest AGC sequestration than
that seen in live trees in forests alone, it is nonetheless
equivalent to 9.9 million metric tons of CO2 annually-
beyond the target in AB-1504. Measurements of other
carbon pools on forest land in the state (Christensen
et al 2017) show net sequestration in the remaining
forest land carbon pools—the belowground and the
dead aboveground—in addition to the sequestration
discussed above in the live AGCpool.

The most recent Climate Change Scoping Plan
(California Air Resources Board 2017) depended on
research (Gonzalez et al 2015) that concluded that
California forests are no longer a carbon sink. The
more recent California Forest Carbon Plan (Forest
Climate Action Team 2018) depended on research
(Christensen et al 2017) that concluded that California
forests are a strong carbon sink. Neither of these two
methods used to inform state regulations in California
includes the forest carbon stored in harvested wood
products in use or in solid waste disposal sites that is
included in national estimates (US EPA 2018). The
large differences in methods used to generate esti-
mates of live tree AGC and the inclusion of estimates
of all IPCC required forest carbon pools (aboveground
biomass, belowground biomass, dead wood, litter, soil
organic carbon, harvested wood products in use, har-
vestedwood products in solid waste disposal sites, har-
vestedwood used for energy)will need to be resolved if
California’s methodology is to be internationally
relevant.

Estimates for net carbon flux from forests have
important implications for policy. At jurisdictional
scale, estimates of forest carbon flux may play a role in
prioritization among climate mitigation policies and
programs across different sectors by providing a mea-
sure of the importance of the forest sector relative to
others with respect to emissions-reductions efforts. At a
landscape scale, flux estimates can aid in targeting forest
management programs to those areas with the most
potential for emissions reductions or sequestration
enhancements. At all scales, ‘measurement matters’
(Law et al 2015), and the choice of measurement tools
has far-reachingpotential to influence policy outcomes.
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