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Corrigendumabstract
An error in the estimate of wind plant area led us to

underestimate wind power densities by about 40%. The
errorwas our incorrect specificationof the geometric pro-
jection in the calculation of the area ofVoroni polygons in
our GIS software. The severity of this error increasedwith
latitude so errors were smaller in Texas than Montana.
Our method used area to filter out plants with installed
capacity densities <0.1MWi km

−2, a step that generally
removes plants with very small numbers of turbines, for
which our Voroni method produces overly-large areas.
Because the areas changed, the sample set also changed
when the error was fixed. Finding the error motivated us
tobothprovide amoredetaileddescriptionof themethod
in the supplemental information is available online at
stacks.iop.org/ERL/14/079501/mmedia and make data
publicly available in anAddendum.

The average wind power density changed to
0.90We m−2 (from 0.50We m−2) and the average
installed capacity density changed to 2.8MWi km

−2

(from 1.5MWi km
−2). Yet while we are embarrassed to

have made an error, these corrections do not affect the
overall conclusions of the paper. Specifically: (a) wind
plants with the largest areas have the lowest power den-
sities; (b) wind capacity factors are increasing, and that
increase is associated with a decrease in installed capa-
city densities, so power densities are stable or declining;
and, (c) the observed average power densities are con-
sistent with prior estimates that use physically-based
models of turbine-atmosphere interaction and are
inconsistent with many wind resource estimates that
implicitly ignore these interactions. Corrections do
change figures 3–7 and table 1, as well as text citing or
comparing previously incorrect numbers. Paragraphs
which required amendments are included below, with
corrected numbers and text identifiable as bold-under-
scored text.We apologize for the inconvenience.

Power density is the rate of energy generation per unit
of land surface area occupied by an energy system. The
power density of low-carbon energy sources will play an
important role in mediating the environmental con-
sequences of energy system decarbonisation as the world
transitions away from high power-density fossil fuels. All
else equal, lower power densities mean larger land and
environmental footprints. The power density of solar and
wind power remain surprisingly uncertain: estimates of
realizable generation rates per unit area for wind and solar
power span 0.3–47We m

−2 and 10–120We m
−2 respec-

tively. We refine this range using US data from 1984 to
2016. We estimate wind power density from primary
data, and solar power density from primary plant-level
data and prior datasets on capacity density. The mean
power density of 430 onshore wind power plants in 2016
was 0.90Wem

−2.Wind plants with the largest areas have
the lowest power densities. Wind power capacity factors
are increasing, but that increase is associated with a
decrease in capacity densities, sopowerdensities are stable
or declining. If wind power expands away from the best
locations and the areas ofwindpowerplants keep increas-
ing, it seems likely that wind’s power density will decrease
as total wind generation increases. Themean 2016 power
density of 1047 solar power plants was 5.7Wem

−2. Solar
capacity factors and (likely) power densities are increasing
with time driven, in part, by improved panel efficiencies.
Wind power has a 6-fold lower power density than solar,
but wind power installations directly occupymuch less of
the land within their boundaries. The environmental and
social consequences of these divergent land occupancy
patternsneed further study.

Introduction

Here we estimate the power densities and capacity
factors for wind and solar power plants with AC-
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capacities greater than 1MWwhich generated electri-
city in the US from 1984–2016 installations. For wind
we make a direct plant-by-plant bottom-up estimate
while for solar our estimates of power density depend
on a correlation analysis that provides a single estimate
for the solar installed capacity density.

Data sources andmethods

Following our Wind and Solar Methods (below), we
computed annual averages from monthly generation
(MWh/month) when 12 months of data is reported
rather than using the data’s annual averages
(MWh yr−1) which would obscure pre-startup or
offline periods. Only about half of all wind and solar
power plants were used in our analysis for the year

2016, with this ratio varying by technology and year.
These solar and wind power plants were excluded
because: (a) Power Plants could not be linked to
Electricity Generation based on Plant Code, or (b)
Capacity factors calculated from the Power Plants and
Electricity Generation exceeded 100%, or (c) Electricity
Generation was zero for anymonth in a given year, or
finally (d) AC-capacities between Power Plants and
DetailedData differed bymore than±10%.

These exclusions and filtering result in dis-
crepancies between our dataset and those of the EIA
(2018d). For 2016, the cumulative capacity of the wind
power plants include in our data was 56% the EIA’s
estimate for total wind capacity while for solar capacity
that figure was 44% (EIA 2018d). Our base Power
Plants data collated power plants through early 2018,

Figure 3.Distributions of capacity factors and power densities. Probability density functions (A), (B) over all wind and solar power
plants; and, cumulative distribution functions of the normalized aggregated capacity (C), (D). In each case, annual average data for
2016, 2014, and 2012 is plotted, with the colored key in (D) clarifyingwind from solar and the specific year.

Table 1. Solar andwind power values for the various years, with average capacity factor and average power density weighted by the installed
capacity.

Solar power Wind power

Installed capacity
Capacity factor Power density Installed capacity Capacity factor Power density

Year MWdc MWac (%) (Wem
−2) MWi (%) (Wem

−2)

2010 78 67 22.70 5.92 18 868 30.55 0.93

2011 218 189 20.83 5.39 22 686 33.30 0.96

2012 833 700 21.09 5.37 27 096 32.60 0.93

2013 2032 1692 22.87 5.72 33 529 32.47 0.92

2014 3518 2865 23.04 5.63 34 389 33.67 0.94

2015 5157 4192 22.95 5.58 37 307 32.32 0.86

2016 8188 6612 23.52 5.70 45 400 34.94 0.90
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but does not specify when the power plant came
online, preventing capacity for 2016 from being
quantified. Detailed Data provides nameplate capa-
city and month-year per power plant, but for 2016,
total capacities are 109% and 150% the capacity
for wind and solar respectively compared to
(EIA 2018d). To verify that no region was system-
atically excluded, we spatially compared the raw EIA
Power Plant locations (EIA 2018a) to those making it
through our methodology, and found no obvious
spatial gaps.

