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Abstract
Predictions of future food supply under climate change rely on projected crop yield trends, which are
typically based upon retrospective empirical analyses of historical yield gains. However, the estimation
of these trends is difficult given the evolving impact of agricultural technologies and confounding
influences such asweather.Here, we evaluate the effect of climate change onUnited States (US)maize
yields in light of the productivity gains associatedwith the period of rapid adoption of genetically
engineered (GE) seeds.Wefind that yield gains on the order of those experienced during the adoption
ofGEmaize are needed to offset climate change impacts under the business-as-usual scenario, and
that smaller gains, such as those associatedwith the pre-GE era in the 1980s and early 90s, would likely
imply yield reductions below current levels. Although this study cannot identify the biophysical
drivers of past and futuremaize yields, it helps contextualize the yield growth requirements necessary
to counterbalance projected yield losses under climate change. Outside of theUS, ourfindings have
important implications for regions lagging in the adoption of new technologies which could help
offset the detrimental effects of climate change.

1. Introduction

A major challenge for global food security is ensuring
that technological progresswill be sufficient to compen-
sate for the effects of a warmer climate and rising food
demand (Lobell and Asner 2003, Lobell and Field 2007,
Schmidhuber and Tubiello 2007, Lobell et al 2011,
Butler and Huybers 2013, Lobell et al 2013, Ray et al
2013, Wheeler and Von Braun 2013, Burke and
Emerick 2016). Without substantial gains in productiv-
ity, the rising global demand for food could lead to
higher food prices thereby incentivizing conversion of
rainforests, wetlands, and grasslands to farmland
(Alston et al 2009, Duvick and Cassman 1999). There
has beenmuch work estimating the potential impact of
climate change on maize yields using historical data
coupled with statistical models (Lobell and Asner 2003,
Schlenker and Roberts 2009, Lobell et al 2011, Butler
andHuybers 2013, Burke andEmerick 2016,Gammans
et al 2017), and recent research suggests that these

statistical-based approaches provide similar estimates
to process-based models (Roberts et al 2017). A key
empirical challenge for statistical models is unpacking
the effect of weather on crop yields from that of
technological differences across both locations and
time. The conventional approach to address this issue is
to introduce time trends in the statistical model to
‘control for’ ongoing technological advancement. In
general, the focus is not on correctly specifying the pace
of technological change per se, but rather on evaluating
whether climate change impact projections remain
insensitive to alternative assumptions about the time
trend.

Nonetheless, there is growing interest in improv-
ing the estimation of technological trends with the
goal of analyzing emerging food security concerns
for a growing global population (Dyson 1999,
Evenson 1999, Hafner 2003, Fisher et al 2010, Jaggard
et al 2010, Cassman et al 2011, Ray et al 2012, 2013,
Grassini et al 2013, Tollenaar et al 2017). Studies

OPEN ACCESS

RECEIVED

9May 2018

REVISED

4October 2018

ACCEPTED FOR PUBLICATION

19October 2018

PUBLISHED

29November 2018

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2018TheAuthor(s). Published by IOPPublishing Ltd

https://doi.org/10.1088/1748-9326/aae9b8
https://orcid.org/0000-0003-4482-6843
https://orcid.org/0000-0003-4482-6843
https://orcid.org/0000-0003-1186-7462
https://orcid.org/0000-0003-1186-7462
mailto:ao332@cornell.edu
https://doi.org/10.1088/1748-9326/aae9b8
http://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/aae9b8&domain=pdf&date_stamp=2018-11-29
http://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/aae9b8&domain=pdf&date_stamp=2018-11-29
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


typically explore alternative trend specifications, but
do not account for both structural changes of the
growth rate and the confounding influence of weather.
The presence of regime shifts or ‘breaks’ in historical
data, which we verify empirically in this study, is
important for considering plausible future trends as it
is difficult—if not impossible—to forecast structural
changes ex ante. How we characterize historical chan-
ges in technology has crucial implications for climate
change and food security projections as they require
assumptions on the future pace of yield progress
(Dyson 1999, Evenson 1999, Jaggard et al 2010, Cass-
man et al 2011, Ray et al 2013).

The widespread adoption of genetically engineered
(GE) varieties in United States (US) maize production
starting in 1996 was a major technological revolution
(Shi et al 2013, Xu et al 2013, Lusk et al 2017). GE vari-
eties are associated with higher yields typically attrib-
uted to the inclusion of genes transmitted by the
Bacillus thuringiensis bacterium that make plant tissues
toxic to pests (Nolan and Santos 2012, Xu et al 2013,
Barrows et al 2014, Chavas et al 2014, Klümper and
Qaim 2014, Lusk et al 2017). Figure 1 provides a broad
perspective on maize yield since the late 1800s and
highlights the existence of several technological regimes
that have occurred following the introduction of
hybrids in the 1920s and GE varieties in the 1990s.

