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Abstract
Reliable estimates of externality costs—such as the costs arising fromprematuremortality due to
exposure tofine particulatematter (PM2.5)—are critical for policy analysis. To facilitate broader
analysis, several datasets of the social costs of air quality have been produced by a set of reduced-
complexitymodels (RCMs). It ismuch easier to use the tabulatedmarginal costs derived fromRCMs
than it is to run ‘state-of-the-science’ chemical transportmodels (CTMs). However, the differences
between these datasets have not been systematically examined, leaving analysts with no guidance on
how andwhen these differencesmatter.Here, we compare per-tonnemarginal costs from ground
level and elevated emission sources for each county in theUnited States for sulfur dioxide (SO2),
nitrogen oxides (NOx), ammonia (NH3) and inert primary PM2.5 from three RCMs: Air Pollution
Emission Experiments and Policy (AP2), Estimating Air pollution Social Impacts Using Regression
(EASIUR) and the InterventionModel for Air Pollution (InMAP). National emission-weighted
average damages vary amongmodels by approximately 21%, 31%, 28%and 12% for inert primary
PM2.5, SO2,NOx andNH3 emissions, respectively, for ground-level sources. For elevated sources,
emission-weighted damages vary by approximately 42%, 26%, 42%and 20% for inert primary PM2.5,
SO2,NOx andNH3 emissions, respectively. Despite fundamental structural differences, the three
models predictmarginal costs that arewithin the same order ofmagnitude. That different and
independentmethods have converged on similar results bolsters confidence in the RCMs. Policy
analyzes of national-level air quality policies that sumover pollutants and geographical locations are
often robust to these differences, although the differencesmaymatter formore source- or location-
specific analyzes. Overall, the loss offidelity caused by using RCMs and their social cost datasets in
place of CTMs ismodest.

1. Introduction

When analyzing policies, products or processes, it
is critical to account for costs that are observed in
the market as well as non-market costs, known as

externalities (Baumol andOates 1988). For air pollution,
adverse human health effects—especially premature
mortality from exposure to ambient concentrations of
fine particulate matter (PM2.5)—result in large costs to
society (US EPA 2009). To estimate these costs, the
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United States Environmental Protection Agency (US
EPA) has generally employed an impact pathway assess-
ment. This multi-step approach is as follows: first,
chemical transport models (CTMs) are used to estimate
the impact of emissions on ambient concentrations;
second, the health effects from exposure to these
concentrations are quantified using concentration–
response (C–R) functions; finally, the health impacts are
monetized. For premature mortality, an estimate of
the willingness to pay to avoid this impact, known as the
value of a statistical life (VSL), is used to monetize
these impacts. At present, the US EPA employs a
central estimate of USD 7.4 million (2006 values)
(USEPA2010).

The first step, modeling the relationship between
pollutant emission and ambient PM2.5 concentra-
tions, is especially challenging. PM2.5 consists of a
complex mixture of chemical species, both inorganic
and organic, from diverse sources. Some PM2.5 is
emitted directly into the atmosphere and is referred to
as inert primary PM2.5. Inert primary PM2.5 is domi-
nated by particulate elemental carbon (PEC) and
organic carbon (POC) (Hand et al 2012). However,
most PM2.5 is secondary, meaning that it originates
from gaseous emissions that react in the atmosphere
to formproducts that condense into the particle phase.
PM2.5 is also separated into its inorganic and organic
components. Inorganic PM2.5 mostly results from
emissions of sulfur dioxide (SO2), nitrogen oxides
(NOx) and ammonia (NH3). These gaseous precursors
are converted into sulfate (SO4

2-), nitrate (NO3
-) and

ammonium (NH4
+) and form particulate matter

through relatively well-understood chemistry. This
chemistry, however, is highly nonlinear. The marginal
sensitivities in PM2.5 concentrations to the precursor
emissions depend on the initial concentrations and
will change as the relative amounts of emissions of all
three precursors change (Ansari and Pandis 1998). For
example, recent trends in emissions have decreased
the marginal effect of NH3 emissions and increased
that of NOx emissions (Pinder et al 2008, Holt et al
2015). Organic PM2.5 consists of primary and second-
ary organic aerosol (POA and SOA, respectively)
depending on whether it is emitted already in the par-
ticulate phase or whether it forms from gases in the
atmosphere. SOA is formed from the oxidation of
volatile organic compounds (VOCs), but the yield of
organic PM2.5 varies substantially among VOC pre-
cursors. By contrast to the inorganic components, the
sources and behavior of both POA and SOA are less
well understood (Robinson et al 2007). While scien-
tific understanding of the formation of organic PM2.5