Windmethods

A detailed step-by-step methodology is described in
the supplemental information, but broadly our
approach for quantifying the area of US wind power
plants begins with the location of the 57 636 wind
turbines in the USWTDB (Hoen et al 2018). The
USWTDB was reprojected to Contiguous USA
Albers Equal Area (EPSG:102003) to enable precise
small-area calculations across latitudes. Voroni
polygons were calculated for each wind turbine using
QGIS (2018). Using spatial linking, the Voroni poly-
gons were linked to the Power Plants (EIA 2018a) and
then filtered for an equivalent AC-installed capacity
within ±10%. The Plant Code in the Power Plants
data was then used as the unique identifier for
linking to Electricity Generation (EIA 2018a, 2018b)
and Detailed Data (EIA 2018c). Capacity factors
(MWe/MWi) of wind power plants are calculated
from Electricity Generation and Power Plants
(EIA 2018a, 2018c). Spatial and temporal curtailment
by the grid operator was not included in this analysis,
but will influence the results slightly (e.g. ERCOT
region of Texas in 2009).

There is no well-established method to compute
the area of each wind power plant. To do so, we com-
pute a Voroni polygon (after Гео́ргий Вороно́й)
using QGIS (2018) for each wind turbine in the
USWTDBwhich delineates the ground area that is clo-
sest to each individual turbine location compared to
every other turbine. The Voroni polygon areas for
wind turbines on the edge of wind power plants are
very large, but the interior Voroni polygons are a use-
ful quantification of the ground surface area per tur-
bine. We compute the median Voroni polygon area
for each wind farm in the Contiguous US and then
estimate the area of the wind farm by multiplying this
median Voroni polygon area by the number of wind
turbines listed in theUSWTDB (Hoen et al 2018).

These steps yield the wind power plant area (km2),
power density (We m−2), installed capacity density
(MWi km

−2), and capacity factor for 430 wind power
plants operating in 2016 (45.4GWi).

Solarmethods

Our solar dataset begins with Power Plants
(EIA 2018a). Using the unique Plant Code, we linked
this file to Electricity Generation (EIA 2018b), resulting
in 1 311 solar PV power plants. To reduce errors, we
compare the installed capacity (MWac) values with the
same Plant Code between Power Plants and Detailed
Data (EIA 2018a), excluding the solar power plants
that differ by ±10%, leaving 1047 solar power plants
for our 2016 analysis (6.6GWac, 8.1GWdc).

Results

Distributions of power densities and capacity factors
are shown in figure 3. Considering capacity-weighted
data for all power plants operational during 2016, the
summary results are as follows. The mean and 90-
percentile power densities for wind are 0.90 and
1.48Wem

−2, while the corresponding values for solar
are 5.7 and 7.5We m

−2. Note that systematic uncer-
tainty in the distribution of power densities are
significantly larger for solar than for wind because the
solar power results are derived from a fixed estimate of
capacity density, whereas the wind results are com-
puted directly. Our mean and 90-percentile capacity
factors are 34.9% and 46.0% for wind, while the
corresponding values for solar are 23.5% and 30.0%.
Note that the capacity factors from EIA for 2016 are
34.5% for wind and 25.1% for solar (EIA 2018d), and
we expect that the discrepancy arises from the data
sampling issues discussed above. Solar and wind
power installed capacities, power densities, and capa-
city factors from2010 to 2016 are shown in table 1.

Capacity factors for wind power have increased by
0.9% per year over the years 1984–2015 (figure 4(B)).
The increase in wind’s capacity factor is particularly
evident this decade. Wind farms operating since 2010
have a mean capacity factor of 37.3% for 2010–2016,
whereas the capacity factor from 1984 to 2009
is 31.6%.

There is no significant trend in the power density
of wind power plants. This result is surprising given
the increase in capacity factor. What underlies
it?Wind power plants have three defining character-
istics: the rated capacity of individual turbines, the
installed capacity density of the wind farm, and the
area of the wind farm. The capacity factor and power
density of the wind power plants show no relationship
to the rated capacity of the individual wind turbines
(figure 5(A)), whereas capacity factor and power den-
sity do vary with capacity density (figure 5(B)). Note
that the highest power densities are achieved with the
highest capacity densities, but the highest capacity fac-
tors are achieved with the lowest capacity densities.
Based on their first year of operation, the capacity
density of wind power plants has decreased by 3.3%
per year since 1984, or 3.2% per year over the last
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10 years (figure 5(C)). The capacity density peaked at
about 5MWi km

−2 for turbines installed between
2002 and 2005, and has since decreased to about
2.0MWi km

−2.Overall, the average installed capacity
density of all wind farms was 2.7MWi km−2

(figure 5(D)). In summary, we find that while
improved wind turbine design and siting have
increased capacity factors (and greatly reduced costs)
they have not altered power densities.

Finally, we examined the relationship between
power plant area and power density. For solar, there is
no clear relationship between area and power density
(figure 7(A)), whereas for wind, there is a strong rela-
tionship (figure 7(B)). While many wind power plants
with areas less than 20 km2 generate more than 1.0We

m−2, power density decreases with increasing power
plant size. This result was previously observed for
0–20 km2 wind power plants by (MacKay 2013). We

Figure 4.Age of the power plants compared to their capacity factors, and for wind their power densities. The top bars of (A), (B) show
the total capacity of solar or wind power plants for thatfirst year of operation. This first year is also used for binning the capacity factors
(A), (B), and power density (B), illustrating how2016 electricity valueswere influenced by the power plant’s age. Box-whisker plots
show the interquartile (IQR) range, white points show themeans, red points show themeansweighted by the individual power plant’s
installed capacities for that year, and the red line shows a linearfit through theseweightedmeans. In (B) lower, the black line shows
the linearfit from1984 to 2015, while the red line shows 2006–2015.
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verify this early result, and extend it by showing that
wind’s power density reaches an asymptote of about
0.50We m

−2 when the wind plant area exceeds about
150 km2. Note that we found power densities of
about 0.1We m

−2 for the largest wind-farms in our
study, which had areas of 250–450 km2. While these
plants passed all the quality-checks of the Wind
Method, we feel they are not representative. While
these plants have comparable capacity factors
(24%–47%), they have very low capacity densities
(0.11–0.23 MWi km

−2). These plants are, in general,
isolated from neighboring plants and/or have tur-
bines placed along ridgelines, which is problematic
for quantifying a representative median Voroni

polygon area. We therefore judge that the power
densities of about 0.50Wem

−2 in figure 7(B), which
we find for plants of 100–200 km2, as most illus-
trative to what would likely be achieved by replicat-
ing existing wind plants in adjacent regions with
similarwind resources.

