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Abstract
Urban greenhouse gas (GHG) flux estimation with atmospheric measurements and modeling, i.e. the
‘top-down’ approach, can potentially support GHG emission reduction policies by assessing trends in
surface fluxes and detecting anomalies from bottom-up inventories. Aircraft-collected GHG
observations also have the potential to help quantify point-source emissions that may not be
adequately sampled by fixed surface tower-based atmospheric observing systems. Here, we estimate
CH4 emissions from a known point source, the Aliso Canyon natural gas leak in Los Angeles, CA
from October 2015–February 2016, using atmospheric inverse models with airborne CH4
observations from twelve flights ≈4 km downwind of the leak and surface sensitivities from a
mesoscale atmospheric transport model. This leak event has been well-quantified previously using
various methods by the California Air Resources Board, thereby providing high confidence in the
mass-balance leak rate estimates of (Conley et al 2016), used here for comparison to inversion results.
Inversions with an optimal setup are shown to provide estimates of the leak magnitude, on average,
within a third of the mass balance values, with remaining errors in estimated leak rates predominantly
explained by modeled wind speed errors of up to 10 m s−1, quantified by comparing airborne
meteorological observations with modeled values along the flight track. An inversion setup using
scaled observational wind speed errors in the model-data mismatch covariance matrix is shown to
significantly reduce the influence of transport model errors on spatial patterns and estimated leak
rates from the inversions. In sum, this study takes advantage of a natural tracer release experiment
(i.e. the Aliso Canyon natural gas leak) to identify effective approaches for reducing the influence of
transport model error on atmospheric inversions of point-source emissions, while suggesting future
potential for integrating surface tower and aircraft atmospheric GHG observations in top-down
urban emission monitoring systems.

1. Introduction

Cities contain a spatially-concentrated source of peo-
ple and economic activity, and thus also a large source
of greenhouse gas emissions. The development of

effective tools to monitor greenhouse gas emis-
sions from cities can help to enable the success of
urban climate mitigation policies, e.g. those pro-
moted through the work of the C40 network of global
cities (www.c40.org). ‘Top-down’ methods quantify
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Figure 1. Leak location (green star), flux estimation domain (dashed black square), leak summation box (black rectangle, described in
text) and flight tracks for all flights (yellow dots). Also shown in the inset is the leak location in California, with the red area representing
the South Coast Air Basin, which has been used as a GHG estimation domain in other inverse modeling studies of southern California
(e.g. Cui et al 2015). Fluxes are estimated by the inversions at a 0.005◦ resolution in the flux domain, resulting in a 90 × 70 matrix, or
6300 flux locations.

emissions by using atmospheric measurements of
greenhousegas (GHG)mole fractions todetectpatterns
of upwind surface fluxes. In contrast to static bottom-
up inventories (based on datasets associated with fuel
sales, traffic counts, electricity consumption, etc., e.g.
Gurney et al 2009, Zhou and Gurney 2010), atmo-
spheric inverse models provide the potential to supply
continuous flux estimates over time, thereby detect-
ing trends and anomalies in the bottom-up emission
estimates.

Urban GHG inversion models have typically used
atmospheric GHG observations (primarily carbon
dioxide, CO2 and methane, CH4) from fixed sur-
face tower networks (Kort et al 2013) to estimate
spatially- and temporally-varying source fields con-
tinuously over time periods of a year or more (Feng
et al 2016, McKain et al 2012, 2015, Yadav et al
2018, Lauvaux et al 2016). However, the influence of
upstream fluxes on tower observations may be rela-
tively local at times, and the towers may also miss
sampling narrow plumes, or other relevant upstream
sources when the wind changes direction. In con-
trast, aircraft measurements provide a snapshot in
time of urban emissions, but with an integrated foot-
print higher in the atmosphere and the flexibility to

adjust flight paths to directly sample known emissions
locations.

Aircraft GHG data have been used previously to
estimate emissions for point sources (e.g. Conley et al
2016, Lavoie et al 2015), entire cities (e.g. Brioude et al
2013, O’Shea et al 2014) or regions (e.g. Barkley
et al 2017, Miller et al 2016) over short time intervals
using the mass-balance (Mays et al 2009, Cambaliza
et al 2014), simple scaling and inversion approaches.
While mass-balance approaches, in particular, can pro-
vide estimates that are relatively accurate, most aircraft
campaigns last only a couple hours, and are performed
sporadically. ideally it would make sense to combine
surface and aircraft data in urban GHG inversion mod-
els to help provide a more robust top-down portrait of
continuous spatial and temporal emission variability.