is advancing rapidly, this updated understanding is
still being incorporated into the CTMs, and thus into
the resulting social costs. The major mechanism for
removing PM2.5 is via precipitation. Hence, PM2.5 can
be transported for several days downwind, affecting
populations up to approximately 1000 km away from
the point of emission (e.g. Evans et al 2002). On the

other hand, primary PM2.5 emitted in urban areas will
have a large impact in the immediate vicinity. As a
result, models of PM2.5 must reproduce the behavior
of a complex physical and chemical system, and they
require both sufficiently high resolution near sources
and a long-range spatial extent to capture all the health
impacts of a single source.

CTMs are the ‘state-of-the-science’ tool for pre-
dicting howmuch PM2.5 is formed from a given set of
emissions, but the complexity of these models limits
their applicability. To improve the availability and
accessibility of air quality modeling and cost estimates,
air quality researchers have produced a set of new
models, known as reduced-complexity air quality
models (RCMs) and associated sets of marginal social
costs, i.e. monetized damages per pollutant (in USD
per tonne of emission). In this letter, we compare three
RCMs and their datasets that provide estimates of
externality costs from air pollution: the Air Pollution
Emission Experiments and Policy (APEEP) model
(Muller and Mendelsohn 2007) updated to AP2
(Muller et al 2011), the Estimating Air pollution Social
Impacts Using Regression (EASIUR)model (Heo et al
2016a, 2016b) and the InterventionModel for Air Pol-
lution (InMAP) (Tessum et al 2017). We select these
three RCMs as they provide comprehensive estimates
covering the entire continental United States (US) at
relatively high spatial resolution (county level orfiner).

In this inter-comparison, we have three
main aims:

i. To provide guidance on how and when the
differences matter between these three RCMs.
While these RCMs are documented in the peer-
reviewed literature, the differences in the social
cost datasets have not been systematically
examined.

ii. To compare the results from the RCMs with the
CTMs. Since the RCMs are, by definition, less
physically detailed than the CTMs, there is also a
potential loss of fidelity. This type of comparison
can help justify their use for certain applications
and allow users to judge the robustness of the
results from the RCMs.

iii. To evaluate the uncertainty in the air quality
models. While it is recognized that evaluating the
uncertainty in the analysis of the benefits of air
quality is critical, as the effects of changing PM2.5

levels on mortality constitute a key component of
the US EPA’s approach for assessing potential
health benefits for air quality regulations
(National Research Council 2002), characterizing
the full uncertainty in the air quality model is
especially challenging (e.g. Fraas and Lutter 2013).
As the three RCMs take fundamentally different
approaches to air quality modeling, they may be
understood to produce largely independent
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estimates. Hence, comparing and quantifying the
differences between the independently derived
estimates of social costs from the RCMs also
provides an indication of the uncertainty of
how emissions are transformed into ambient
concentrations.

2. Review of CTMs andRCMs for assessing
the social costs of air quality

Predicting the impacts of emissions on ambient
concentrations is usually done using a comprehensive
CTM.CTMs are three-dimensional mechanisticmod-
els that predict ambient concentrations of pollutants
using mass balance principles and accounting for
emissions, transport and dispersion by winds, chemi-
cal transformations and atmospheric removal pro-
cesses. CTMs are the most scientifically detailed and
rigorous tools available for linking emissions to
ambient concentrations. Examples of CTMs include
theComprehensive AirQualityModel with extensions
(CAMx; ENVIRON 2016), the Community Multi-
scale Air Quality model (CMAQ; Appel et al 2017) and
the Weather Research and Forecasting model coupled
with Chemistry (WRF-Chem; Powers et al 2017).
Running full CTMs is very intensive in terms of
expertize, time and resources so their use is generally
limited to air quality researchers and regulatory
authorities, such as the US EPA’s regulatory impact
assessment for revisions to the National Ambient Air
Quality Standards (NAAQS) and state agencies as part
of the accompanying State Implementation Plans
(SIPs). Even then, many states do not have in-house
capabilities to run CTMs, relying instead on consul-
tants or regional associations for theirmodeling needs.
Despite the availability of RCMs, however, it is
prudent to use a full CTM to assess the likely impact of
major air quality policies before their implementation
to ensure the best estimates of benefits for comparison
with costs. Additionally, the comprehensive CTMs
constitute the benchmark against which simpler
models can be judged.