Discussion

Solar’s mean power density in 2016 was 5.7We m
−2.

Our approach for estimating the area of solar farms is
not fully bottom-up so this estimate is subject to
systematic error. It is possible, for example, that

Figure 5.Design characteristics of wind power plants, and their influence on 2016 electricity generation: (A) rated capacity of the wind
turbines, (B) capacity density of thewind power plant.The capacity density ofwind power plants binned by theirfirst year of
operation in (C), with linearfitsweighted by the individual power plant’s installed capacities for that year for 1984–2015 (black)
and 2006–2015 (red). In (A), (B), (C) all box-whisker plots show the interquartile range (IQR), with black dots indicating capacity-
weightedmean values. The installed capacity of thewind power plant compared to its area is shown in (D), and uses color to
discriminate betweenwind power plants operational before or after 2010.
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capacity densities have changed significantly given that
the data used in our analysis is about 5 years old. That
said, the assumption by (Jacobson et al 2018) that
urban rooftops can be retrofitted with a capacity
density 4.5 times higher than the commercial-scale
solar plantsmeasured by (Ong et al 2013) seems highly
unlikely, as does the resulting 24–27We m−2 power
density (Jacobson et al 2018). It is also possible that
capacity densities vary strongly with larger size instal-
lations (see figure 2(A)). However, given that our
analysis finds only a very weak relationship between
module efficiency or installation size and capacity
density, we expect the errors are small, likely less
than 20%.

Wind’s mean power density in 2016 was
0.90We m

−2. This observed mean is consistent with
estimates based on atmospheric theory and modeling
(Gustavson 1979, Keith et al 2004, Wang and
Prinn 2010,Miller et al 2011, Gans et al 2012, Jacobson
and Archer 2012, Marvel et al 2012, Adams and
Keith 2013,Miller et al 2015,Miller and Kleidon 2016)
which predicted that large-scale wind power densities
would be under 1.0We m

−2 and also that power den-
sities will decrease with increasing size of the wind
farm installation. This observedmean power density is
much smaller than many common estimates (Archer
and Jacobson 2005, Lu et al 2009, Sta. Maria and
Jacobson 2009, Jacobson and Delucchi 2011, Lopez

Figure 6. Spatial distribution of power density (top) and capacity factor (bottom) for 2016.Wind power plants represented as squares
and solar power plants as stars.
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et al 2012, US DOE 2014, World Bank Fund 2018).
Examples include 227Wm−2 over the windiest 10%
of global land (World Bank Fund 2018), 3.3 We m

−2

over the entire Earth’s surface (Jacobson and
Delucchi 2011), 1.7 We m

−2 over about 1/3 of the
Continental US (Lopez et al 2012), or 1.4Wem

−2 over
about 2% of the US with excellent wind resources (US
DOE 2014). These are also by no means the highest
estimates in the literature. For example, (World Bank
Fund 2018) quantify a wind power density of
808Wm−2 over the windiest 10% of US land, and
(Kammen and Sunter 2016) estimated an upper
bound of 35We m

−2 for wind power at urban-scales
based on a study observing numerous vertical axis tur-
bines which generated up to 47Wem

−2 over an area of
about 50 m2 (Dabiri 2011).

There are twomain reasons for these discrepancies
in wind power density. First, many estimates did not
account the interactions between wind turbine arrays
and the atmospheric boundary layer. The limit to
large-scale wind power density is the downward flux of
kinetic energy from the free troposphere, a global
value that is about 1Wm−2 (Lorenz 1955, Peixoto and
Oort 1992, Kim and Kim 2013). The effect of this
atmospheric limit is illustrated by the relationship
between wind power plant’s area and power density.
Second, many studies assume installed capacity den-
sities which are too high. While we observed an aver-
age capacity density of 2.7MWi km

−2 with about
2.0 MWi km

−2 common to 2013–2015 installations,
(Rinne et al 2018) assume 5.5–9.4 MWi km−2,
(Jacobson et al 2018) assume 7.2 MWi km−2,
(Lopez et al 2012) assumed 5.0 MWi km

−2, the US-
DOE Wind Vision: A New Era for Wind Power in the
United States (USDOE 2014) assumed 3.0 MWi km

−2.
By assuming 2–5 times the observed capacity density
but ignoring the atmospheric limits, these estimates

resulted in power densities that are 2–5 times higher
than observations.

Given that larger wind power plants have smaller
power densities and given that amajor increase in total
wind power generation will presumably require
expanding wind power plants into less-than-ideal
locations, it seems likely that wind power density will
decrease with time. It therefore seems—contrary to
many prior estimates—unlikely that the power den-
sities of greater than 1We m

−2 will be realized over
substantial areas, and likely that average power den-
sities of about 0.5We m

−2 will become increasingly
common.

As an example of the implications of these results,
consider Germany and its ambitious energy transfor-
mation policy (Energiewende). Germany’s primary
energy consumption rate is 1.28Wm−2 (BP 2018). If
the average US wind power density of 0.90We m

−2

was applicable to Germany, then devoting all German
land to wind power would meet about 70% of Ger-
many’s total primary energy consumption, while if
German wind power performs like the best 10% of US
wind (1.48We m

−2), then generation would be 115%
of Germany’s consumption. Finally, if Germany’s goal
was to generate the most wind power without eco-
nomic constraints, very high capacity densities (e.g.
10MWi km

−2) could be deployed, reducing capacity
factors but possibly raising the power density to
2.0We m−2 and meeting 135% of consumption.
Whereas for solar at 5.7We m

−2, 22% of Germany’s
land area would need to be devoted to commercial-
scale solar tomeet total primary energy consumption.

