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Abstract
Accurate biomass estimation is critical to quantify the changes in biomass and carbon stocks
following the restoration of degraded landscapes. However, there is lack of site-specific allometric
equations for the estimation of aboveground biomass (AGB), which consequently limits our
understanding of the contributions of restoration efforts in mitigating climate change. This study was
conducted in northwestern Ethiopia to develop a multi-species allometric equation and investigate
the spatial and temporal variation of C-stocks following the restoration of degraded landscapes. We
harvested and weighed 84 trees from eleven dominant species from six grazing exclosures and
adjacent communal grazing land. We observed that AGB correlates significantly with diameter at
stump height D30 (R2 = 0.78; P< 0.01), and tree height H (R2 = 0.41, P< 0.05). Our best model,
which includes D30 and H as predictors explained 82% of the variations in AGB. This model
produced the lowest bias with narrow ranges of errors across different diameter classes. Estimated
C-stock showed a significant positive correlation with stem density (R2 = 0.80, P< 0.01) and basal
area (R2 = 0.84, P< 0.01). At the watershed level, the mean C-stock was 3.8 (±0.5) Mg C ha−1.
Plot-level C-stocks varied between 0.1 and 13.7 Mg C ha−1. Estimated C-stocks in three- and
seven-year-old exclosures exceeded estimated C-stock in the communal grazing land by 50%. The
species that contribute most to C-stocks were Leucaena sp. (28%), Calpurnia aurea (21%), Euclea
racemosa (20.9%), and Dodonaea angustifolia (15.8%). The equations developed in this study allow
monitoring changes in C-stocks and C-sequestration following the implementation of restoration
practices in northern Ethiopia over space and time. The estimated C-stocks can be used as a reference
against which future changes in C-stocks can be compared.

1. Introduction

Tropical forests play a major role in regulating the
earth’s climate through sequestering atmospheric CO2
[1, 2]. However, tropical forests have become the sec-
ond largest atmospheric source of CO2 due to increased
deforestation, large-scale land-use changes, and global
climate change induced tree mortality [3–5]. Forest

degradation is severe in Sub-Saharan Africa (SSA)
[6–8] and is amplifying climate change-related risks
such as drought and flooding in the region [9, 10].
Partly in response to these threats, significant atten-
tion has been paid to the consequences of tropical
forest degradation on regional and global scales in
recent years [11, 12]. Most notably, this attention has
led to the establishment of an international policy
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framework, increased collaborationbetween states, and
global initiatives to reduce deforestation and pro-
mote the recovery of degraded landscapes [13, 14].
In this line, the African Forest Landscape Restoration
Initiatives (AFR100) targeted to restore 100 million
hectares of degraded landscapes by 2030 in order
to boost food security, sustain ecosystem benefit of
trees, and improve the resilience of local commu-
nities towards the impacts of global climate change
[15, www.afr100.org].

Ethiopia has been implementing extensive water-
shed management measures since the 1980s and has
restored several degraded areas [16]. However, the
contribution of these restored areas to mitigate cli-
mate change through carbon sequestration is not well
understood. This gap partly stems from lack of biomass
estimation methods, which are required to investi-
gate the temporal and spatial changes in C-stocks
following the implementation of restoration measures.
Such information gap potentially affects collaboration
between states and transnational organizations, as well
as future efforts to increase the geographical coverage
of restored landscapes [12, 17].

Generalized biomass equations have been used to
estimate tropical forest carbon dynamics, and have
played a significant role in improving data availabil-
ity [18, 19]. However, the accuracy of aboveground
biomass (AGB) estimation still falls behind what is
required, especially in SSA [20, 21]. The main rea-
sons for persistent inaccuracy were lack of site-specific
biomass estimation models which can represent the
heterogeneity of the study population in terms of
species composition and tree-size variation [21–24].
To date, there is no mixed-species allometric model
for small-size trees in SSA, including Ethiopia, leading
to a high level of uncertainty in estimated AGB in the
region. Thus, it is urgent and timely to develop site-
specific allometric equations for mixed-species forest
stands and to investigate carbon dynamics in restor-
ing landscapes. The present study was conducted to
derive various mixed-species allometric equations for
small-sized trees and to identify the best allometric
equation for the restoring landscape. We then applied
the best equation to estimate AGB and compared the
distribution of C-stocks in grazing exclosures and adja-
cent communal grazing land (CGL) to understand
the importance of grazing exclosures in recovering
the C-sequestration potential of degraded landscape
in northern Ethiopia.