A number of RCMs have been developed to
address the challenges with running CTMs. The mag-
nitude of the social costs of air pollution suggests the
usefulness of models such as RCMs that facilitate the
quantification of the costs and their uncertainty as part
of routine policy analysis. Further, the availability of
simpler andmore accessible models expands the com-
munity of people who could quantify the public health
costs of air pollution, including city planners, affected
industries and citizen groups. Those who run CTMs
can find RCMs useful when they want to quickly
explore a broad range of emissions scenarios. Next, we
describe and compare results from three such models
which are described in detail below: AP2, EASIUR and
InMAP.We also briefly describe other RCMefforts.

APEEP and its updated version, AP2, employ a
source–receptor (S–R) matrix framework to map
emissions to ambient concentrations at the county
level (Muller and Mendelson 2007, Muller et al 2011).
The contribution of emissions in a source county (S)
to the ambient concentration in a receptor county (R)
is represented as the (S, R) element in a matrix. In the
module for PM2.5 formation, the model contains S–R
matrices that govern how PEC, SO2, NOx, NH3 and
VOC map to PM2.5. Each of these matrices accepts
annual (US short tons per year) emission vectors to
produces predictions of annual means. For each of
these matrices, the model distinguishes between emis-
sions released at four different effective height cate-
gories: ground-level emissions, point sources under
250 m, point sources between 250 and 500 m and
point sources over 500 m. AP2 employs the approach
to estimating the NH ,4

+ SO4
2- and NO3

- equili-
brium embodied in the Climatological Regional Dis-
persion Model (CRDM), a national-scale Gaussian
dispersion model (Latimer 1996). In the equilibrium
computations, ambient NH4

+ reacts preferentially
with SO .4

2- Second, ammonium nitrate (NH4NO3) is
only able to form if there is excess NH .4

+ To translate
VOC emissions into secondary organic particulates,
AP2 employs the fractional aerosol yield coefficients
estimated by Grosjean and Seinfeld (1989). While
APEEP was evaluated against a 2002 annual average
baseline run produced by CMAQ, AP2 predictions are
tested against Air Quality System (AQS) monitoring
data. Calibration coefficients are used to adjust AP2
predictions to jointly minimize mean fractional error
and mean fractional bias. We use AP2 in the text to
clarify that we are comparing the results from the
updated version of the original APEEP.

The EASIUR model (Heo et al 2016a, 2016b) esti-
matesmarginal social costs for four species—inert pri-
mary PM2.5, SO2, NOx and NH3—in a 36 km×
36 km grid covering the continental US. The social
costs are provided for four seasons and for three emis-
sions elevations (ground level, 150 m and 300 m). The
EASIURmodel was derived by running regressions on
aCTMdata set consisting of small emissions perturba-
tions occurring at 100 sample locations. CAMx was
run to calculate social costs of the four species at the
sample locations (randomly chosen based on popula-
tion size) across the nation. Then, the resulting per-
tonne social costs were regressed as a function of
exposed population and atmospheric variables such as
temperature and atmospheric pressure using half of
the sample locations as training for the regression and
half as out-of-sample evaluations. Finally, using the
regression models, per-tonne social costs were esti-
mated at all the cells in the 36 km×36 km grid. In
addition, an EASIUR-based S–Rmodel was developed
from the regression results (Heo et al 2017). The S–R
version was used to estimate concentrations for com-
parisonsmade in this study.
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InMAP (Tessum et al 2017) combines simplified
representations of atmospheric chemistry and physics
with output from WRF-Chem to calculate annual
average marginal changes in concentrations of PM2.5