While yields stagnated formanydecades until the adop-
tion of hybrid seeds in 1930s, yield increases have been
substantial particularly since the adoption of GE seed
technologies. However, it remains unclear today which
of these yield growth regime(s) best represents plausible
scenarios of future progress given the potential biophy-
sical limits on crop growth (Duvick and Cassman 1999,
Lobell et al 2009). These technological regimes are use-
ful reference points for exploring future yield trends in a
warmingworld.

Our research seeks to inform the technological
needs under climate change. More specifically, we aim
to distinguish US maize yield trends in the pre- and
post-GE era, and contrast these to predicted yield
impacts based on climate change models. While the
yield differences between these two eras cannot be
solely attributed to the adoption ofGE seeds, this com-
parison sheds light generally on the necessary techno-
logical advancements required to offset climate
change impacts. Here, we provide a novel approach
for large-scale estimation of spatially heterogeneous
technological effects and climate change impacts
simultaneously within a unified econometric model.
Importantly, this approach does not require data on
actual GE adoption rates, which is typically unavail-
able or measured at an aggregate level in observational
settings, but rather only requires knowledge of when

Figure 1.Maize yield trends and technology adoption in theUS. The solid line corresponds to historical yields corresponding to three
regimes: pre hybrid seed (red), pre-GE seed (green) and postGE seed (blue). The potential future yields under these historical yield
regimes are depicted in dashed lines. The periods of hybrid andGE seed adoption are highlightedwith the gray band. The adoption
‘S’-curves at the bottom correspond to the adoption rate of the corresponding technology (hybrid seed andGE seed). Data sources:
USDA/ERS (GE adoption) andUSDA/NASS.
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GE varieties became available. Analysis of county-level
yields spanning 1981–2015 show that annual yield
gains of a similar magnitude as those experienced dur-
ing the adoption of GE maize are needed to offset cli-
mate change impacts under the business-as-usual
scenario, and that smaller gains such as those asso-
ciated with the pre-GE era in the 1980s and early 90s
would likely imply yield reductions below current
levels. In addition, we show that accurate estimation of
historical yield trends requires (i) allowing for a struc-
tural break when GE varieties are initially introduced
and (ii) controlling for the confounding influence of
weather.

The raw data in this study include annual county-
level maize yields, monthly precipitation, and daily
minimum and maximum temperature observations.
We focus on 8 states constituting the US Corn Belt in
which GEmaize has reached near-complete adoption.
The data contain 17 000 observations spanning 500
counties during 1981–2014. As a departure from pre-
vious work, we model trends using a piece-wise linear
spline with an inflection point in 1996 to allow the
trend to vary across the pre-GE (1981–1995) and post-
GE (1996–2014) periods. Recent work suggests that
yield gains from GE seed adoption have been spatially
heterogeneous (Lusk et al 2017), so we rely on hier-
archical mixedmodels with trends varying across agri-
cultural reporting districts within each state. Crop
reporting districts are USDA administrative units
within each state that contain groupings of counties.

2.Methods

2.1.Data sources
We rely on county-level maize yield data fromUSDA/
NASS (1981–2014). We also rely on average acreage
over the sample period as weights for computing
aggregate regional impacts. The analysis is based on a
balanced panel of 500 counties in eight Midwestern
states (Illinois, Indiana, Iowa, Michigan, Minnesota,
Missouri, Ohio, andWisconsin). Maize production in
these counties ismostly rain-fed.

For weather data we rely onmonthly precipitation
and daily maximum, minimum, and average temper-
ature from the PRISM Climate Group (http://www.
prism.oregonstate.edu). The PRISM data is a gridded
climate dataset with a 4 km spatial resolution that is
the official climatological data of the USDA and has
been widely used in the climate impacts literature (e.g.
Schlenker and Roberts, 2009). The daily PRISM data is
available since 1981 andwe rely on the 1981–2014 per-
iod for our analysis. Daily temperatures are processed
into temperature exposure bins of 1 °C each, from
−15 °C to 50 °C, which are necessary to estimate non-
linear effects of temperature following Schlenker and
Roberts (2009). The temperature exposure data is
computed based on a double sine curve passing

through the minimum and maximum of each con-
secutive day at each grid.

Because the analysis is conducted at the county-
level, we aggregate the gridded data up to the county
level to match the agricultural production data based
on the amount of cropland contained in each PRISM
grid, which we derive from USDA’s 30 m resolution
CropData Layer.

2.2. Regressionmodels
We specify the statistical model using a linear multi-
levelmodel:
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where yit is the natural log of maize yield in county i
and year t. The fixed effects portion (in the multilevel
model parlance) of the model includes the effects of
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tured by vit include random intercepts across counties
and randompiecewise linear trends across districts:
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where t denotes the trend variable with value 16 in the
year 1996 and the subscript g denotes ag districts.
Parameter estimates are obtained using the lmer
function in R and reported in table S1 (available
online: stacks.iop.org/ERL/13/124009/mmedia).