2. Materials and methods

2.1. Study area and climate characteristics
The study was conducted in ‘Gomit watershed’,
located in South Gondar administrative zone, in
the upper Blue Nile River catchment in northwest-
ern Ethiopia (figure 1(a)). This watershed stretches
to the east of Lake Tana and covers an area of

1483 ha (figure 1(c)). It contains six exclosures7:
Atikurit (ATK. 37.905◦E, 12.116◦N, age = 1 year);
Markos (MAR, 37.897◦E, 12.098◦N, age = 2 years);
Kikibe (KIK, 37.907◦E, 12.103◦N, age = 3 years);
Enkurofej (ENK, 37.894◦E, 12.115◦N, age = 4 years);
Tinkish (TIN, 37.896◦E, 12.121◦N age = 5 years),
and Deldalit (DEL, 37.899◦E, 12.101◦N, age = 7
years). The exclosures are located close to the
communal grazing land (hereafter, CGL, 37.898◦E,
12.110◦N) (SI appendix, figure S1 available at
stacks.iop.org/ERL/13/024022/mmedia). We assume
that before establishment, exclosures and the commu-
nal grazing land were in similar condition, because
the exclosures were established on the same type of
communal grazing land used for livestock grazing.

In the studywatershed,major landuse types include
cultivated lands (23% of the land area), degraded sec-
ondary forest lands (53%), communal grazing land
(18%), and other uses (6%) [25]. In the highlands
of Ethiopia, including the upper Blue Nile Basin,
the cattle population represents more than 75% of
livestock population [26]. According to the Global
Livestock Production and Health Atlas, the Amhara
region cattle population density ranges from 64.7–
93.8 (heads km−2) (http://kids.fao.org/glipha/#). In
this line, livestock population in the upper Blue Nile
Basin is one of the main land-use change drivers and
shows increasing trends of 1.5% per year [26, 27]. In
the Ethiopian highlands, livestock pressure also affects
the hydrological system and exacerbates water-related
problems [28].

The study watershed is mountainous and charac-
terized by a monsoonal unimodal rainfall pattern [29].
The rainy season occurs from June to September and
accounts for 80% of the total annual rainfall. Based
on data from the National Meteorological Agency of
Ethiopia, the catchment received a mean annual rainfall
of 1109.7 (±164.5 SD) mm over the period 1952–2014
(figure 1(b)). Monthly mean maximum and minimum
temperatures ranged from 22.6 ◦C–28.8 ◦C and from
11.2 ◦C–15.4 ◦C, respectively.

2.2. Vegetation inventory
A vegetation survey was conducted on six exclosures
and adjacent CGL located in the study watershed. In
each exclosure and CGL, three transects were estab-
lished perpendicular to the main slope of the terrain.
To consider topographic variations, each transect was
further divided into three landscape positions, namely
foot slope (FS), mid (MS) and upper (US) slopes. Then,
sampling plots of 20 m× 20 m size were established
in each landscape position along with each transect.
In total, 61 sample plots, ∼21 in each of the three
landscape positions were established across the study

7 Exclosures are areas socially fenced from wood cutting, grazing by
domestic animals and other agricultural activities with the goal of
promoting natural regeneration of plants and rehabilitating formerly
degraded communal grazing land [16].
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Figure 1. (a) Location of the study area in Ethiopia (black dot), (b) rainfall characteristics of the study area, (c) details of the topography
and location of the studied exclosures and communal grazing land.

watershed. Tree species encountered in each plot and
their stem diameter (D30) at 30 cm above the ground
and total tree height (H, m) were recorded using a
caliper and measuring tape, respectively. Since small-
size trees dominate the area, we opted to measure the
diameter at 30 cm above the ground [30, 31].

2.3. Tree harvesting and determination of above-
ground biomass
To determine AGB and C-stocks, we first identified
eleven dominant woody species using our vegetation

inventory data following the approach used in [32].
To determine total AGB, we collected two to seven
representative tree species from each study site. After
measuring D30 and H, the total aboveground com-
ponents of the trees were harvested. The felled tree
individuals were separated into the stem, twig, and
foliage components. The fresh AGB of each compo-
nent was weighed on the site using a spring balance
(±0.01 kg) [33]. To determine the dry matter contents
of the sampled trees, representative sub-samples were
collected randomly from each component of the tree.
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Then, the sub-samples were weighed in the field, sealed
in plastic bags, and transported to Adet Agricultural
Research Center to determine their moisture contents.
Samples were then oven-dried at 65 ◦C until constant
weight was attained. The total oven-dried samples were
weighed and the fresh-to-oven-dry weight ratios calcu-
lated. These ratios were used to convert the total fresh
weights of sample trees measured in the field into total
oven-dry weights [33, 34]. The carbon content in the
AGB was estimated by multiplying the values of AGB
by the default IPCC carbon fraction value of 0.47 [35].