Towards this end, we present here a small case
study that aims to demonstrate the potential for using
aircraft-based GHG observations in inverse models to
estimate emissions from a known point source with-
out any bottom-up prior information indicating the
leak rate or location. CH4 emissions are estimated
from the Aliso Canyon natural gas leak from an under-
ground storage facility north of Los Angeles, California
(figure 1), which took place from October 2015 to
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February 2016. An estimated 99 700 Mt of CH4 was
emitted into the atmosphere during this leak event,
doubling the Los Angeles basin total CH4 emissions
and representing≈20% of the state-wide budget during
this time period (California Air Resources Board 2016).
Multiple efforts were made to cap the leaking well,
reducing emissions slowly over time from 60 Mt h−1

to 20 Mt h−1, until it was permanently sealed on 18
February 2016.

Due to the proximity of the leaking well to
majorpopulationcenters, andco-emitted airpollutants
affecting human health during the event, the Califor-
nia Air Resources Board (CARB) put a substantial
amount of effort into quantifying the leak rate over time
using several independent methods (i.e. pressure-based
calculations, aircraft mass-balance, a tracer release
experimentusingN2O,andground-basedremote sens-
ing), thereby providing a high amount of confidence in
their final estimates. These final estimates closely track
the mass-balance values of Conley et al (2016), calcu-
lated using airborne CH4 mole fraction observations
and wind speed from fourteen flights downwind of the
leak from November 2015–February 2016.

The high confidence in the mass-balance esti-
mates thereby provides a natural tracer experiment to
test the quality of other modeling approaches. Here,
we use the aircraft CH4 mole fraction observations
from Conley et al (2016) to run atmospheric inver-
sion models for each flight date, with measurement
sensitivities to fluxes (i.e. footprints) derived from
a mesoscale atmospheric transport model. By com-
paring inversion results to the mass-balance values,
we are able to test the impact of transport model
error and inversion setup choices on the resulting
flux estimates. Transport model errors can be directly
quantified along the flight track by comparing model
output to airborne meteorological observations, which
are considered to be relatively representative of upwind
conditions given the small scale of the flux domain
here (∼45× 35 km).

The influence of transport model errors on atmo-
spheric inversions are of longstanding concern, and
motivated the TransCom series of global studies
(e.g. Baker et al 2006, Gurney et al 2003, Law
et al 2010). Transport model representations are likely
to be even more problematic for observing loca-
tions in the near-field of large sources (particularly
in urban areas, e.g. Boon et al 2016), than for sites
in the global GHG network which were typically in
remote areas sampling well-mixed air (Masarie and
Tans 1995).

Approaches for reducing the influence of transport
model error on urban inversions have mainly involved
improving the transport model itself, or discarding
atmospheric GHG observations when the associated
footprints from the transport model are considered
unreliable (Bréon et al 2015, Lauvaux et al 2016),
e.g. for non-afternoon hours or days with complex
meteorology, or even completely for sites with local

influences considered difficult to model. Efforts to
improve urban transport model representations have
included improving the structure of meteorological
models in urban areas (e.g. through the use of urban
canopy models (Nehrkorn et al 2013)), or by assim-
ilating urban meteorological observations directly to
reduce biases in wind speed, wind direction and PBL
height (Deng et al 2017).

However, despite best efforts to improve transport
models, errors are likely to remain, as it is impos-
sible to sample the atmosphere everywhere and all
the time, and the representation of complex processes
at the grid-scale are frequently imperfect approxima-
tions of sub-grid-scale phenomena. Also, discarding
atmospheric observations from inversions reduces the
amount of data available to constrain fluxes, and can
potentially bias aggregated flux estimates by under-
constraining certain portions of the underlying spatial
and temporal flux variability. In complex terrain, e.g.
in Los Angeles, CA, transport model errors are likely
to be high, but also variable (Angevine et al 2012, Lu
et al 2012). Therefore, if all GHG observations with
problematic footprints were discarded from the inver-
sion, this could potentially reduce the data constraint
on fluxes to zero.

Here, we present an alternative approach for reduc-
ing the impact of transport model errors on flux
estimates by directly accounting for them within the
inversion itself. This approach allows us to retain all
available atmospheric observations, but reduce the
influence of inevitable transport model errors on flux
estimates by weighting observations by the wind speed
errors in their associated footprints.

Despite the impact of transport model errors and
sensitivity to setup choice, inverse models can be
very powerful in their ability to integrate varied data
sources into a single top-down GHG observing sys-
tem for urban areas. Therefore, in order to help
improve the skill of urban inversions for GHG mon-
itoring, this study has two goals: a) to reduce the
impact of transport model error and optimize inver-
sion setup for a point-scale aircraft-based inversion in
complex terrain with a ‘truth’ for comparison, and b)
to help enable the integration of aircraft and surface
tower data in future work into an integrated inverse
modeling system for mid- and large-sized cities like
Los Angeles, CA.