Power densities clearly carry implications for land
use. Meeting present-day US electricity consumption,
for example, would require 12%of theContinental US
land area for wind at 0.5 We m

−2, or 1% for solar at
5.7We m

−2. US electricity consumption is just 1/6

Figure 7.Power densities during 2016, binned by the area of the (A) solar power plant, or (B)wind power plant.Whisker plots show
the interquartile range (IQR), with black points showing the capacity-weightedmean of each area bin. Note that the solar areas are
about 100-times smaller than thewind power plant areas.
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total primary energy consumption (BP 2018), someet-
ing total consumption would therefore require 72%
and 6% respectively for US wind and solar. Of course,
like the Germany example, no single energy source is
likely to ever supply all electric power. These compar-
isons nevertheless provide a benchmark for under-
standing the implications of power densities for land
use, while recognizing that solar and wind power also
occupy the area within the power plant boundary dif-
ferently. These observation-based results should be
considered in light of the fact that (a) decarbonizing
the energy system will require considerably more pri-
mary power than current electricity demand, (b)
demand may continue to grow, and finally, (c) that
many areas of the world have higher energy demand
per unit area than does theContinental US.
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Abstract
Power density is the rate of energy generation per unit of land surface area occupied by an energy
system. The power density of low-carbon energy sources will play an important role inmediating the
environmental consequences of energy systemdecarbonization as theworld transitions away from
high power-density fossil fuels. All else equal, lower power densitiesmean larger land and
environmental footprints. The power density of solar andwind power remain surprisingly uncertain:
estimates of realizable generation rates per unit area forwind and solar power span 0.3–47Wem

−2 and
10–120Wem

−2 respectively.We refine this range usingUS data from1990–2016.We estimatewind
power density fromprimary data, and solar power density fromprimary plant-level data and prior
datasets on capacity density. Themean power density of 411 onshore wind power plants in 2016was
0.50Wem

−2.Wind plants with the largest areas have the lowest power densities.Wind power capacity
factors are increasing, but that increase is associatedwith a decrease in capacity densities, so power
densities are stable or declining. If wind power expands away from the best locations and the areas of
wind power plants keep increasing, it seems likely that wind’s power density will decrease as total wind
generation increases. Themean 2016 power density of 1150 solar power plants was 5.4Wem

−2. Solar
capacity factors and (likely) power densities are increasingwith time driven, in part, by improved
panel efficiencies.Wind power has a 10-fold lower power density than solar, but wind power
installations directly occupymuch less of the landwithin their boundaries. The environmental and
social consequences of these divergent land occupancy patterns need further study.

Introduction

Wind and solar power generation have grown dramati-
cally, yet they still generate only a small fraction of
electricity or of primary energy. In 2017, for example,
wind and solar generated 6.0% and 1.8% respectively of
US electricity (BP 2018). Wind and solar, like all energy
systems, occupy land, displacingnatural systems, agricul-
ture, and human communities. Power density, the
energy generation rate per time per unit ground area
(expressed here asWem

−2), is one importantmeasure of
the land use of energy systems (Smil 1984, 2015,
MacKay 2009, 2013a, 2013b). Use of low-carbon energy
sources such aswind and solarmay increase dramatically

as the energy systems is decarbonized to limit climate
risks.Quantitative estimates of power densities are there-
fore important in understanding the scope and impacts
of low-carbon energy systems. Yet, as we describe below,
existing power density estimates for wind and solar are
inconsistent.Herewe estimate the power density ofwind
and solar power using data that includes most grid-
connected commercial-scale installations in the US. We
also examine how power densities vary with power plant
age and size.

For wind power, estimates of the power density
vary by about a factor of 70. Technological innova-
tions in turbine design and arrangement show that up
to 47We m

−2 is achievable over very small areas
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(Dabiri 2011). For onshore wind power plants at
county- to country-scales, estimates fall in the range of
3.5–7.0We m

−2 assuming one wind turbine does not
affect the generation of downwind turbines (Archer
and Jacobson 2005, Lu et al 2009, Sta. Maria and
Jacobson 2009, Jacobson and Delucchi 2011). Smaller
estimates of 0.5–1.0We m

−2 emerge from analysis
that considers turbine–atmosphere interactions (Gus-
tavson 1979, Keith et al 2004, Wang and Prinn 2010,
Miller et al 2011, 2015, Gans et al 2012, Jacobson and
Archer 2012, Marvel et al 2012, Adams and
Keith 2013,Miller andKleidon 2016).

Note that all the values in the preceding paragraph,
and throughout this paper, refer to the average annual
power density over the entire areal extent of the wind
farm, hereafter ‘wind power plant’. This power density of
wind power plants is much smaller than the power den-
sity computedby counting only the area directly occupied
by infrastructure, such as the turbine pads and access
roads (MacKay 2013a, Smil 2015). Including the whole
area of the wind power plant when calculating wind
power density is critical to establishing the reproducibility
of similar plants in adjacent locations, which informs
wind power’s generation potential at larger scales. The
land use considerations of wind power are complex.
While the open space betwen turbines is critical to mini-
mizing turbine–turbine and turbine–atmosphere interac-
tions, that sameopen space is usually co-utilized for other
purposes like agriculture. Note that we defer to theMeth-
ods section the real-but-tractable issues of quantifying
that area givenknowledgeof thewind turbine locations.

For solar photovoltaics (PV), estimates of the power
density differ by about a factor of 12. The low-end esti-
mates by MacKay and Smil are the 3–9Wem

−2

(MacKay2013b, Smil 2015). Kammen andSunter (2016)
estimate that typical values are 10Wem

−2, while Her-
nandez et al (2015) suggest values of 47–66Wem

−2 for
sunny regions like California, and Kammen and Sunter
(2016) estimate a technical potential of 120Wem

−2 if
such sunnyflat regionswere blanketedwith today’s high-
est (∼40%) efficiency PV panels. Underlying these esti-
mates are different assumptions regarding panel
efficiency, the ratio of fraction of the land surface area to
PV panels area, and whether the angle of the panels is
fixedoruses 1- or 2-axis solar tracking.