2.4. Biomass model development and cross-
validation test
Biomass estimation models were developed using
non-linear regression equations based on either
stump diameter (D30) alone or in combination with
their total tree height (H) as independent variables
[33, 34]. Model cross-validation was conducted fol-
lowing a split-sample approach [36, 37] by randomly
dividing the 84 sample trees into two equal parts.
(Both halves of the dataset were used as a ‘training
data set’ for model calibration (hereafter, F1/2D and
S1/2D, n = 42 each), and as a ‘test data set’ for model-
validation (hereafter, CVD_F1/2D and CVD_S1/2D,
n = 42 each). Finally, the full dataset (FD, n = 84)
was used to build the final biomass estimation mod-
els. Model performance was checked using various
goodness-of-fit statistics, such as coefficient of deter-
mination (R2), standard error of estimate (SEE), index
of agreement (D), mean absolute bias (MAB), per-
cent bias (PBIAS), root mean square error (RMSE),
prediction residuals sum of squares (PRESS), percent
relative standard error (PRSE) and weighed Akaike
information criterion (AICiw) [29, 33, 38]. We also per-
formed outlier and influence diagnostic test statistics,
including Cook’s distance and Leverage point [39] (SI
appendix: Materials and Methods). We compared the
performance of our best model with seven previously
published biomass estimation models from Ethiopia
and elsewhere in the tropics. Finally, we used our best
model to convert forest inventory data to AGB and
C-stocks in the exclosures and CGL.

2.5. Statistical analysis
Pearson correlation tests were conducted to iden-
tify which plant biometric variables (D30 or H) were
most strongly correlated with measured total AGB
of harvested trees. A correlation analysis was con-
ducted between independent variables (D30 and H).
Pearson’s correlations were computed between esti-
mated C-stock, stem density and basal area for each
exclosure and CGL, as well as for different landscape
positions, and at the watershed level. The differences
among exclosures and communal grazing land and
between plots at different landscape positions (FS, MS,
US) inabovegroundbiomass andC-stockwere assessed
using one-way analysis of variance. The significance
of differences between exclosures and CGL in mean

AGB and C-stock was tested using the least significant
difference test (LSD) with p< 0.05.

3. Results

3.1. Harvested tree species and their dendrometric
relationship
The harvested dominant tree species, their dendromet-
ric information (D30, H) and the range of oven-dry
biomass per plant species are presented in (SI appendix,
table S1). The D30, H and measured AGB of the
harvested trees ranged from 2.0–10.1 cm, 1.3–5.0 m,
and 0.6–20.6 kg tree−1, respectively. The correlations
between AGB-D30 and AGB-H were significantly pos-
itive (P< 0.01) (figures 2(a) and (b)). We found only a
weak correlation between H and D30 (figure 2(c)). Sim-
ilarly, H-D30 correlations were weak for non-harvested
trees measured across all sites (R2 = 0.27, P< 0.01) and
varied between sites and across diameter classes for
trees from the same site (SI appendix, figure S2).

3.2. Development and validation of a boveground
biomass estimation models
Models developed for predicting AGB and their per-
formances are presented in table 1. In all model forms,
the influence of coefficients was significant (P< 0.001).
Modelperformanceanalysis (table1) and further cross-
validation test results (SI appendix, table S2) showed
that Y8 is the best model, given the set of eight candidate
models with an AICiw of 60%. The cross-validation
test showed that model estimates were stable for the
two ‘test datasets’ (F1/2D and S1/2D) (figures 3(a) and
(b)). The parameter estimates for the coefficients a and
b for model Y8 using F1/2D and S1/2D dataset showed
negligible differences from those parameter estimates
using the full dataset (FD, n = 84) (SI appendix, table
S3). The PRSE, the regression, and influence diagnos-
tic analysis further confirmed that parameter estimates
were stable and reliable for model Y8 (SI appendix,
figure S3). The biomass of the cross-validation dataset
(n = 42, CVD_F1/2D or CV_S1/2D) estimated by
model Y8 using F1/2D or S1/2D training dataset,
showed negligible differences compared to biomass
estimated using the ‘full dataset’ (FD) (figures 3(a)
and (b)). The deviations of estimated averages from
observed average AGB per tree, were −4.8% [−2.58%]
and +4.3% [+2.3%] when using the ‘training’
dataset F1/2D [FD] and S1/2D [FD] equations,
respectively (figures 3(a) and (b)).