2. Methods

2.1. Flight observational data and background air
The observational CH4 mole fraction data for the air-
craft inversions is taken from Conley et al (2016),
for which fourteen flights were conducted ≈4 km
downwind (i.e. south) of the leaking well through-
out the duration of the event in order to estimate
the leak rate using the mass-balance technique.
(Data collection procedures are described in more
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Figure 2. CH4 enhancements (observed mole fractions minus background) in vertical cross-sections (longitude vs. meters above
ground level) along horizontal transects for the twelve Aliso Canyon flights analyzed here. Enhancements are shown at the 10 second
average timescale. Dots are scaled by both color and size to represent enhancement magnitudes. The median planetary boundary layer
height (PBL) from the WRF-STILT model (section 2.2) is marked with a horizontal dotted line.

detail in appendix A.) Inversions are run for twelve
flights here, corresponding to flights with published
mass-balance estimates, and including only the first
flight after the leak was sealed on 11 February 2016.
Flight tracks for all dates are shown in figure 1, and
for separate flights in figure S4 in the supplemen-
tal material available at stacks.iop.org/ERL/13/045003/
mmedia.

To quantify enhancements associated with the
leak, background CH4 mole fractions of air flow-
ing into the domain (dashed black box in figure 1)
must first be subtracted from the observed mole frac-
tions. Variability in background air is assumed to be

minimal relative to that of the leak enhancements, and
therefore, a relatively simple approach (described in
appendix A) was adopted for identifying background
air mole fractions. Derived CH4 enhancements (i.e.
observed—background) along vertical cross-sections
of the plume are shown for each flight date in figure
2. Elevated enhancements in the center of the longi-
tudinal transects show that the flights were able to
sample directly within the leak plume for all flight dates.
Maximum enhancements (at the 10 second average
timescale) range from 37𝜇mol/mol on 4 December
2015 to just over 0.5𝜇mol/mol on 11 February 2016
after the leak was capped.
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2.2. Transport model, footprints and transport
model error
Simulated winds from the Weather Research and Fore-
casting (WRF) model (Skamarock and Klemp 2008,
Nehrkorn et al 2010) were used here with the Stochastic
Time-Inverted Lagrangian Transport (STILT) model
(Lin 2003, originally based on HYSPLIT, Stein et al
2015, Stein et al 2007) to generate footprint matrices,
or the sensitivity of observations to surface fluxes for
the domain shown with the dashed black box in fig-
ure 1. Sensitivities were generated at a 0.005◦ (or ≈500
m) resolution, i.e. the flux estimation resolution for
the inversions. More details on the footprint genera-
tion from WRF-STILT can be found in appendix A of
the supplemental material and footprint maps for each
flight date are shown in figure S4.

Transport model error was quantified along the
flight track by comparing flight-based meteorological
observations of wind speed and direction (Conley et al
2014) at the 10 second average timescale with WRF-
STILT values. A single mean wind speed and direction
error is then calculated across observations within the
longitudinal extent of the plume (i.e. >0.5 𝜇mol/mol
enhancement for Aerodyne and >0.2 𝜇mol/mol for
Picarro flights, see appendix A) to compare against
errors in the estimated leak rates for each flight. Errors
in the modeled PBL height are also examined, as dis-
cussed further in appendix A.

Theoretically,highwindspeeds (andPBLs) result in
less sensitivity to the surface; hence, an over-estimated
modeled wind speed (or PBL height) should result in
under-estimated sensitivities and over-estimated leak
rates from the inversions, that are strong enough
to reproduce the observational enhancements. Simi-
larly, under-estimated wind speeds (and PBL heights)
should result in overly sensitive footprints and under-
estimated fluxes.

2.3. Inversion procedure
We implement a geostatistical inverse modeling
method here, where an uninformed prior flux is esti-
mated along with a posteriori fluxes as part of the
inversion (Michalak 2004, Gourdji et al 2008, Mueller
et al 2008). (The geostatistical cost function mini-
mized to estimate fluxes and their uncertainties is
shown in appendix A.) This approach allows one to
independently assess the atmospheric data constraint
on fluxes for comparison with bottom-up inventory
or process-based estimates, which are typically used
as prior information in traditional Bayesian inversion
approaches.