Here we estimate the power densities and capacity
factors for wind and solar power plants with AC-capa-
cities greater than 1MWwhich generated electricity in
the US during 1998–2016. For wind we make a direct
plant-by-plant bottom-up estimate while for solar our
estimates of power density depend on a correlation
analysis that provides a single estimate for the solar
installed capacity density.

Data sources andmethods

Weused four data sources:

• EIA Power Plants, hereafter Power Plants, published
on 19 April 2018 and current through January 2018
(US Energy Information Administration EIA 2018a).
This base dataset provides status (operating, on
standby, or short- or long-termout of service), a 3- to
5-digit unique ‘Plant Code’, geographic location,
name, and nameplate AC-capacity for 1043 wind
power plants and 2227 solar PVpower plants.

• EIA Bulk Data, hereafter Electricity Generation (US
Energy Information Administration EIA, 2018b).
This data set includesmonthly electricity generation
data for each power plant through December 2016
including geographic location, name, and a ‘series
id’ that is the same as the Plant Code in Power Plants.
Note that most data is missing for power plants first
operational in 2016.

• EIA-860, hereafter Detailed Data, published April
2018 (US Energy Information Administration
EIA 2018c). This data set provides AC- and DC-
capacity of the power plant, month and year of first
operation, referenced by Plant Code.

• United States Wind Turbine Database, hereafter
USWTDB, published April 2018 (current through
early 2018) (Hoen et al 2018). This data set provides
locations of 57 636 wind turbines, name of the wind
power plant, number of turbines in the wind power
plant, turbine nameplate capacity, and rotor dia-
meter. It does not provide a Plant Code.

Following our Wind and Solar Methods (below),
we computed annual averages from monthly genera-
tion (MWh/month)when 7 ormoremonths of data is
reported rather than using the data’s annual averages
(MWh yr−1) which would obscure pre-startup or off-
line periods. Only about half of all wind and solar
power plants were used in our analysis for the year
2016, with this ratio varying by technology and year.
These solar and wind power plants were excluded
because: (a) Power Plants could not be linked to
Electricity Generation based on Plant Code, or (b) capa-
city factors calculated from the Power Plants and Elec-
tricity Generation exceeded 100%, or (c) Electricity
Generation was zero or unreported for more than 6
months in a given year, (d) AC-capacities between
Power Plants and Detailed Data differed by more than
±10%, or finally in the case of wind power, (e) if the
resulting installed capacity density was less estimated
to be less than 0.1MWi km

−2.
These exclusions and filtering result in dis-

crepancies between our dataset and those of the US
Energy Information Administration EIA (2018d). For
2016, the cumulative capacity of the wind power
plants included in our data was 58% the EIA’s estimate
for total wind capacity while for solar capacity that
figure was 53% (US Energy Information Administra-
tion EIA 2018d). Our base Power Plants data collated
power plants through early 2018, but does not specify
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when the power plant came online, preventing capa-
city for 2016 frombeing quantified.Detailed Data pro-
vides nameplate capacity and month-year per power
plant, but for 2016, total capacities are 109% and
150% the capacity for wind and solar respectively
compared to (US Energy Information Administration
EIA 2018d). To verify that no region was system-
atically excluded, we spatially compared the raw EIA
Power Plant locations (US Energy Information
Administration EIA 2018a) to thosemaking it through
ourmethodology, and found no obvious spatial gaps.

Windmethods

Our approach for quantifying the area ofUSwind power
plants begins with the location of the 57 636 wind
turbines in the USWTDB (Hoen et al 2018). Voroni
polygons were calculated for each wind turbine using
QGIS Development Team (2018). Using spatial linking,
the Voroni polygons were linked to the Power Plants (US
Energy Information Administration EIA 2018a) and
then filtered for an equivalent AC-installed capacity. The
Plant Code in the Power Plants data was then used as the
unique identifier for linking to Electricity Generation (US
Energy Information Administration EIA 2018a, 2018b)
and Detailed Data (US Energy Information Administra-
tion EIA 2018c). Capacity factors (MWe/MWi) of wind
power plants are calculated from Electricity Generation
and Power Plants (US Energy Information Administra-
tionEIA2018a, 2018c). Spatial and temporal curtailment
by the grid operatorwas not included in this analysis, but
will influence the results slightly (e.g. ERCOT region of
Texas in2009).

There is no well-established method to compute
the area of each wind power plant. To do so, we

compute a Voroni polygon (after Гео́ргий Вороно́й)
using QGIS Development Team (2018) for each wind
turbine in the USWTDB which delineates the ground
area that is closest to each individual turbine location
compared to every other turbine. The Voroni polygon
areas for wind turbines on the edge of wind power
plants are very large, but the interior Voroni polygons
are a useful quantification of the ground surface area
per turbine. We compute the median Voroni polygon
area for each wind power plant and then estimate the
area of the wind power plant by multiplying this med-
ian Voroni polygon area by the number of wind tur-
bines listed in theUSWTDB (Hoen et al 2018).

These steps yield the wind power plant area (km2),
power density (Wem

−2), installed capacity density
(MWi km

−2), and capacity factor for 411 wind power
plants operating in 2016 (43.7GWi).

The advantage of this approach is that it only depends
on the turbine locations and is independent from any
rules-of-thumb, such as the typical spacing of 6-to-8
rotor diameters, or proprietary turbine information used
by the developer as part of the wind power plant’s design.
This approach is also responsive to differences in arrange-
ment (parallel rows, ridgetop or coastal alignment) and
between-turbine spacing due to taller hub-heights or lar-
ger rotor diameters, without prescribing any details other
than the geographic location.