caused by marginal changes in emissions of SO2, NOx,
NH3, VOCs and inert primary PM2.5 using a three-
dimensional spatial grid with horizontal resolution
ranging between 1 km×1 km in highly populated
areas and 48 km×48 km in unpopulated areas and
over the ocean. InMAP operates independently of the
underlying CTM, and InMAP users only need to also
use a CTM or access the raw CTM output data if they
are interested in applying InMAP to a new spatial or
temporal domain (e.g. outside the continental US). An
InMAP-based S–R matrix (ISRM; Goodkind et al
2019) was developed to estimate the health impacts
and social costs of emissions in every InMAP grid cell
at three emission heights (ground level, low stack-
height point sources and high stack-height point sour-
ces). In the comparisons presented here, the social cost
of emissions from county centroids are used.

There are other RCMs that we review here but do
not include in our inter-comparison. The Co-Benefits
Risk Assessment (COBRA) screening model, devel-
oped by the US EPA, provides marginal social costs at
county-level resolution (US EPA 2018). COBRA and
AP2 share the core framework for modeling the air
quality impacts of a unit of emission. Both models are
built around the CRDM (Latimer 1996) and then cali-
brated to existing air quality modeling and measure-
ments. There areminor differences in the treatment of
the elevated sources, the approach to the simplified
chemistry and the calibration approach. Because
COBRA and AP2 are built on the same core air quality

modeling,marginal social costs fromCOBRA are typi-
cally very similar to those fromAP2.

The US EPA’s Response Surface Model (RSM),
with its ‘benefit per ton’ values, is another similar tool
(Fann et al 2009, Fann et al 2012, US EPA 2015). Com-
pared with the RCMs evaluated here, RSM has lower
spatial resolution, only providing average impacts for
nine urban areas plus the US overall average. An
advantage of RSM, however, is that it can capture
some of the nonlinear responses in PM2.5 chemistry
that can occur with larger changes in inorganic PM2.5

levels (e.g. Holt et al 2015). We also do not review rela-
ted tools such as Environmental BenefitsMapping and
Analysis Program (BenMAP), which is focused on esti-
mating health outcomes and does not include any
air quality modeling. Rather, it requires ambient
concentrations as inputs rather than emissions
(USEPA 2017). The RCMs evaluated in this letter use a
similar approach to quantify the health effects and
economic valuation as employed in BenMAP. Other
studies have also provided marginal social cost values
but for limited regions of the US or limited emissions
sectors, including the Direct Decoupled Method
(DDM) of Bergin et al (2008), regression-based
approaches developed by Buonocore et al (2014) and
Levy et al (2009), and source-based estimates from the
Goddard Earth Observing System with Chemistry
model (GEOS-Chem;Caiazzo et al 2013).

3.Methods andmodels

Here, we evaluate the performance and the damage
estimates from three RCMs. One of the first applica-
tions of the RCMs has been to develop marginal

Figure 1.Box plot of themarginal social costs (inUSDper tonne) for ground and elevated source emissions across all US counties by
pollutant and by air qualitymodel. Red dots and lines indicate emission-weightedmean andmedian, respectively. The left and right
boxes are the 25th and 75th percentiles and thewhiskers are the 2.5th and 97.5th percentiles. See table S1 for tabulated values.
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damage estimates, i.e. those that result from small
perturbations of emissions. The results from the
model, expressed in USD of damage per tonne of
emissions, are specified at a minimum for a type of
pollutant, a location, a population and, at least
implicitly, for a given time period (e.g. a year). All
results in this letter are expressed in 2010USD.

First, we assess the RCMs in terms of their ability
to predict observed PM2.5 concentrations and their
composition. We compared concentration estimates
against annual average concentrations provided by US
EPA’s air data (available at https://www.epa.gov/
outdoor-air-quality-data). A caveat is that, given non-
linearities in PM2.5 formation discussed above,
one does not necessarily expect that the marginal
values from the RCMs will predict realistic PM2.5

concentrations. Using the 2005 National Emissions
Inventory (NEI), AP2 estimated concentrations
directly using its county-level S–Rmodel. By contrast,
EASIUR and InMAP combined the 2005 NEI with
each RCM’s marginal damage estimates in a spatially
disaggregated way, i.e. the emissions of each species in
eachmodel source locationmake a linear contribution
to all model locations. These contributions are then
summed at each downwind ‘receptor’ location to
represent the RCM’s prediction of PM2.5. The latter
approach assumes that the nonlinearities in the chem-
istry are not large. As a representative CTM, we also
show the performance for WRF-Chem (Grell et al
2005, as configured in Tessum et al 2015). Information
on the configuration of WRF-Chem can be found in
table S1.