Themodel-datamismatchcovariancematrix (orR)
in an inversion describes how well the optimized fluxes
should be able to reproduce the atmospheric observa-
tions, given errors associated with modeled transport,
measurement and the gridded representation of fluxes.
Here we assume a diagonal R matrix, i.e. uncorre-
lated model-data mismatch errors across observations,
and test two different setups: one with a single value

down the diagonal for all observations on each flight
(referred to as the ‘simple R’), and the second with
squared observational wind speed errors (figure 3) for
each observation, multiplied by a single scalar (referred
to as the ‘wind speed R’). The scalar value translates
the wind speed errors to the same unit as the obser-
vational enhancements (i.e. 𝜇mol/mol), and provides
additional flexibility to adjust the overall model-data
mismatch across observations. Model-data mismatch
variances are in units of ppm2, and the single vari-
ance and multiplicative scalar for the two setups are
optimized using the atmospheric data, as described in
appendix A.

The rationale for the second setup, i.e. the wind
speed R, is that larger wind speed errors should result in
larger model-data mismatch values, such that the inver-
sion can ignore or de-weight problematic observations
in its estimation procedure. This approach is similar to
that of Lin and Gerbig (2005) and Lauvaux et al (2016),
although simpler in implementation, given that the Lin
and Gerbig method required a more in-depth analysis
comparing modeled winds to radiosonde observations
over the entire flux domain and additional STILT mod-
eling to derive wind error statistics at the observation
locations. Similarly, Lauvaux et al (2016) calculate
transport model error statistics along the upstream
footprints in a metric combining both wind speed and
direction errors. Here, because our flux domain is small
and includes most of the flight tracks, we assume that
the observed wind speed errors for each observation
along the flight track are relatively representative of the
upstream footprint.

To calculate leak rates from the inversions, esti-
mated fluxes (�̂� ) and uncertainties (𝜎�̂�) at the 0.005◦

estimation resolution are summed within a fixed box
(figure 1, inner black box) around the actual location to
derive an estimated leak rate with confidence intervals.
This box is 0.06◦ (i.e. 12 pixels and ≈6 km) in each
direction from the leak location, includes the horizon-
tal transects flown south of the leak, and is sufficiently
large to account for misplaced fluxes due to reason-
able errors in both modeled wind speed and direction.
In addition, the 0.12◦ overall width of the box corre-
sponds to four pixels in the 0.03◦ flux resolution of
Yadav et al (2018), which estimates fluxes for the entire
Los Angeles basin during the leak, thereby facilitating
future comparison between the two studies.

This box also includes Sunshine Canyon along its
eastern border, a landfill with estimated CH4 emis-
sions of ≈2 Mt h−1 (Carranza et al 2017). While these
fluxes are small in comparison to emissions from the
Aliso Canyon leak (from 60 Mt h−1 to 20 Mt h−1 before
the leak was capped), it is likely that the mass balance
estimates include emissions from Sunshine Canyon on
most dates, given that the predominant observed wind
direction on the flights is from the NNE (figure S3).

Finally, in order to assess how inversion setup inter-
acts with transport model error, inversions are run for
two data averaging intervals (10- and 60 second) and
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Figure 3. Boxplots of wind speed and wind direction errors (modeled WRF—observed winds at the 10-second average timescale)
across observations on the flight track for each flight date.

the two model data mismatch covariance setups (sim-
ple and wind speed R), resulting in four different setups
for each flight date. The skill of the four inversions for
each flight date is assessed by examining maps of flux
estimates to detect correct spatial attribution of the leak
emissions (section 3.2), and comparing estimated leak
rates in the summation box to mass-balance reference
values (section 3.3).

3. Results and discussion

3.1. Transport model errors along the flight tracks
Transport model errors are expected in the Los Ange-
les basin, given the difficulty in simulating atmospheric
transport in the presence of the complex terrain of
this area (Angevine et al 2012, Lu et al 2012), where
elevations range from 200–1100 m above sea level

and the ocean lies only 30 km from the leaking well
in Aliso Canyon (figure 3). In this section, we ana-
lyze these errors by comparing modeled to observed
wind speed and direction along the flight tracks, and
then discuss the impact of these meteorological errors
on the estimated leak rates from the inversions in
section 3.3.

Both wind speed and wind direction errors are
seen to be highly variable across the twelve flight dates,
and even within a given flight, but with few systematic
biases seen across flights (figure 3). Wind speeds them-
selves are variable, with observed median wind speeds
varying from 2 m s−1 (11 February 2016) to 17 m s−1

(26 January 2016 and modeled values varying from
2–21 m s−1 (figure S3).