To illustrate how our approach performs, we
selected 2 dissimilar wind power plants from a prior
study of wind power plant area (Denholm et al 2009)
that are still in operation as of 2016. At Bull Creek
(figure 1(A)), the smaller Voroni polygon areas at the
interior of the wind farm contrast with those larger
areas of the edge turbines but are not a problem—

wind farm area is estimated from the median Voroni
polygon area and the turbine count. An 8 rotor

Figure 1. IllustratingVoroni-polygon and buffer-based approaches for estimating the area of wind power plants. Individual turbine
locations shown as orange dots, with the thin black line around eachwind turbine designating theVoroni polygon boundary.
The thick black lines designate Voroni polygons surrounding eachwind power plant. The colored buffer regions illustrate an
alternative approach for estimating are, shown as an 8-rotor diameter (8D) buffer around each turbine. (A)Bull Creek (orange, top
left,−101.6°E, 32.9°N) has an area of 243 km2 according to (Denholm et al 2009), 47.8 km2 using the 8Dbuffer, and 54 km2 based on
themedianVoroni polygon area (0.3 km2 per turbinewith 180 turbines). (B) FentonWind Farm (teal,−93.2°E, 42.6°N) has an area
of 156 km2 according to (Denholm et al 2009), 100 km2 using the 8Dbuffer, and 137 km2 based on themedianVoroni polygon area
(1.0 km2 per turbinewith 137 turbines).
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diameter buffer is shown for comparison, and with its
open space between rows, would underestimate the
total wind farm area. The spatial overlap of these buf-
fer regions with the wind turbine buffers to the west is
also shown, with the Voroni polygons responsive to
these adjacent wind farms and adjusted accordingly
(see figure S1 for 4 examples, available online at stacks.
iop.org/ERL/13/104008/mmedia). Fenton Wind
Farm is shown in figure 1(B). This wind power plant
occupies a larger area than Bull Creek, with its
C-shaped turbine arrangement and spatial mixing
with other wind farms showing the decisions required
to estimate wind farm area, as well as the benefits of
using our spatially consistent approach which can be
updated asmorewind turbines are deployed.

Solarmethods

Our solar dataset begins with Power Plants (US Energy
Information Administration EIA 2018a). Using the
unique Plant Code, we linked this file to Electricity
Generation (US Energy Information Administration
EIA 2018b), resulting in 1311 solar PV power plants. To
reduce errors, we compare the installed capacity
(MWac) valueswith the samePlantCode betweenPower
Plants and Detailed Data (US Energy Information
Administration EIA 2018a), excluding the solar power
plants that differ by ±10%, leaving 1150 solar power
plants for our 2016 analysis (7.9GWac, 9.8GWdc).

Unlike the wind methodology, we do not estimate
the area of individual solar power plants froma primary
dataset. Instead, we estimate the area of each solar PV
farm by dividing its DC capacity from theDetailedData
by afixed capacity density value of 30MWdc km

−2.
This capacity density value is derived from a study

that assessed the area andDC capacity for 192 solar PV
power plants in the US (Ong et al 2013). For area, we
use Ong et al’s total area, which is based on environ-
mental impact statements, project applications, and

satellite imagery, and describes the area enclosing the
solar arrays, roads, substations, and service buildings.
A linear fit to the (Ong et al 2013) data yields a best-fit
at 30.05 MWdc km

−2 (figure 2). This agrees well with
the installed capacity density of 25–35MWdc km

−2

observed inCalifornia (Hernandez et al 2014).
One might expect that higher panel efficiencies or

tracking would produce higher generation rates per unit
area. We tested this assumption by binning the (Ong
et al 2013) data that included PV panel efficiency (109 of
192 total data points) into two sets. The first with effi-
ciencies greater than the median (14%) and the second
with efficiencies less than themedian (figure S2), and then
separately estimating the best-fit capacity density for the
two sets. The two results differ by only 1.2% suggesting
that capacity density varies littlewithmodule efficiency.

Power density (i.e. areal power generation rate,
We m

−2)was calculated as:

= -( ( ))PD CD CD 30 MW km ,ac dc dc
2

where CDac and CDdc are the capacity densities
measured on an AC or DC basis, and PD is the power
density. Capacity factor was calculated from Electricity
Generation (US Energy Information Administration
EIA 2018b) and installed maximum AC capacity
(MWac) from Power Plants (US Energy Information
Administration EIA 2018a).

Results

Distributions of power densities and capacity factors
are shown in figure 3. Considering capacity-weighted
data for all power plants operational during 2016,
the summary results are as follows. The mean and
90-percentile power densities for wind are 0.50 and
0.80We m

−2, while the corresponding values for solar
are 5.4 and 7.1We m

−2. Note that systematic uncer-
tainty in the distribution of power densities are
significantly larger for solar than for wind because the

Figure 2.Relationship between rated capacity and total area of solar PVpower plants. (A) Scatter plot using data of (Ong et al 2013)
showing the linear best-fit line and statistics in blue, with the gray lines illustrating the range of the data. The two subplots to the right
compare predicted andmeasured areas for solar power plants with very different panel efficiencies. (B)AVSolar RanchOne in
California: 11%efficiency panels and 1-axis tracking installed over a large area: yellow area is 11.2 km2, blue area using the best-fit of
(A) is 9.7 km2, and the areameasured by (Ong et al 2013)was 10.5 km2, C)Cogentrix inColorado, which uses relatively high 31%
efficiency panels and 2-axis tracking over a smaller area: yellow area is 1.4 km2, blue area using the best-fit of (A) is 1.3 km2, and the
areameasured by (Ong et al 2013)was 1.1 km2.
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solar power results are derived from a fixed estimate of
capacity density, whereas the wind results are com-
puted directly. Our mean and 90-percentile capacity
factors are 32.9% and 43% for wind, while the
corresponding values for solar are 22.1% and 27.5%.
Note that the capacity factors from EIA for 2016 are
34.5% for wind and 25.1% for solar (US Energy
Information Administration EIA 2018d), and we
expect that the discrepancy arises from the data
sampling issues discussed above. Solar and wind
power installed capacities, power densities, and capa-
city factors from2010 to 2016 are shown in table 1.