3.3. Comparison of aboveground biomass equations
with previously published equations
Model Y8 produced the lowest average relative error
(PBIAS %) compared to the error produced using pre-
viously published equations (figures 4(a)–(h)). The
equations used by Negash [33] and Ali [40] under-
estimated the total AGB by 18.6% and 70.3%, while
the equation used by Ketterings [41], Kuyah [34],
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Figure 2. Aboveground biomass of harvested trees as a function of diameter at stump height (D30) (a), total tree height (b), and
regression of tree height as a function of diameter at stump height (D30) (c).

Figure 3. Relationships between estimated and measured total aboveground biomass of the cross-validations ‘test’ dataset. In figure
(a) and (b), circles are the biomass estimates using the full dataset (FD, n = 84) equation, the crosses are the estimates calculated using
the model developed by the first halves of ‘training’ dataset (F1/2D) and second halves of ‘training’ dataset (S1/2D), n = 42 each. The
1:1 lines indicate the cross-validation data (CVD), CVD_S1/2D (a) and CVD_F1/2D (b). The R2 values in figures 3(a) and (b) show
the relationships between estimated AGB using the half and the full data set, respectively.

Brown [42], Mugasha [43] and Zewdie [44] overes-
timated total AGB by 6.4%, 17.2%, 33.4%, 34.6%, and
94.3%, respectively (figures 4(b)–(h)). More impor-
tantly, the spread of error in estimated AGB was stable
across different diameter classes in Y8, ranging from
−5.2% to 8.7%, however, it was considerably higher
in previously published biomass estimation models (SI
appendix, figure S4).

3.4. Estimated aboveground biomass and carbon
stocks in restoring landscape
Table 2 shows a summary of forest inventory results
and estimated biomass and carbon stocks. Stem

density, basal area (BA) and tree-size (D30, H) varied
betweensites andplots across landscapepositions (table
2). Tree size-class distribution profiles revealed that
the diameter-class ranging from 3–6 cm constituted
about 97% of the total population. They also con-
tributed the largest proportion of basal area (BA) and
total aboveground C-stocks (figures 5(a)–(c)). Large-
diameter trees (D30 > 9 cm)were also scarce in theCGL
and accounted for only 10%, they, however, stocked
approximately 80% of the total estimated C-stocks in
the CGL (figure 5(c)).

Estimated C-stock showed a significant positive
correlation with stem density (R2 = 0.80, P< 0.01)
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Table 1. Equations and goodness-of-fit performance statistics for estimating biomass (kg dry matter/plant) of multiple tree species grown in the exclosures and communal grazing land across the upper Blue Nile River Catchment.

Models Coefficient Performance statistics PRSE Rank

a b c R2 SEE MAB PBIAS% PRESS RMSE D AIC riAIC AICiw a b c

Y1 = a∗(D30)
b 0.2655∗∗∗ 1.7737∗∗∗ – 0.78 1.88 1.36 −0.82 332.42 1.86 0.94 110.43 12.45 0.0 22.2 6.2 2

Y2 = a∗(D30)
2 0.1681∗∗∗ – – 0.78 1.92 1.35 −6.86 329.06 1.90 0.94 112.21 14.23 0.0 3.8 5

Y3 = a∗(D30)
b∗(H)c 0.2430∗∗∗ 1.5041∗∗∗ 0.5511∗∗∗ 0.82 1.73 1.27 −0.16 279.99 1.70 0.95 98.80 0.82 0.4 19.5 7.8 25.0 4

Y4 = a∗(D30)
2∗(H)b 0.1257∗∗∗ 0.2539∗∗∗ 0.78 1.88 1.32 −9.73 323.31 1.85 0.94 111.67 13.69 0.0 14.4 46.2 6