On 23 November and 4 December 2015, wind
speed errors are particularly large, with the median
modeled values 8 m s−1 too slow and 10 m s−1 too fast
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respectively (figure 3). This translates into error per-
centages of −80% and 150% for these two extreme
days, and between −50% and 50% for all other flights,
with roughly a third of modeled values within 25% of
observed wind speeds across flights. On some dates,
wind speed errors are consistently in one direction
(e.g. on 28 November 2015), but on other dates (e.g.
23 December 2015 and 4 February 2016), wind speed
errors are both positive and negative depending on
location within the flight track. On a few dates (8 Jan-
uary 2016 and 11 February 2016), the median wind
speed error is close to zero, and 5% of modeled values
across flights have essentially no error (i.e. differences
from observed values are within their reported error of
0.3 m s−1, Conley et al 2014).

Observed and modeled wind directions are pre-
dominantly from the NNE, with a median value of 15◦

from north (figure S3), with slightly more variability in
the modeled values compared to observations. There-
fore, wind direction errors (figure 3) are minimal for
most flight dates, i.e. between −30◦ and 30◦ except
28 November 2015 (median of 121◦) and 11 February
2016 (median of 73◦), such that the modeled footprints
have some sensitivity to the actual leak location for all
flights except on 28 November 2015 (figure S4).

Errors in the modeled PBL height from WRF-
STILT are more difficult to assess, as discussed in
appendix A, although there are flight days with rela-
tively obvious errors, as seen by comparing the plume
height to the median modeled PBL (figure 2). For
example, the modeled PBL height is likely too high
on 28 November 2015 and too low on 4 February 2016.
In fact, on this latter date, many observations in the
observed plume are above the modeled PBL and there-
fore have little modeled sensitivity to the surface in the
footprints (figure S4).

A first-order assessment of the impact of transport
model error on inversion results can be obtained by
transporting forward the mass-balance leak rate to the
observation locations (i.e. multiplying the leak rate in
the Aliso Canyon pixel by the modeled footprint sen-
sitivity). Correlations between observed and modeled
mole fractions are positive for almost all flights, but
higher at the 60 second compared to the 10 second
timescale, pointing to the benefits of data averaging for
reducing the impacts of small-scale transport model
error on flux estimates. Results from this analysis are
discussed further in appendix B.

Finally, it should be noted that the transport
model errors shown here near Aliso Canyon do not
necessarily correspond to LA basin-wide measures
of WRF model quality. A comparison of the wind
speed and direction errors shown here with basin-
wide metrics calculated using a network of surface
observations (results not shown) showed close to
zero correlation across flight dates, implying that the
large errors in the Aliso vicinity, e.g. on 28 Novem-
ber 2015, are relatively localized problems within
the domain.

3.2. Spatial patterns of estimated fluxes from inver-
sions
Estimated fluxes are shown in figures 4 and 5 for six
flight dates from the 10 second inversions with the two
model-data mismatch setups in R. (Estimated fluxes
from the other six flight dates are shown in supplemen-
tal figures S7 and S8.) Ten-second inversion results
are shown here, since their leak emission estimates
tend to be more spatially resolved than those from the
60 second data inversions, where estimated fluxes are
smeared over larger areas (results not shown).

Leak emissions are spatially allocated within the
defined box for almost all flight dates for the 10 second
inversions with the simple R, and on 4 December 2015
(figure S7), the inversion is able to attribute the leak
to a few pixels exactly near the leak location. Even on
days when the modeled wind direction errors are more
than 90◦ (i.e. on 28 November 2015 when the footprint
shows no sensitivity to the actual leak location, and 11
February 2016), most of the flux is still placed within the
defined box. This is because the flight tracks themselves
are within the box (figure 1), along with slow modeled
wind speeds of ≈2–3 m s−1 on these days, which keeps
the estimated fluxes close to the observation locations,
albeit in the wrong direction from the flight track.

For three flight dates (10 November 2015, 12
December 2015, and 4 February 2016), the inversions
spread part of the leak mass along the upwind plume
NW or NE of the leak box. However, on two of these
dates (10 November and 12 December 2015), the great
majority of the leak mass is still attributed within the
box. Only on 4 February 2016, the inversion smears
a substantial portion of the emissions outside the box
due to weak overall modeled sensitivity of observations
to fluxes (figure S4).

Using the wind speed R generally helps the inver-
sions to spatially attribute emissions to fewer pixels
closer to the actual leak location (e.g. 10 November
2015, 4 December 2015 and 8 January 2016) (figures 4
and 5). The use of these wind speed errors in R changes
the relative constraint on flux estimates from the obser-
vations, such that some observations have a smaller
model-data mismatch (more effective weight), while
others have a larger mismatch (less effective weight);
this should reduce the influence of observations with
larger wind speed errors (figure S6). However, it should
be noted that this modified model-data mismatch can
help to compensate for errors in modeled wind speed
in spatially locating the leak, but not wind direction,
because these two types of errors are uncorrelated in
this domain.