All weather variables are aggregated over the
April–September growing season following modeling
choices in the literature. Our approach is similar to
Schlenker and Roberts (2009) in that it allows for non-
linear effects of temperature exposure over the season.
More specifically, F + - F( ) ( )h h1it it is the exposure
to temperature bin h over the season, and ( )T hk is the
element in column k and row h of the basis matrix of a
Chebyshev polynomial of degree d defined over temp-
erature bins ¼( ̲ )h h, , . Unless otherwise noted, all
models in the study rely on an 8th degree polynomial
with =h̲ 0 and = h 36 C so that there is enough
exposure at the extreme bins. In a sense, the variable
zit k, is a locally-weighted transformation of temper-
ature bins, which assumes a smooth response to expo-
sure to different temperature levels. We also
considered polynomial specifications of various
degrees and find the results to be fairly insensitive to
the functional form. The effects of precipitation are
captured by the inclusion of linear and quadratic
terms for seasonal precipitation.

Table S1 shows that themultilevel model produces
similar results to the more commonly used panel data
‘fixed effects’ models used in the literature. The esti-
mated yield-temperature response curve for themulti-
level model is similar to those from previous studies
(figure S1). We prefer the multilevel model here as it
allows for a parsimonious expansion of the trend
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effects to be heterogeneous across districts, which per-
mits amore localized representation of cross-sectional
trend differences compared to previous studies that
allow trends to vary at the state-level. This is an impor-
tant consideration given previous evidence of localized
differences inGE adoption effects (Lusk et al 2017).

To represent the variability of estimated effects
and projections we rely on a block-bootstrap proce-
dure whereby we estimate the abovemodel 1000 times
with data resampled with replacement by year. This
follows the bootstrap aggregating or ‘bagging’ proce-
dure developed commonly used in machine learning
(Breiman 1996).

2.3. Climate projections and impacts
The calculation of climate change impacts largely
follows the recommendations laid out in Auffhammer
et al (2013). Future projections of changes in temper-
ature and precipitation are derived from models
archived as part of the Climate Model Intercompar-
ison Project Phase 5 (CMIP5) project, and include the
same collection of General Circulation Model (GCM)
simulations used for the 5th Intergovernmental Panel
on Climate Change (IPCC). Native GCM spatial
resolution tends to be between 50–200 km, which is
much coarser than required for our estimates of crop
yields. The native GCM data is therefore downscaled
based on the approach proposed by Mosier et al
(2014).

The fine resolution target is the 4 km PRISM grid.
The coarse resolution GCM data originate from the
IPCC models with surface air temperature (tas), and
precipitation (pr) fields available at monthly time-
scales, and for both historical and climate change sce-
narios. This list of models is restricted to the following
subset of all CMIP5 GCMs: CNRM-CM5, FGOALS-
g2, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M,
HadGEM2-CC, HadGEM2-ES, INM-CM4, IPSL-
CM5A-LR, IPSL-CM5A-MR, MIROC5, MIROC-
ESM-CHEM, MIROC-ESM, MRI-CGCM3, and
MRI-ESM1. Several models include multiple ensem-
ble members, and all include simulations of different
representative concentration pathways (RCPs). Here,
we use the RCP 2.6, 4.5, 6.0 and 8.5 scenarios, which
represent total net increase in longwave radiative for-
cing of 2.6, 4.5, 6.0 and 8.5Wm−2 by the end of the
21st Century, respectively.

Our initial step is to compute historical ‘reference’
climatologies for each variable at weekly and monthly
timescales from each CMIP5 model at its native reso-
lution using the period (of the model) from
1950–2000. Likewise, we compute future climatolo-
gies from each GCM for the periods between
2025–2075 and 2050–2100 for each RCP and ensem-
ble. Next, we computed changes in model mean mD( )
according to m m mD = -future historical for temperature

(tas), and m m m mD = -( )/future historical historical for pre-

cipitation (pr). The changes in temperature are

therefore to be regarded as actual differences in the
mean and variance of the quantity itself, whereas the
changes in precipitation are fractional increases or
decreases relative to historical climatology. Changes in
mean climatology are computed from each model at
each grid point for all ensemble members and scenar-
ios at model resolution prior to interpolation. The
final two steps in the downscaling procedure are to
(i) interpolate the modified climatologies of the future
to the target (4 km) grid, and then (ii) apply those
changes to PRISMclimatology.