Y5 = a∗(D30)
b∗(H)2 0.1282∗∗∗ 0.886∗∗∗ 0.66 2.34 1.61 −12.98 494.98 2.31 0.91 148.88 50.90 0.0 26.3 14.6 7

Y6 = a∗(D30∗H)2 0.0115∗∗∗ 0.47 2.90 2.18 −41.73 796.90 2.88 0.88 183.95 85.97 0.0 6.1 0 8
Y7 = a∗(D30∗H)b 0.2567∗∗∗ 1.1213∗∗∗ 0.78 1.87 1.36 −0.35 305.98 1.85 0.94 111.34 13.36 0.0 20.1 5.5 3
Y8 = a∗(D2

30∗H)b 0.2451∗∗∗ 0.7038∗∗∗ 0.82 1.73 1.28 0.01 267.29 1.71 0.95 97.98 0.00 0.6 19.2 5.2 1

SEE, Bias, MAB are in kg per plant, n = 84. Y, D30, H, are aboveground biomass (kg/plant), diameter at stump height (30 cm) and total tree height (m), respectively. ∗∗∗ is significant at P < 0.001. Bold PRSE values indicate unreliable

parameter estimates. A positive and negative PBIAS (%) indicates over- and underestimation of AGB. Model performance ranking was performed based on goodness-of-fit statistics (this table) and outlier and influence diagnostic test

statistics, (Cook’s distance and Leverage point) (SI appendix, figure S3).
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Figure 4. Relationships between estimated and measured total aboveground biomass of sample trees (n = 84). (a) refers to the best
model (Y8) of this study. (b)–(h) represent previously published biomass estimation models. PBIAS% shows error produced in the
estimation of biomass. The diagonal lines show a 1:1 relation. A positive and negative PBIAS % indicates over- and underestimation
of AGB, respectively.

and basal area (R2 = 0.84, P< 0.01) (SI appendix,
figures S5(a)–(f)). Estimated C-stocks varied between
sites and plots across landscape positions within the
same exclosures and CGL (table 2). Plots located at
the FS position displayed higher values of estimated
C-stocks in MAR, KIK and CGL. In contrast, plots
at MS position showed higher values of C-stocks in
ATK, ENK, TIN and DEL (table 2). Site wise, the esti-
mated C-stock was higher in the 7 year s old exclosure
(DEL = 4.7 Mg C ha−1), while the lowest was found
in the CGL (2.12 Mg C ha−1) (table 2, figure 5(d)).
At the watershed level, estimated C-stocks at the FS
and MS landscape positions were significantly higher
than estimated C-stock at the upper slope positions
(figure 5(e)). The most important species in terms of
C-stocks were Leucaena sp. (28%), Calpurnia aurea
(21%), Euclea racemosa (20.9%) and Dodonaea angus-
tifolia (15.8%). Site wise, Euclea racemosa in ATK and
DEL; Calpurnia aurea in MAR, Leucaena spp. in KIK
and ENK; Dodonaea angustifolia in TIN exclosures and
Croton macrostachyus in CGL, were the most impor-
tant species in terms of C-stocks. Each of these species
represented 57, 64, 45, 86, 67, 27, and 82% of total

estimated C-stocks in respective exclosures and CGL,
respectively (SI appendix, figure S6).

4. Discussion

4.1. Aboveground biomass and dendrometric rela-
tionship across grazing exclosures
The relationship between stem diameter and tree height
varied considerably across sites, as well as between
different diameter classes within the same site, suggest-
ing that tree-size differences and micro-site conditions
may influence the H-D30 relationships in the stud-
ied site. This is in line with previous studies that
reported tropical tree H-D30 correlations consider-
ably vary from region to region due to variations in
forest type and structure, climate and environmental
conditions [45]. Such differences may also influence
the coefficient values of biomass estimation models,
and thus have important implications for the estima-
tion of biomass and the carbon storage potential of
tropical forests [41, 46, 47]. The highest correlation
between D30 and AGB (figure 2(a)) indicates that stem
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Table 2. Summary of forest inventory results and estimated aboveground biomass and carbon stocks in the exclosures and communal grazing
land.