The estimated spatial patterns can also become
worse with the wind speed R, especially when obser-
vations with larger wind speed errors correspond to
high enhancements within the plume, e.g. on 12
December 2015 and 21 January 2016. Also, the mean
model-data mismatch (in 𝜇mol/mol) across observa-
tions can change between the two covariance matrix
setups, providing an overall tighter or looser constraint
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Figure 4. Flux estimates from flight inversions for 10 November 2015, 28 November 2015 and 23 December 2015 for the 10 second
data resolution and a model-data mismatch covariance matrix (R) with a single variance (left) and variances proportional to squared
wind speed errors (right). The box, also shown in figure 1, represents the vicinity of the leak location in which gridded emission
estimates are summed to provide an estimated leak rate, indicated below the box. The actual leak location is marked by a green star,
and Sunshine Canyon landfill with a magenta circle. Next to each set of maps are shown the mass-balance estimate and mean wind
speed and wind direction errors inside the plume for each flight date.

on flux estimates by the observations. For example, on
23 December 2015, the mean model data mismatch
goes up from ≈0.4 𝜇mol/mol to 0.8 𝜇mol/mol with
the wind speed R, reducing the overall constraint on
flux estimates and resulting in more spatially diffuse
emission patterns. On 4 February 2016, the leak is
no longer seen at all in the flux estimates with the
wind speed R, given that the model-data mismatch
becomes larger than many of the enhancements them-
selves, which, combined with low modeled sensitivity
to the surface (because of the under-estimated mod-
eled PBL height), resulted in no effective constraint
on fluxes.

As a quantitative check on whether the spatial pat-
terns improved from inversions using the simple to
the wind speed R, we calculated the center of mass in
the estimated flux maps in both the longitudinal and
latitudinal directions, and then calculated the distance
from the center of mass to the actual leak location for
both sets of inversions. We found that the mean dis-
tance to the leak did not change by using the wind
speed R, given that for a few dates, the pattern got
substantially worse; however, the median distance to
the leak did go down slightly from 6 to 5 km for the

10 second inversions, and from 7 to 6 km for the 60
second inversions. Also, the center of mass moved sig-
nificantly closer (at 1𝜎) to the leak location for eight
of 12 flights with the 10 second averaging, and for six
flights with the 60 second averaging, while the center
of mass moved significantly further away for only three
and two flights respectively.

3.3. Estimated leak rates from inversions
As expected, leak rates (i.e. summed fluxes within the
box) with the simple R are over-estimated by the inver-
sion when modeled wind speed errors are positive,
and under-estimated when wind speed errors are neg-
ative for almost all flight dates (except 7 November
2015 and 4 February 2016; figures 6(a)–(b)). Moving
from 10- to 60 second averaging helps to reduce esti-
mated leak errors to some degree by averaging out high
enhancements in the data due to narrow plumes which
cannot be modeled properly with WRF-STILT. Using
this coarser data averaging reduces the mean absolute
error percentage in the leak rate across flights from 55
to 46% with the simple R.

Using the wind speed R further corrects the esti-
mated leak rates towards the mass-balance estimates,
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Figure 5. The same as for figure 4 for flight inversions on 8 January 2016, 21 January 2016 and 4 February 2016.

for just half of the flights with 10 second averaging
but for nine of twelve flights with 60 second aver-
aging (with the mean absolute error further reduced
from 46% to 32% with the wind speed R). For exam-
ple, on 23 December 2015 with a mean wind speed
error of 50%, the leak rate was corrected downwards
from 85 Mt h−1 (10 second) to 59 Mt h−1 (60 second)
with the simple R, and then to 38 Mt h−1 with the 60
second wind speed R (compared to 28 Mt h−1 with
the mass balance). On 21 January 2016 with a mean
wind speed error of −42%, the 60 second inversion
was corrected upwards from 11–14 Mt h−1 with the
wind speed R (compared to a mass balance estimate
of 19 Mt h−1). On a few dates, the leak estimate was
overly reduced with the 60 second wind speed R, i.e.
for 12 December 2015 and 4 February 2016, when the
data constraint on the leak was reduced by a large
model-data mismatch relative to the enhancements
within the plume.