Time trends are computed by binning power
plants by their first year of operation (US Energy
Information Administration EIA 2018b, 2018c). For
solar, capacity-weighted mean capacity factors have
increased by 1% per year over the years 2009–2015

(figure 4(A)). There is no significant trend in our esti-
mate of the power density of solar power plants, but it
is possible that this is an artifact of our use of a fixed
DC capacity density.

Capacity factors for wind power have increased by
0.7% per year over the years 1998–2015 (figure 4(B)).
The increase inwind’s capacity factor is particularly evi-
dent this decade.Wind farms operating since 2010 have
a mean capacity factor of 34.4% for 2010–2016,
whereas the capacity factor from1998 to 2009 is 30.9%.

There is no significant trend in the power density
of wind power plants. This result is surprising given
the increase in capacity factor. What underlies it?
Wind power plants have three defining characteristics:
the rated capacity of individual turbines, the installed
capacity density of the wind farm, and the area of the
wind farm. The capacity factor and power density of

Figure 3.Distributions of capacity factors and power densities. Probability density functions (A), (B) over all wind and solar power
plants; and, cumulative distribution functions of the normalized aggregated capacity (C), (D). In each case, annual average data for
2016, 2014, and 2012 is plotted, with the colored key in (D) clarifyingwind from solar and the specific year.

Table 1. Solar andwind power values for the various years, with average capacity factor and average power density weighted by the installed
capacity.

Solar power Wind power

Installed capacity
Capacity factor Power density Installed capacity Capacity factor Power density

Year MWdc MWac (%) (We m−2) MWi (%) (We m
−2)

2010 133 116 21.82 5.73 18 665 30.02 0.52

2011 306 267 19.08 5.00 22 693 31.37 0.52

2012 1257 1052 20.00 5.08 26 506 31.29 0.51

2013 2467 2041 22.16 5.53 33 026 30.58 0.49

2014 3876 3154 22.26 5.47 34 019 31.96 0.50

2015 5729 4660 22.09 5.41 38 262 30.77 0.46

2016 9812 7922 22.07 5.38 43 737 33.00 0.50
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the wind power plants show no relationship to the
rated capacity of the individual wind turbines
(figure 5(A)), whereas capacity factor and power den-
sity do vary with capacity density (figure 5(B)). Note
that the highest power densities are achieved with the
highest capacity densities, but the highest capacity fac-
tors are achieved with the lowest capacity densities.
Treating all wind turbines and their associated Voroni
polygon areas individually, a decrease in capacity den-
sity over time is apparent (figure 5(C)). The capacity
density peaked at about 2.5 MWi km

−2 for turbines
installed between 2002 and 2005, and has since
decreased to about 1.5 MWi km

−2 (figure 5(D)). In
summary, we find that while improved wind turbine

design and siting have increased capacity factors (and
greatly reduced costs) they have not altered power
densities.

Figure 6 provides amap of the power densities and
capacity factors for 2016. Solar capacity factors are
lower on the East Coast and around the Great Lakes,
and highest in the southwest where most solar power
plants with capacity factors greater than 30% are loca-
ted. Wind’s highest capacity factors and power den-
sities are in theGreat Plains.

Finally, we examined the relationship between
power plant area and power density. For solar, there is
no clear relationship between area and power density
(figure 7(A)), whereas for wind, there is a strong

Figure 4.Age of the power plants compared to their capacity factors, and for wind their power densities. The top bars of (A), (B) show
the total capacity of solar or wind power plants for thatfirst year of operation. This first year is also used for binning the capacity factors
(A), (B), and power density (B), illustrating how2016 electricity valueswere influenced by the power plant’s age. Box-whisker plots
show the interquartile (IQR) range, white points show themeans, red points show themeansweighted by the individual power plant’s
installed capacities for that year, and the red line shows a linearfit through theseweightedmeans. Linear fit slopes are noted in red.
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relationship (figure 7(B)). While many wind power
plants with areas less than 15 km2 generate more than
1.0We m

−2, power density decreases with increasing
power plant size. This result was previously observed
for 0–20 km2 wind power plants by (MacKay 2013a).
We verify this early result, and extend it by showing
that wind’s power density reaches an asymptote of
about 0.25We m

−2 when the wind farm area exceeds
about 150 km2.

Discussion

Solar’s mean power density in 2016 was 5.4We m
−2.

Our approach for estimating the area of solar farms is
not fully bottom-up so this estimate is subject to

systematic error. It is possible, for example, that
capacity densities have changed significantly given that
the data used in our analysis is about 5 years old. That
said, the assumption by (Jacobson et al 2018) that
urban rooftops can be retrofitted with a capacity
density 4.5-times higher than the commercial-scale
solar plantsmeasured by (Ong et al 2013) seems highly
unlikely, as does the resulting 24–27We m

−2 power
density (Jacobson et al 2018). It is also possible that
capacity densities vary strongly with larger size instal-
lations (see figure 2(A)). However, given that our
analysis finds only a very weak relationship between
module efficiency or installation size and capacity
density, we expect the errors are small, likely less
than 20%.

Figure 5.Design characteristics of wind power plants, and their influence on 2016 electricity generation: (A) rated capacity of the wind
turbines, (B) capacity density of thewind power plant. The capacity density of 50 908 individual wind turbines is shown in (C), binned
by theirfirst year of operation, with a linearfit weighted by turbine count shown in red. In (A)–(C) all box-whisker plots show the
interquartile range (IQR), with black dots indicating capacity-weightedmean values. The installed capacity of thewind power plant
compared to its area is shown in (D), and uses color to discriminate betweenwind power plants operational before or after 2010.
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Theoretically it is possible to attain high power
densities with solar (120We m

−2 in Kammen and
Sunter 2016) over small areas like an individual roof-
top, but within the limitations of our data and analysis,
we see no obvious trend towards increased solar power
densities. Suggestions that solar power densities could
be high enough to enable self-powered urban land-
scapes (Kammen and Sunter 2016) therefore seem
implausible given the primary energy demand of large
cities, such as Phoenix with a primary energy demand
of 8.1 Wm−2, Los Angeles with 21Wm−2 or New
YorkCitywith 69Wm−2.