Figure 2.Marginal social costs for ground-level emissions for eachUS county by pollutant and by air qualitymodel (inUSDper
tonne). Negative values are in shown in green.
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Second, we conduct an inter-comparison of the
social costs from three models, focusing on four main
categories of emissions that form ambient PM2.5: inert
primary PM2.5, SO2, NOx and NH3. To isolate the
effect of the air quality modeling on the damage esti-
mates, we harmonized themain inputs: baseline emis-
sions, population, C–R function and VSL. We select
the baseline emission inventories and population for
2005. For the PM2.5 C–R function, we use the results
from the American Cancer Society (ACS) epidemiolo-
gical study for annual, all-cause mortality for adults
(Krewski et al 2009); we do not quantify morbidity
effects.We apply the US EPA’s VSL of USD 7.4million
(2006USD).We do not show results for VOCs because
EASIUR does not predict impacts from VOCs, due in
part to the uncertainties described in section 1.

Additionally, because neither AP2 nor InMAP
accounts for the variability in SOA yield among indivi-
dual VOC species, we are less confident that the varia-
bility between the models is representative of overall
uncertainty in the predictions of SOA impacts than we
are for the inorganic species. We discuss the implica-
tions of the uncertainty in the damage estimates and
make recommendations for how to approach these
estimates in section 4.

4. Results and discussion: comparison of
ambient concentrations and social costs

First, we compare the models with WRF-Chem and
find that, in general, they have similar performance.

Figure 3.Comparison ofmarginal social costs fromprimary PM2.5 for ground-level emissions. Panels (a), (c) and (e) show the ratio of
the social cost estimates for each county for eachmodel pair.White counties indicate agreementwithin a factor of two. In panels (b),
(d) and (f), the social costs of emissions (inUSDper tonne) by county are plotted for eachmodel pair to show the overallmodel
agreement.R is the Pearson correlation coefficient.
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These results show some important trends, with all
models, including the CTM, performing worse for
NH4

+ and NO3
- predictions, illustrating that some

PM2.5 species are more difficult to model; by exten-
sion, the damage estimates for their precursors will be
more uncertain. At the same time, the relative success
in reconstructing PM2.5 concentrations frommarginal
impact estimates suggests that differences between
marginal and average changes are not too large or
mostly cancel out among different pollutants and
locations. On balance, these comparisons boost con-
fidence in the use of RCMs and suggest that the
necessary simplifications inherent in them do not
substantially degrade their performance compared
with CTMs. EASIUR does not estimate damages or
SOA formation from VOC emissions; hence, an

estimate of total PM2.5 is not possible from EASIUR at
the present time. Additionally, we do not include a
comparison of InMAP’s predicted PEC concentra-
tions against observations. In principle, InMAP can
predict PEC; however, the NEI only reports total
primary PM2.5. It is outside the scope of this work to
conduct the additional processing to speciate these
emission into InMAP format. We show the results of
this evaluation in the supplemental information
(figure S1). In addition to this comparison withWRF-
Chem, each RCM has undergone substantial valida-
tion to both CTMs and, in the case of AP2, observed
ambient concentrations. InMAP was compared
against 14 separate runs from WRF-Chem to show
that it could predict concentration changes (Tessum
et al 2017). EASIUR was directly derived from the

Figure 4.Comparison ofmarginal social costs of ground-level SO2 emissions. Panels (a), (c) and (e) show the ratio of the social cost
estimates for each county for eachmodel pair.White counties indicate agreement within a factor of two. In panels (b), (d) and (f), the
social costs of emissions (inUSDper tonne) by county are plotted for eachmodel pair to show the overallmodel agreement.R is the
Pearson correlation coefficient.
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output of CAMx with out-of-sample evaluations for
independent testing and is thus already indirectly
validated against a CTM. Further, by comparing AP2
and InMAP with EASIUR, they are also indirectly
comparedwithCAMx.