Following the conventional practices in the
literature, we calculate county-level climate
change impacts on yields in percentage terms
as g b= - + - -( [( ) ( ) ] )impact z z p p100 exp 1i i i i i1 0 1 0

where ( )z p,i i0 0 are the baseline temperature and
precipitation climate measures and ( )z p,i i1 1 are the
measures under climate change for each county i.
The aggregated impacts for the entire region are the
acreage-weighted summation of the county-level
impacts.

3. Results

Accounting for weather realizations may be critical for
estimating yield trends correctly. Intuitively, a string of
peculiar weather realizations could bias the estimation
of the trends if such conditions are unaccounted for and
materialize disproportionately in either the pre- or the
post-GE period.We therefore compare trend estimates
using a single linear trend versus a piecewise linear trend
with an inflection point at 1996. We also consider
random effects for these trends at both the agricultural
district and county levels, as well as the inclusion of
weather variables as controls. Our preferred model
included a piecewise linear trendwith random trends at
the district level and weather variables included as
controls, as it exhibited the lowest AIC (calculated using
the approach of Greven and Kneib (2010) for random
effects models with the R package ‘cAIC4’) and similar
out-of-sample forecasting accuracy among the alter-
natives (table S2). We also found that the placement of
the knot at 1996 is optimal (figure 2).

We find maize yield trends increased by almost 70
percent around the period of rapid adoption of GE
seeds. We could identify this finding only by account-
ing for the confounding influence of weather. More
precisely, the first two models suggest GE seed
adoption did not alter the yield growth trajectory.
However, the third model—which predicts yields
most accurately—points to large differences in the
trend estimates between the pre- and post-GE periods.
The trend estimates for the threemodels are illustrated
for the state of Iowa in figure 3 and mirror similar
results for other states (figures S2–S8). This finding is
consistent with previous work demonstrating the
importance of controlling for weather realizations
when estimating yield gains from GE adoption (Lusk
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et al 2017). Since log-yield is the dependent variable in
our regressionmodel, the slopes of the piecewise linear
trend segments provide an estimate of the annual
percentage-change in yields. On average across coun-
ties, maize yields grew by 0.94 and 1.59% yr−1 in each
of the two periods, indicating GE seed adoption is
associated with a net annual yield growth increase of
0.65% points. Given a baseline yield of 120 bushels/
acre—approximately the five-year sample-average in
these states prior to GE adoption—the compounded
gain associated with this technological transition over
a 22 year period spanning 1996 to the present is
approximately 17.5 bushels per acre. Even though we
cannot solely attribute the yield gains to GE seeds
alone within our framework, our estimate is strikingly
similar in magnitude to estimates based on side-by-
side comparisons of GE versus non-GE hybrids in field
trials that include cultivar-specific yield observations
alongside an extensive set of agronomic and climatic
controls (Nolan and Santos, 2012).

The trend estimates exhibit extensive cross-sec-
tional heterogeneity. Across counties, the pre-GE
trends span 0.64%–1.34% whereas post-GE trends
range from 1.07% to 2.15% with pre-post differences
ranging between 0.29% and 1.04% points (figures S9–
S11). This heterogeneity indicates that technological
change has impacted different regions very differently.
That is, while new technologies such as GE seeds are
widely adopted, benefits can vary substantially across
alternative growing conditions associated with local
biotic and abiotic factors and interactions thereof.

The effect of climate change on crop yields will
severely undercut potential gains from technological
progress based on a widely-used GCM. We compare
trend estimates with the gross impact of climate
change on yields. To ensure comparability we

annualize climate change impacts by taking the point-
prediction at a given future date divided by the num-
ber of years until that date. For example, the total esti-
mated impact is a 77% yield reduction on average
across counties for 2050–2100 under the HadGEM2-
ES GCM and the business-as-usual RCP 8.5. Annual-
izing this impact by taking the midpoint of the projec-
tion (2075) and benchmarking it to 2010 points to a
1.19% yr−1 reduction.

The combined impact of technological progress
and climate change will result in spatially hetero-
geneous net impacts. Figure 4 illustrates separate
county-level annual yield impacts from technology
and climate change for the aforementioned climate
model and scenario as well as the combined
effects. Panels a and b indicate pre- and post-GE
trend estimates, whereas panel (c) indicates the gross
climate change contribution. Adding the trend
estimate to the climate change effect results in
the net combined impacts in panels (d) and (e), respec-
tively. The acreage-weighted aggregate trends are
1.02% yr−1 (SE=0.21) for pre-GE technology;
1.61% yr−1 (SE=0.22) for post-GE technology;
and −1.14% yr−1 (SE=0.10) for climate change.
The aggregate combination of the trend plus
climate change impacts are −0.12 (SE=0.24) and
0.47% yr−1 (SE=0.25) for pre- and post-GE, respec-
tively. These results are naturally sensitive to the GCM
and the RCP scenario. For example, under the
CNRM-CM5 climate model and RCP 8.5 scenario,
the combined impacts are 0.25 and 0.90% yr−1 for the
pre- and post-GE technologies (figure S12). If instead,
we hold the GCM fixed and consider the lowest emis-
sions trajectory (i.e. HadGEM2-ES, RCP 2.6), the
combined impacts are 0.58 and 1.2% yr−1, respec-
tively (figure S13).