Wind’s mean power density in 2016 was
0.50We m

−2. This observed mean is consistent with

estimates based on atmospheric theory and modeling
(Gustavson 1979, Keith et al 2004, Wang and
Prinn 2010,Miller et al 2011, Gans et al 2012, Jacobson
and Archer 2012, Marvel et al 2012, Adams and
Keith 2013,Miller et al 2015,Miller and Kleidon 2016)
which predicted that large-scale wind power densities
would be under 1.0We m

−2 and also that power den-
sities will decrease with increasing size of the wind
farm installation. This observed mean power density
is much smaller than many common estimates
(Archer and Jacobson 2005, Lu et al 2009, Sta. Maria
and Jacobson 2009, Jacobson and Delucchi 2011,
Lopez et al 2012, US Department of Energy 2015,
World Bank Group and Technical University of

Figure 6. Spatial distribution of power density (top) and capacity factor (bottom) for 2016.Wind power plants represented as squares
and solar power plants as stars.
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Denmark 2018). Examples include 227Wm−2 over
the windiest 10% of global land (World Bank Group
and Technical University of Denmark 2018),
3.3We m

−2 over the entire Earth’s surface (Jacobson
and Delucchi 2011), 1.7We m

−2 over about 1/3 of the
Continental US (Lopez et al 2012), or 1.4We m

−2 over
about 2% of the US with excellent wind resources (US
Department of Energy 2015). These are also by no
means the highest estimates in the literature. For
example, (World Bank Group and Technical Uni-
versity of Denmark 2018) quantify a wind power den-
sity of 808Wm−2 over the windiest 10% of US land,
and (Kammen and Sunter 2016) estimated an upper
bound of 35We m

−2 for wind power at urban-scales
based on a study observing numerous vertical axis tur-
bines which generated up to 47We m

−2 over an area of
about 50 m2 (Dabiri 2011).

There are twomain reasons for these discrepancies
in wind power density. First, many estimates did not
account the interactions between wind turbine arrays
and the atmospheric boundary layer. The limit to
large-scale wind power density is the downward flux of
kinetic energy from the free troposphere, a value that
is about 1Wm−2 (Lorenz 1955, Peixoto and
Oort 1992, Kim and Kim 2013). The effect of this
atmospheric limit is illustrated by the relationship
between wind power plant’s area and power density.
Second, many studies assume installed capacity den-
sities which are too high. While we observed an aver-
age capacity density of 1.5 MWi km

−2, (Rinne
et al 2018) assume 5.5–9.4 MWi km

−2, (Jacobson
et al 2018) assume 7.2 MWi km

−2, (Lopez et al 2012)
assumed 5.0 MWi km

−2, the US-DOEWind Vision: A
New Era for Wind Power in the United States (US
Department of Energy 2015) assumed 3.0 MWi km

−2.
By assuming 2- to 6-times the observed capacity den-
sity but ignoring the atmospheric limits, these esti-
mates resulted in power densities that are 2- to 6-times
higher than observations.

Note that some important prior estimates from
energy systems experts such as Ausubel (2007),
MacKay (2013a) and Smil (2015) are much closer to
our data-driven estimate.

Given that larger wind power plants have smaller
power densities and given that amajor increase in total
wind power generation will presumably require
expanding wind power plants into less-than-ideal
locations, it seems likely that wind power density will
decrease with time. It therefore seems—contrary to
many prior estimates—unlikely that the power den-
sities of greater than 1We m

−2 will be realized over
substantial areas, and likely that average power den-
sities will fall below 0.5We m

−2.
As an example of the implications of these results,

consider Germany and its ambitious energy transfor-
mation policy (Energiewende). Germany’s primary
energy consumption rate is 1.28Wm−2 (BP 2018). If
our US wind power density of 0.50We m

−2 was
applicable to Germany, then devoting all German land
to wind power would meet about 40% of Germany’s
total primary energy consumption, while if German
wind power performs like the best 10% of US
wind (0.80We m

−2), then generation would be 62%
of Germany’s consumption. Finally, if Germany’s
goal was to generate the most wind power without
economic constraints, very high capacity densities
(e.g. 10 MWi km

−2) could be deployed, reducing
capacity factors but possibly raising the power density
to 1.0 We m

−2 and meeting 80% of consumption.
Whereas for solar at 5.4 We m

−2, 24% of Germany’s
land area would need to be devoted to commercial-
scale solar tomeet total primary energy consumption.

Of course, no such single-technology scenario is
plausible. Amix of energy sources and storage is essen-
tial to addressing temporal and seasonal variability.
Note that the amount of primary energy required to
supply the same amount of final energy will fall with
electrification and battery storage-reducing require-
ments, but using electricity to make gas or other

Figure 7.Power densities during 2016, binned by the area of the (A) solar power plant, or (B)wind power plant.Whisker plots show
the interquartile range (IQR), with black points showing themean of each area bin. Note that the solar areas are about 100-times
smaller than thewind power plant areas.
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synthetic fuels has the opposing tendency. Yet, we
hope this example illustrates the relevance of power
density when planning for deep decarbonization.

Power densities clearly carry implications for land
use. Meeting present-day US electricity consumption,
for example, would require 12%of theContinental US
land area for wind at 0.5 We m

−2, or 1% for solar at
5.4We m

−2. US electricity consumption is just 1/6
total primary energy consumption (BP 2018), someet-
ing total consumption would therefore require 72%
and 6% respectively for US wind and solar. Of course,
like the Germany example, no single energy source is
likely to ever supply all electric power. These compar-
isons nevertheless provide a benchmark for under-
standing the implications of power densities for land
use, while recognizing that solar and wind power also
occupy the area within the power plant boundary dif-
ferently. These observation-based results should be
considered in light of the fact that (a) decarbonizing
the energy system will require considerably more pri-
mary power than current electricity demand, (b)
demand may continue to grow, and finally, (c) that
many areas of the world have higher energy demand
per unit area than does theContinental US.
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