Turning to social costs, figure 1 shows the summary
results for ground and elevated sources in the US. For
ground-level sources, emission-weighted damages for
the US varied by approximately 21%, 31%, 28% and
12% for inert primary PM2.5, SO2, NOx and NH3 emis-
sions, respectively, with a range of 70 000–120 000 USD
per tonne of PM2.5, 21 000–45 000 USD per tonne
of SO2, 6400–13 000 USD per tonne of NOx and
38 000–49 000 USD per tonne of NH3. For elevated
sources, emission-weighted damages for the US varied
by approximately 42%, 26%, 42% and 20% for inert

primary PM2.5, SO2, NOx and NH3 emissions, respec-
tively with a range of 36 000–110 000 USD per tonne
of PM2.5, 20 000–35 000 USD per tonne of SO2,
6300–11 000USDper tonne ofNOx, and 32 000–51 000
USD per tonne of NH3. Table S2 in the supplemental
information tabulates values and calculations of var-
iance. We report emissions-weighted averages, because
aggregate health damages from a set of emissions are the
sumof the emissions rate andmarginal social costwhich
is then summed across all source locations. Therefore,
aggregate damages are proportional to the emissions-
weightedmean. Put another way, if twomodels differ by
10% in their emissions-weighted mean, their assess-
ment of aggregate damages across the country for that
species would also differ by 10%. Therefore, this metric
is a good indicator of how much two models would

Figure 5.Comparison ofmarginal social costs of ground-level NOx emissions. Panels (a), (c) and (e) show the ratio of the social cost
estimates for each county for eachmodel pair.White counties indicate agreement within a factor of two. In panels (b), (d) and (f), the
social costs of emissions (inUSDper tonne) by county are plotted for eachmodel pair to show the overallmodel agreement.R is the
Pearson correlation coefficient.
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differ for a policy where emissions changes are dis-
tributed similarly to current emissions.We also com-
pare our national results with those produced by
Fann et al (2009). We find that our values are within
the same range, with the exception of primary
PM2.5 where Fann et al (2009) have much higher
values than the three RCMs. We show the tabulated
comparison in table S3.

Overall, these three sets of marginal costs show
similar trends. First, as shown in figure 1, for any given
emitted species by model, the marginal social cost var-
ies by at least one order of magnitude depending on
the location of emissions for both ground and elevated
sources. Additionally, we conclude that the elevated
and ground-level sources generally behave the same,
with most point sources having a similar or lower

social cost than the ground-level sources. While the
elevation allows the plume to span a greater area, the
point sources are generally in rural areas. There are
isolated cases where the reverse is true. These excep-
tions occur where the point sources, which are pri-
marily in rural areas, have plumes that overlap with
highly populated urban centers. Furthermore, the dif-
ference between elevated and ground is largest for pri-
mary PM2.5, as expected. For secondary PM2.5, where
chemical and physical transformation needs to take
place, the social costs are similar. By the time the PM2.5

is formed by chemical reactions, there has been
enough vertical mixing that the original release height
has little influence. As the results are similar for the
ground and elevated sources, we focus the rest of the
discussion on the ground sources for simplicity.

Figure 6.Comparison ofmarginal social costs of ground-level NH3 emissions. Panels (a), (c) and (e) show the ratio of the social cost
estimates for each county for eachmodel pair.White counties indicate agreement within a factor of two. In panels (b), (d) and (f), the
social costs of emissions (inUSDper tonne) by county are plotted for eachmodel pair to show the overallmodel agreement.R is the
Pearson correlation coefficient.
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Infigure 2, we show the estimates of social costs for
ground-level sources from eachmodel for each county
in the US. Figure 2 shows that social costs are con-
sistently higher from emissions in or near densely
populated areas, especially the easternUS.Much of the
variability in impacts, therefore, is a simple function of
the number of people exposed downwind to the
resulting PM2.5. Third, for each RCM, the rank order
of species frommost damaging to least damaging (per
tonne) is generally primary PM2.5, NH3, SO2 andNOx.
Since current understanding treats all PM2.5 compo-
nents the same in terms of the health impacts, this
rank order simply reflects the efficiency with which a
tonne of emitted species forms ambient PM2.5. By
definition, inert primary PM2.5 emissions immediately
contribute to ambient PM2.5; hence, they have the lar-
gest efficiency and highest damages. For the secondary
species, damages from NH3 and SO2 are moderate,
with NOx having the lowest damages. The relatively
high social costs of NH3 can be understood as follows.
Both NH3 and NOx emissions contribute to the for-
mation of NH4NO3; but, depending on circum-
stances, either one or the other emission can be
limiting. However, since the molecular weight of NH3