Figure 2.Effect of trend inflexion year onmodel fit. Each bar corresponds to the reduction inMean Squared Error (MSE) between a
model with an inflexion point in the trend, and amodel without an inflexion point or weather variables. The year indicates the year of
the inflexion of the estimated trend. A higher number indicates a bettermodel fit.
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Climate change will severely curtail potential crop
yield gains from technological progress in the coming
decades based on a wide range of GCMs. Yield projec-
tions under all of the GCMs in CMIP5 and RCPs are
provided in figure 5 for three different regimes: no
yield growth (panel (a)), yield growth comparable to
pre-GE era (panel (b)), and yield growth comparable
to post-GE era (panel (c)). Under the RCP 8.5 sce-
nario, it will take innovations on the order of the post-
GE era to offset climate change impacts. Yield gains
less than that, such as those exhibited prior to GE
adoption, would lead to reductions in yield levels by
the end of the century. Mitigation of CO2 emissions
under the 2.6 and 4.5 RCPs point to a much more
optimistic outlook as projected yields would continue
to rise through the end of the century under both the
pre- and post-GE technological regimes.

4.Discussion and conclusion

US Maize yields exhibit sustained growth since the
adoption of hybrid seeds in the 1930s.Wefind that this
growth has accelerated with the adoption of GE seeds,
and that this acceleration can only be fully appreciated
when accounting for weather patterns which can be
confounded with secular technological trends. We
cannot identify the biophysical source of this accelera-
tion, but our findings are consistent with yield gains
attributed to GE maize adoption in analyses based on
both experimental field-trial and actual on-farm yields
(Lusk et al 2017). While GE traits do not necessarily
increase the maximum possible yields (i.e. yield
potential), they have been associated with narrowing
yield gaps through improved weed control, insect
resistance, and more timely planting (Fisher and
Edmeades 2010).

Figure 3.Maize yields and alternative estimated trends by district in Iowa. Each panel portrays yields and estimated yield trends for
each agricultural district in the state of Iowa. The gray lines indicate the county-level yields within each district. The blue line
represents a linear trendwithout an inflexion point andwithout accounting for weather conditions. The green line introduces an
inflexion point but does not condition for weather. The red line shows the trendwith an inflexion point that accounts for weather
conditions. All inflexion points are set at 1996. Results for other states are presented in the appendix.
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Our results suggest that the relative increase in
maize yields has been nonlinear since 1980, with a
clear structural change in the growth rate occurring in
1996. Although much recent literature suggests a lin-
ear growth trend over many decades for US maize
yields (Cassman et al 2011, Grassini et al 2013), our
findings aremore in line with studies having identified
a nonlinear change in yield trends attributed to
GE adoption (Fischer and Edmeades 2010, Xu et al
2013, Lusk et al 2017). Our analysis suggests that
controlling for weather outcomes when estimating
yield trends is crucial, andwould likely resolve existing
debate regarding the appropriateness of linear trend
assumptions.

The growth rate of crop yields in the coming dec-
ades will have serious implications for the global food
supply under climate change. Our results suggest that
US maize yields could stagnate under a business-as-
usual scenario even with bold assumptions about the
sustained growth in crop yields. This has serious
implications for other crops and countries as well, as
there are many large, economically relevant regions in
the world where technology adoption lags and the use
of GE crops are prohibited (Barrows et al 2014). In
addition, GE varieties of rice and wheat are not com-
mercially available. If the relative yield gains estimated
here are any indication of the potential for other crops
and/or regions, then the adoption of new technologies
such as GE varieties may constitute a potentially fruit-
ful adaptation strategy for counterbalancing the effects
of climate change. Consumer preferences for (or

against) will continue to play a critical role in the glo-
bal pattern of land-use for production of GE crops and
have the potential to alter trade patterns among coun-
tries (Garrett et al 2013, VanWey andRichards 2014).

Our findings also provide key implications for
research and development. Emerging technologies in
genome editing as well as an increased emphasis on
abiotic stress tolerance (e.g. drought tolerance) could
help maintain or even accelerate recent yield growth
trends (Parisi et al 2016, Svitashev et al 2016). In addi-
tion, the rise in computing power and fine-scale data
collection and analysis may pave the way for a digital
revolution that may also contribute to such trends
through enhanced precision agriculture. It remains to
be seen whether these technological revolutions and
the legal framework to reward such innovations and
protect intellectual property rights will unfold rapidly
enough to counterbalance the projected effects of a
changing climate.