The 1𝜎 confidence intervals on the inversion leak
rate estimates (figure 6(a)) are relatively wide com-
pared to the reporteduncertainties on the mass-balance
estimates, and contain the mass-balance leak rate
for almost all flight dates and inversion setups. This
shows that the analytical uncertainties are perform-
ing well in terms of revealing the information content
of the inversion flux estimates. The confidence inter-
vals are wider with a higher leak rate for the earlier

flights, and sometimes become larger from the sim-
ple to the wind speed R (e.g. on 10 November 2015,
where more of the mass was placed inside the leak
box with 10 second averaging), and sometimes smaller
(e.g. on 4 December 2015, where the leak magnitude
over-estimate was substantially corrected downwards
for both 10- and 60 second averaging).

Mean wind speed errors within the plume and
inversion leak rate errors have a relatively tight cor-
relation across flights for the inversions with the simple
R (figure 7), with a regression between mean wind
speed and inversion errors for the 60 second averaging
showing an r2 of 0.70 and a slope of 1.00 (imply-
ing a one-to-one ratio between wind speed error and
inversion error percentages.) Using the wind speed R
instead, the influence of wind speed errors on inver-
sion leak rate errors is effectively reduced, with the
r2 going down to 0.22 and the slope of the relation-
ship reduced to 0.40. For the 10 second data averaging
(results not shown), there is also a reduction in the
influence of wind speed error on leak estimates (r2 from
0.48 to 0.21, and slope from 0.93 to 0.51), although
not quite as much as with the coarser 60 second data
averaging resolution. Interestingly, the wind direc-
tion errors in this study do not have any correlation
with inversion leak rate errors (figure S9) for either
the simple or wind speed R, given that we are sum-
ming in a relatively large box around the actual leak
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Figure 6. (a) Inversion vs. mass balance estimates (Conley et al 2016) of leak rate (Mt h−1). Mass balance and inversion estimates
are both shown with 1𝜎 confidence intervals. Inversion results are shown for four different setups: 10 second data averaging with
the simple and wind speed R matrices, and 60-second data averaging with the simple and wind speed R matrices. (b) inversion
error percentages (relative to the mass balance) for the four setups, and mean wind speed error percentages (comparing airborne
observations to WRF-STILT values) within the leak plume.

location that can compensate for moderately misplaced
fluxes. Also, there is no prior information in the inver-
sion that could possibly smear the flux into a larger
region as a compromise between the prior and the data
constraint.

Regardless, wind speed errors are not the only
source of leak estimation errors here, as can be seen
in figure 7 by the r2 <1 for both model-data mis-
match setups. Other sources of error could be due
to uncorrelated transport model errors (e.g. in PBL
height), errors in the background estimation, aggrega-
tion error associated with the grid resolution, or the
definition of the leak box among others. Remaining

errors in the inversion leak rates, from whatever source,
canpotentially be further reducedby increasing thedata
constraint, e.g. by combining aircraft measurements
with surface tower observations. (Please see appendix B
for a small case study integrating nearby surface tower
data with aircraft measurements for the twelve flight
dates.)

Figure 7 also shows the relationship between wind
speed and leak estimation errors if WRF wind speeds
were used in place of actual observed wind speeds in
the Aliso Canyon mass balance calculations. Observed
wind speeds were used in Conley et al (2016), but
modeled wind speeds are occasionally used for mass
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Figure 7. Mean errors in modeled wind speed (%) within the plume compared to estimated leak rate errors (% difference from mass
balance). Results are shown for the inversions with 60 second averaging and a simple R (dark blue) vs. wind speed R (light blue). Also
shown are the errors from a mass-balance calculation using WRF (rather than observed) wind speeds (green). Flight dates are labeled
for outliers from the fitted line and extreme wind speed errors. The slope and r2 from a linear regression between wind speed and
inversion errors for each inversion and mass balance setup are shown next to the fitted lines.

balance estimates when the domain is large and a
meteorological model is needed to understand varying
conditions between upstream and downstream tran-
sects (e.g. Karion et al 2015). As might be expected
with mass-balance calculations that are linear with
respect to horizontal wind speeds, there is an almost
one-to-one relationship between modeled wind speed
and mass-balance errors here, with a slope of 1.12 for
the regression line. This shows that inversions, while
sensitive to transport model errors that are difficult
to eliminate even with a highly-tuned meteorologi-
cal model, still have the potential, relative to mass
balance approaches, to reduce the influence of these
errors by properly accounting for them in the inversion
setup.