is much lower than that of NOx, a ton of NH3 repre-
sents more molecules. All else being equal, it will tend
to have a higher marginal social cost on a per-mass
basis. Additionally, NH3 emissions will increase PM2.5

concentrations by neutralizing SO .4
2- For compar-

ison, Holt et al (2015) also show high sensitivity of
PM2.5 to NH3 emissions on a per-tonne basis (Holt
et al 2015). Thus, all three RCMs show similar and
expected trends that are easily interpretable in terms of
atmospheric behavior and population exposure,
boosting confidence in these estimates.

In figures 3–6, we show the model inter-compar-
isons for each species for ground-level sources. Similar
plots for elevated sources can be found in the supple-
mental information (figures S2–S5). All three RCMs
provide damage estimates that are highly spatially
resolved with respect to emissions location. Whereas
some application scenarios will involve nationwide
emissions changes, others may be focused on damages
from emissions in one region of the country, perhaps a
single state or even a single county. Therefore, it is
worthwhile evaluating to what extent the three RCMs
agree in terms of spatial patterns and county-by-
county damage estimates. Here, we find that the level
of agreement varies considerably by species according
to the complexity of the associated chemistry, mirror-
ing how some species are inherently more difficult to
model than others, even for a CTM (figure S1). While
all three RCMs estimate these social costs at high spa-
tial resolution, the similarity of their answers depends
on the species in question and the complexity of its
atmospheric behavior. For ground-level primary
PM2.5, the models have very similar values across all
counties, with Pearson’s correlation ranging from 0.73
to 0.81. For primary PM2.5, which is an inert species

emitted directly in particulate form, concentrations
are influenced only by differences in atmospheric
transport and dilution. This is noted because it has
been suggested that Gaussian dispersion modeling is
not applicable at distances that exceed 100 km, yet we
do not observe systematic biases in the AP2 estimates
compared with the CTM-derived models. Consistent
with themore complex chemistry, results for cost esti-
mates for secondary pollutants are more variable on
average and spatially, and the correlations of the sec-
ondary pollutants are lower: 0.54–0.73 for NH3,
0.35–0.49 for SO2 and 0.077–0.54 for NOx. The for-
mation of secondary PM2.5 depends on how efficiently
precursors are converted to secondary species. In the
atmosphere, this typically depends on chemistry,
deposition rates, sunlight and the availability of co-
reactants, especially atmospheric oxidants and ther-
modynamic interactions between inorganic ions
(Ansari and Pandis 1998, West et al 1999). Addition-
ally, the impacts of secondary pollutants should also be
more dependent on accurately predicting transport as
chemical reactions can occur over long distances and
thus expose populations further from the source.
Thus, model selection has a larger role as the estimates
of impacts depend on both the representation for
long-range transport and chemical processes. Since
NH ,4

+ SO4
2- and NO3

- concentrations depend on
each other, differences in the model predictions for
one species will influence the others.

Finally, for the case of the impacts of SOA we are
less confident that variability between current RCM
estimates represents true prediction uncertainty than
we are for inorganic PM2.5 species. This is because
VOCs from different emissions sources can vary
greatly in their SOA production efficiency and because
the fundamental understanding of the formation of
SOA from precursor VOCs is still rapidly evolving
(Robinson et al 2007). At present, marginal social costs
for VOC emissions are available from the InMAP and
AP2 models, but the prediction of impacts from VOC
emissions in RCMs is an area for future development.
Specifically, RCMs that account for the fact that differ-
ent sources have different mixes of VOCs and, there-
fore, different SOA to PM2.5 formation ratios and
damage costs (Jathar et al 2014) would be desirable.
When using SOA estimates from current RCMs, we
recommend that users consider how the specific mix
of VOC species that are relevant to their own scenarios
compares with the anthropogenic average mixes
implied within the RCMs. In cases where the VOC
mixes are substantially different, chemical transport
modeling with a more detailed treatment of VOC
compositionmay bewarranted.