Finally, our study has some caveats that bear men-
tioning. First, while our trend analysis identifies a yield
trend increase around the time of rapid adoption of
GE seeds, our study is unable to identify the biophysi-
cal source of this change. There could be other con-
founding factors that generated yield gains parallel
to the introduction of GE maize in the US such
as the adoption of precision agricultural tools such as
high-speed precision planters and auto-steer tractors.
We consider the possibility of an increase in solar
radiation and find that our results are robust to con-
trolling for increased levels of solar brightening

Figure 4.Decomposition of annualized projected yield effects for theMidwest. Each panel corresponds to an annualized percentage
yield impact for each county of (a) technological progress based on the pre-GE trend (1981–1995), (b) technological progress based on
post-GE trend (1996–2014), (c) the impact of climate change (HadGEM2-ES, RCP 8.5, 2050–2100), (d) the combined impacts of pre-
GE trend and climate change and (e) the combined effect of post-GE trend and climate change.
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(Tollenaar et al 2017) that occurred over the sample
period (figures S14–S16). Second, our climate change
projections do not factor in fertilization effects of
increased atmospheric CO2 levels (Urban et al 2015),
nor behavioral adaptation to climate change (Butler
and Huybers 2013, Burke and Emerick 2016). These
additional factors could result in potentially more
optimistic impacts.

Author contributions

AOB collected the data and processed the weather
variables and climate predictions. JT and AOB con-
tributed equally to all other aspects of the research.
Senior authorship is shared equally.

Acknowledgments

AOB was supported by NSF grant 1360424. We thank
Carlos M Carrillo for providing the downscaled
climate projections.

ORCID iDs

ArielOrtiz-Bobea https://orcid.org/0000-0003-
4482-6843
Jesse Tack https://orcid.org/0000-0003-1186-7462

References

Alston JM, Beddow JMandPardey PG 2009Agricultural research,
productivity, and food prices in the long run Science 325
1209–10

AuffhammerM,Hsiang SM, SchlenkerWand Sobel A 2013Using
weather data and climatemodel output in economic analyses
of climate changeRev. Environ. Econ. Policy 7 181–98

BarrowsG, Sexton S andZilbermanD2014The impact of
agricultural biotechnology on supply and land-useEnviron.
Dev. Econ. 19 676–703

Breiman L 1996 Bagging predictorsMach. Learn. 24 123–40
BurkeMandEmerick K 2016Adaptation to climate change:

evidence fromUS agricultureAmer. Econ. J.: Econ. Pol. 8
106–40

Butler E E andHuybers P 2013Adaptation ofUSmaize to
temperature variationsNature Climate Change 3 68

CassmanKG,Grassini P and vanWart J 2011Crop yield potential,
yield trends, and global food security in a changing climate
Handbook of Climate Change andAgroecosystems: Impacts,
Adaptation, andMitigation (London: Imperial College Press)
pp 37–51

Chavas J P, ShiG and Lauer J 2014The effects of GM technology on
maize yieldCrop Sci. 54 1331–5

DuvickDN andCassmanKG1999 Post–green revolution trends in
yield potential of temperatemaize in theNorth-Central
United StatesCrop Sci. 39 1622–30

DysonT 1999World food trends and prospects to 2025Proc. Natl
Acad. Sci. 96 5929–36

EvensonRE 1999Global and local implications of biotechnology
and climate change for future food suppliesProc. Natl Acad.
Sci. 96 5921–8

Fischer RA and EdmeadesGO2010 Breeding and cereal yield
progressCrop Sci. 50 S-85

GammansM,Mérel P andOrtiz-Bobea A 2017Negative impacts of
climate change on cereal yields: statistical evidence from
France Environ. Res. Lett. 12 054007

Garrett RD, RuedaX and Lambin E F 2013Globalization’s
unexpected impact on soybean production in SouthAmerica:
linkages between preferences for non-geneticallymodified
crops, eco-certifications, and land useEnviron. Res. Lett. 8
044055

Grassini P, Eskridge KMandCassmanKG2013Distinguishing
between yield advances and yield plateaus in historical crop
production trendsNat. Commun. 4 2918

Greven S andKneib T 2010On the behaviour ofmarginal and
conditional AIC in linearmixedmodelsBiometrika 97
773–89

Hafner S 2003Trends inmaize, rice, andwheat yields for 188
nations over the past 40 years: a prevalence of linear growth
Agric., Ecosyst. Environ. 97 275–83

JaggardKW,QiA andOber E S 2010 Possible changes to arable crop
yields by 2050Phil. Trans. R. Soc.B 365 2835–51

KlümperWandQaimM2014Ameta-analysis of the impacts of
geneticallymodified cropsPLoSOne 9 e111629

Lobell DB andAsnerGP 2003Climate andmanagement
contributions to recent trends inUS agricultural yields
Science 299 1032–1032