Finally, it should be noted that using squared wind
speed errors in R has the most ability to improve
inversion flux estimates when meteorological errors are
variable across the flight track (figure S6). If these errors
are minimal, or have a consistent bias, this approach
cannot de-weight some observations relative to oth-
ers to reduce their overall influence on flux estimates.
Systematic errors in meteorological variables are likely
best corrected in the transport model itself, perhaps
through surface nudging of model output to aircraft
observations, or perhaps, direct modification of wind
fieldsbefore input into theLagrangianparticle-tracking
model (i.e. STILT in this case) for footprint genera-
tion. Correcting the influence of systematic transport
model errors on inversions remains an avenue for
future research.

4. Conclusions

The Aliso Canyon natural gas leak from an under-
ground storage facility from October 2015 to February
2016 in the Los Angeles, CA basin, while an unfor-
tunate event for the climate and public health, also
provided scientists with a natural tracer experiment to
help evaluate various modeling approaches for quanti-
fying the emission rate. Here, we used the Aliso Canyon
event to evaluate the ability of atmospheric inverse
models, using airborne observations of the downwind
plume, to spatially locate and quantify the Aliso leak on
twelve flight dates throughout the duration of the leak.
Inversion quality was assessed by comparing the spatial
pattern of flux estimates to the actual location of the
leaking well, and the estimated leak rate to the mass-
balance estimates from Conley et al (2016), which were
in turn validated through a multi-method compari-
son by the CARB. We then investigated approaches for
reducing the impact of transport model error on leak
rate estimates by accounting for these errors within the
inversion itself.

We show here that the WRF-STILT mesoscale
atmospheric transport model performed reasonably
well (in comparison to airborne observations of wind
speed and direction) for simulating meteorological
conditions in this northern corner of the Los Ange-
les basin with complex terrain and land-sea breezes.
Nine of 12 flight dates had mean wind speed errors
within 50% of observed values, and ten of 12 flights
showed mean wind direction errors within 30◦.
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Twelveaircraft inversions,using thesimulated foot-
prints and observed CH4 enhancements within the
downstream plume, also performed remarkably well
in spatially attributing the estimated emissions to a
6 km radius box around the leak site and in quantify-
ing the leak rate within realistic confidence intervals.
Wind direction errors were found to be unimpor-
tant for quantifying the leak rate within a sufficiently
large box, especially with no prior information as to
the actual leak location included in the inversion, and
the flight tracks only ≈4 km away from the leaking
well. However, errors in estimated leak rates within
the summation box were found to be significantly
explained by wind speed errors in the emissions plume
along the flight track.

An inversion setup using scaled squared wind speed
errors (i.e. modeled—observed for each observation)
in the model-data mismatch covariance matrix, rather
than a single variance across all observations, was found
to have a large potential to reduce the impact of trans-
port model errors on inversion results by de-weighting
problematic GHG observations and their associated
footprints.While airbornemeteorological observations
could also potentially be assimilated directly into trans-
port models, even highly tuned transport models are
computationally intensive and still subject to biases at
specific points in time and space, such that an approach
to directly account for transport model errors in an
inversion is potentially simpler and can only help to
improve the quality of flux estimates. Furthermore, the
approach presented here can potentially help to retain
all available atmospheric observations in an inversion,
so as not to bias flux estimates by systematically dis-
carding a portion of them, as done in other studies.

For surface tower inversions, near-surface meteo-
rological observations at the tower locations may not
as neatly represent transport model errors in the entire
upstream footprint as is the case for this small-scale
aircraft study. However, by comparing available obser-
vations, from both surface and airborne platforms,
to modeled meteorological variables throughout the
footprint, mean wind speed errors can potentially be
quantified through the use of spatial interpolation
approaches (e.g. kriging) before incorporation into
inversion models.

Given the relatively good performance of WRF-
STILT combined with an appropriate inverse model
setup for estimating a point source as shown here, fine-
scale models that directly resolve turbulence (e.g. the
Large-Eddy Simulation model, Nottrott 2014, Prasad
et al 2017) may not be necessary for simulating fine-
scale variability in atmospheric dynamics around point
sources. The additional benefit may not be worth the
extra computational cost, depending on the desired
accuracy and goals of the study, although additional
research is warranted, particularly for measurements
made even closer to point sources.

The approach shown here suggests the poten-
tial for integrating aircraft measurements of point

source emission plumes with continuous surface
tower observations in urban inverse modeling sys-
tems to help quantify and detect trends in whole-city
emissions, and even evaluate spatial and sectoral
patterns specified in bottom-up inventories. More
informed uses of meteorological observations in inver-
sions can also help to augment the value of GHG
mole fraction measurements (collected from both
surface towers and aircraft campaigns) by reduc-
ing the influence of transport model errors on final
flux estimates in top-down urban inverse modeling
systems.
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