5. Conclusion

The public health impacts of air pollution, mostly due
to premature mortality caused by PM2.5 exposure,
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dominate the benefits analysis of most rules and
regulations that target the energy and transportation
sectors. Because evaluating these impacts using a state-
of-the-science CTM can be challenging, several recent
efforts have resulted in the development of RCMs that
provide estimates of the marginal social costs stem-
ming from a tonne of PM2.5 emissions and its
precursors. In this letter we compare three datasets of
air quality costs derived by RCMs: AP2, EASIUR and
InMAP. We conclude that users can generally use
marginal social costs reported by these models for
decision and policy analysis in lieu of CTMs with only
amodest loss offidelity.

We show that the RCMs evaluated here can predict
the nationwide distribution of PM2.5 concentrations
with only amodest reduction in accuracy as compared
with a CTM. Further, for analyzes at a national scale
and over many sources, the differences in the air qual-
ity modeling approaches reviewed in this letter are less
important for the aggregate social costs. Generally, for
the evaluation of policies that are enacted at the
national level, the total costs from all models are
within a factor of two or three. Further, the differences
in the social costs as a function of species emitted and
source location are broadly similar between models
and can be readily understood on the basis of the
known atmospheric behavior of that species and the
size of the downwind population exposed to PM2.5.

Additionally, the model estimates reviewed in this
letter are derived from different air quality modeling
approaches but with harmonized assumptions for the
C–R function and the VSL. Hence, the range of the
estimates presented here can be interpreted as a mea-
sure of the degree of uncertainty inherent in air quality
modeling. Understanding why two CTMs produce
different results is challenging as it is difficult to isolate
all the factors that drive the differences. We face the
same type of challenge when comparing the RCMs.
Additionally, since each RCM takes a different
approach to abstracting the physical and chemical
processes for PM2.5 and the meteorology, it is even
more challenging to isolate the factors. Thus, we focus
on the substantive differences—the social costs—that
are affected by the modeling choices made by each
RCM. In general, the differences in air quality model-
ing introduced by and between the RCMs shown here
are not large when viewed in the context of the other
uncertainties in the damage estimates. These differ-
ences are small in comparison with other uncertainties
involved in air quality decision-making, such as the
C–R function (Fann et al 2016) and VSL (US
EPA 2006). The differences in the damages are com-
parable to errors between CTMs as well as the errors
betweenCTMs and observed ambient concentrations.

In some locations and for some pollutants, however,
these differences can be more substantial; for example,
it would be appropriate to investigate the rangeof benefit
estimates for applicationswhich aremore geographically
limited, and especially where NOx emissions are the

dominant concern, such as theMarcellus shale develop-
ment (Roy et al 2014) and replacing diesel engines
for port power for shipping (Vaishnav et al 2016).
Furthermore, there are cases where the RCM-derived
social cost estimates should be applied with more
caution, including when changes in emission occur for
only a few days per year (e.g. Gilmore et al 2010) and
when there is the potential for non-linearity or if
the change in emissions is large enough to change the
underlying chemical regimes (seeHolt et al2015).

While CTMs remain the gold standard for air
quality simulation and should continue to be used in
many regulatory settings, such as SIPs and regulatory
impact assessments of major new rules, the ease of use
of RCMsmeans that they can be used by a broad range
of researchers and analysts. This may include initial
scoping of new rules or regulations as well as decision-
making in a large number of analyzes where the public
health costs of air pollution are not routinely con-
sidered in a rigorous and explicit fashion. Because the
social cost estimates from these RCMs are sensible and
generally consistent and because they are far simpler to
use than a CTM, we encourage researchers and ana-
lysts to use them in a broad range of applications when
the public health impacts of air pollution may be
important. Additionally, RCMs may open up more
opportunities for assessing uncertainty. For example,
in a CTM it is impractical to conduct a Monte Carlo
type approach to capture the uncertainty in the emis-
sion inventories. As RCMs are less computationally
expensive, these types of analyzes could be imple-
mented. Finally, the successful development of RCMs
for the US suggests that they might be developed and
applied to other regions of the globe where air quality
issues aremore severe; however, this requires both sui-
tablemodels and data.
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