Lobell DB, CassmanKGand Field CB 2009Crop yield gaps: their
importance,magnitudes, and causesAnnu. Rev. Environ.
Resour. 34 179–204

Lobell DB and Field CB 2007Global scale climate–crop yield
relationships and the impacts of recent warmingEnviron. Res.
Lett. 2 014002

Lobell DB,HammerGL,McLeanG,MessinaC, RobertsM J and
SchlenkerW2013The critical role of extreme heat formaize
production in theUnited StatesNat. Clim. Change 3 497–501

Figure 5.Historical and projectedmaize yields under alternative growth regimes and climate scenarios. (a)Nogrowth in yields,
(b) continued pre-GE growth in yields, and (c) postGE growth in yields. The black line prior to 2015 corresponds to the historical yield
trend. The black line beyond 2015 corresponds to the projected yield level without climate change under a given yield growth regime.
The colored dots and bars represent theCMIP5 ensemblemean and extrema for themiddle and end of the century for 3 different
climate scenarios. The colored band are added to improve readability.

8

Environ. Res. Lett. 13 (2018) 124009

https://orcid.org/0000-0003-4482-6843
https://orcid.org/0000-0003-4482-6843
https://orcid.org/0000-0003-4482-6843
https://orcid.org/0000-0003-4482-6843
https://orcid.org/0000-0003-4482-6843
https://orcid.org/0000-0003-1186-7462
https://orcid.org/0000-0003-1186-7462
https://orcid.org/0000-0003-1186-7462
https://orcid.org/0000-0003-1186-7462
https://doi.org/10.1126/science.1170451
https://doi.org/10.1126/science.1170451
https://doi.org/10.1126/science.1170451
https://doi.org/10.1126/science.1170451
https://doi.org/10.1093/reep/ret016
https://doi.org/10.1093/reep/ret016
https://doi.org/10.1093/reep/ret016
https://doi.org/10.1017/S1355770X14000400
https://doi.org/10.1017/S1355770X14000400
https://doi.org/10.1017/S1355770X14000400
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://doi.org/10.1257/pol.20130025
https://doi.org/10.1257/pol.20130025
https://doi.org/10.1257/pol.20130025
https://doi.org/10.1257/pol.20130025
https://doi.org/10.1038/nclimate1585
https://doi.org/10.2135/cropsci2013.10.0709
https://doi.org/10.2135/cropsci2013.10.0709
https://doi.org/10.2135/cropsci2013.10.0709
https://doi.org/10.2135/cropsci1999.3961622x
https://doi.org/10.2135/cropsci1999.3961622x
https://doi.org/10.2135/cropsci1999.3961622x
https://doi.org/10.1073/pnas.96.11.5929
https://doi.org/10.1073/pnas.96.11.5929
https://doi.org/10.1073/pnas.96.11.5929
https://doi.org/10.1073/pnas.96.11.5921
https://doi.org/10.1073/pnas.96.11.5921
https://doi.org/10.1073/pnas.96.11.5921
https://doi.org/10.2135/cropsci2009.10.0564
https://doi.org/10.1088/1748-9326/aa6b0c
https://doi.org/10.1088/1748-9326/8/4/044055
https://doi.org/10.1088/1748-9326/8/4/044055
https://doi.org/10.1038/ncomms3918
https://doi.org/10.1093/biomet/asq042
https://doi.org/10.1093/biomet/asq042
https://doi.org/10.1093/biomet/asq042
https://doi.org/10.1093/biomet/asq042
https://doi.org/10.1016/S0167-8809(03)00019-7
https://doi.org/10.1016/S0167-8809(03)00019-7
https://doi.org/10.1016/S0167-8809(03)00019-7
https://doi.org/10.1098/rstb.2010.0153
https://doi.org/10.1098/rstb.2010.0153
https://doi.org/10.1098/rstb.2010.0153
https://doi.org/10.1371/journal.pone.0111629
https://doi.org/10.1126/science.1077838
https://doi.org/10.1126/science.1077838
https://doi.org/10.1126/science.1077838
https://doi.org/10.1146/annurev.environ.041008.093740
https://doi.org/10.1146/annurev.environ.041008.093740
https://doi.org/10.1146/annurev.environ.041008.093740
https://doi.org/10.1088/1748-9326/2/1/014002
https://doi.org/10.1038/nclimate1832
https://doi.org/10.1038/nclimate1832
https://doi.org/10.1038/nclimate1832


Lobell D B, SchlenkerW and Costa-Roberts J 2011 Climate trends
and global crop production since 1980 Science 333
616–20

Lusk J, Tack J andHendricks N 2017Heterogeneous yield impacts
from adoption of genetically engineered corn and the
importance of controlling for weatherWorking Paper No:
23519NBER

Mosier TM,Hill D F and SharpKV2014 30-Arcsecondmonthly
climate surfaces with global land coverage Int. J. Climatol. 34
2175–88

Nolan E and Santos P 2012The contribution of geneticmodification
to changes in corn yield in theUnited StatesAm. J. Agric.
Econ. 94 1171–88

Parisi C, Tillie P andRodríguez-Cerezo E 2016The global pipeline
ofGMcrops out to 2020Nat. Biotechnol. 34 31–6

RayDK,MuellerND,West PC and Foley J A 2013Yield trends are
insufficient to double global crop production by 2050PloS
One 8 e66428

RayDK, RamankuttyN,MuellerND,West PC and Foley J A 2012
Recent patterns of crop yield growth and stagnationNat.
Commun. 3 1293

RobertsM J, BraunNO, Sinclair TR, Lobell DB and SchlenkerW
2017Comparing and combining process-based cropmodels
and statisticalmodels with some implications for climate
changeEnviron. Res. Lett. 12 095010

SchlenkerWandRobertsM J 2009Nonlinear temperature effects
indicate severe damages toUS crop yields under climate
changeProc. Natl Acad. Sci. 106 15594–8

Schmidhuber J andTubiello FN2007Global food security under
climate change Proc. Natl Acad. Sci. 104 19703–8

ShiG, Chavas J P and Lauer J 2013Commercialized transgenic traits,
maize productivity and yield riskNat. Biotechnol. 31 111–4

Svitashev S, Schwartz C, Lenderts B, Young J K andCiganAM2016
Genome editing inmaize directed byCRISPR–Cas9
ribonucleoprotein complexesNat. Commun. 7 13274

TollenaarM, Fridgen J, Tyagi P, Stackhouse PW Jr andKumudini S
2017The contribution of solar brightening to theUSmaize
yield trendNat. Clim. Change 7 275–8

UrbanDW, Sheffield J and Lobell DB 2015The impacts of future
climate and carbon dioxide changes on the average and
variability ofUSmaize yields under two emission scenarios
Environ. Res. Lett. 10 1–9

VanWey LK andRichards PD2014 Eco-certification and greening
the Brazilian soy and corn supply chainsEnviron. Res. Lett. 9
031002

Wheeler T andVonBraun J 2013Climate change impacts on global
food security Science 341 508–13

XuZ,HennessyDA, SardanaK andMoschini G 2013The realized
yield effect of genetically engineered crops: USmaize and
soybeanCrop Sci. 53 735–45

9

Environ. Res. Lett. 13 (2018) 124009

https://doi.org/10.1126/science.1204531
https://doi.org/10.1126/science.1204531
https://doi.org/10.1126/science.1204531
https://doi.org/10.1126/science.1204531
https://doi.org/10.1002/joc.3829
https://doi.org/10.1002/joc.3829
https://doi.org/10.1002/joc.3829
https://doi.org/10.1002/joc.3829
https://doi.org/10.1093/ajae/aas069
https://doi.org/10.1093/ajae/aas069
https://doi.org/10.1093/ajae/aas069
https://doi.org/10.1038/nbt.3449
https://doi.org/10.1038/nbt.3449
https://doi.org/10.1038/nbt.3449
https://doi.org/10.1371/journal.pone.0066428
https://doi.org/10.1038/ncomms2296
https://doi.org/10.1088/1748-9326/aa7f33
https://doi.org/10.1073/pnas.0906865106
https://doi.org/10.1073/pnas.0906865106
https://doi.org/10.1073/pnas.0906865106
https://doi.org/10.1073/pnas.0701976104
https://doi.org/10.1073/pnas.0701976104
https://doi.org/10.1073/pnas.0701976104
https://doi.org/10.1038/nbt.2496
https://doi.org/10.1038/nbt.2496
https://doi.org/10.1038/nbt.2496
https://doi.org/10.1038/ncomms13274
https://doi.org/10.1038/nclimate3234
https://doi.org/10.1038/nclimate3234
https://doi.org/10.1038/nclimate3234
https://doi.org/10.1088/1748-9326/10/4/045003
https://doi.org/10.1088/1748-9326/10/4/045003
https://doi.org/10.1088/1748-9326/10/4/045003
https://doi.org/10.1088/1748-9326/9/3/031002
https://doi.org/10.1088/1748-9326/9/3/031002
https://doi.org/10.1126/science.1239402
https://doi.org/10.1126/science.1239402
https://doi.org/10.1126/science.1239402
https://doi.org/10.2135/cropsci2012.06.0399
https://doi.org/10.2135/cropsci2012.06.0399
https://doi.org/10.2135/cropsci2012.06.0399

	1. Introduction
	2. Methods
	2.1. Data sources
	2.2. Regression models
	2.3. Climate projections and impacts

	3. Results
	4. Discussion and conclusion
	Author contributions
	Acknowledgments
	References