SITE NAME Site-code Exclosures
age

Landscape
position

Stem density
(Plot−1)

Mean D30
(cm)

Mean
H (m)

BA
(m2 ha−1)

AGB
(Mg ha−1)

C-stock
(Mg ha−1)

FS_1 74 3.1 2.1 1.4 3.7 1.7
FS_2 157 2.8 2.0 2.5 6.8 3.2
FS_3 72 2.8 2.0 1.1 3.1 1.5

ATIKURIT ATK 1 MS_1 183 3.0 2.0 3.5 8.8 4.1
MS_2 321 3.0 2.0 5.6 14.8 7.0
MS_3 195 3.0 1.9 3.4 8.7 4.1
US_1 97 2.9 2.1 1.6 4.5 2.1
US_2 16 2.5 1.8 0.2 0.5 0.3

Average 139 2.9 2.0 2.4 6.4 3.0

FS_1 62 3.7 2.4 1.9 4.7 2.2
FS_2 450 3.1 2.5 8.8 26.6 12.5
FS_3 27 3.3 2.4 0.6 1.7 0.8
MS_1 134 3.6 2.4 3.6 9.3 4.4

MARKOS MAR 2 MS_2 37 2.6 2.2 0.5 1.5 0.7
MS_3 75 3.5 2.3 1.9 5.0 2.4
US_1 44 3.3 2.8 1.1 3.1 1.5
US_2 14 2.5 2.2 0.2 0.5 0.3
US_3 6 3.7 2.6 0.2 0.5 0.2

Average 94 3.3 2.4 2.1 5.9 2.8

FS_1 234 4.2 2.9 8.4 23.7 11.1
FS_2 115 4.3 3.2 4.6 13.5 6.4
FS_3 39 3.5 2.2 1.0 2.6 1.2
MS_1 63 3.9 2.5 2.1 5.0 2.4

KIKIBE KIK 3 MS_2 48 3.2 2.1 1.0 2.6 1.2
MS_3 487 3.4 2.2 11.4 29.1 13.7
US_1 90 3.9 2.9 2.9 8.3 3.9
US_2 9 2.9 1.8 0.2 0.4 0.2
US_3 21 3.5 2.4 0.6 1.4 0.7

Average 123 3.6 2.5 3.6 9.6 4.5

FS_1 3 2.9 2.0 0.1 0.1 0.1
FS_2 17 3.1 2.1 0.3 0.9 0.4
FS_3 202 4.6 4.1 8.7 29.1 13.7
MS_1 87 4.9 4.1 4.4 14.1 6.6

ENKUROTEJI ENK 4 MS_2 203 4.1 3.5 7.0 22.8 10.7
MS_3 94 4.1 3.3 3.3 10.5 5.0
US_1 59 3.5 2.8 1.6 4.5 2.1
US_2 16 5.2 3.1 1.0 2.3 1.1
US_3 33 3.9 2.4 1.2 3.0 1.4

Average 79 4.0 3.0 3.1 9.7 4.6

FS_1 49 3.8 2.5 1.8 4.5 2.1
FS_2 18 3.2 2.3 0.4 1.0 0.5
FS_3 21 3.4 2.8 0.5 1.5 0.7
MS_1 187 3.6 2.2 5.6 13.6 6.4

TINKISH TIN 5 MS_2 328 3.5 2.1 8.3 20.8 9.8
MS_3 164 3.4 2.1 3.8 9.5 4.5

US_1 210 3.6 2.1 5.6 13.4 6.3
US_2 185 3.5 2.1 4.8 11.6 5.4

US_3 183 3.5 2.0 4.5 10.7 5.0

Average 149 3.5 2.2 3.9 9.6 4.5

FS_1 104 3.6 2.5 3.7 8.5 4.0
FS_2 423 3.4 2.3 10.1 26.9 12.6
FS_3 52 3.9 2.7 1.9 4.7 2.2
MS_1 259 3.5 3.3 6.4 21.8 10.3

DELDALIT DEL 7 MS_2 184 3.1 2.2 3.5 9.5 4.5

MS_3 182 3.2 2.3 3.9 10.7 5.0
US_1 14 4.4 2.5 0.6 1.4 0.6
US_2 27 3.6 2.6 0.8 2.1 1.0
US_3 75 3.3 2.6 1.7 4.9 2.3

Average 147 3.6 2.6 3.6 10.1 4.7
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Table 2. Countinued.

SITE NAME Site-code Exclosures
age

Landscape
position

Stem density
(Plot−1)

Mean D30
(cm)

Mean
H (m)

BA
(m2 ha−1)

AGB
(Mg ha−1)

C-stock
(Mg ha−1)

FS_1 30 6.9 2.5 7.2 11.4 5.4

FS_2 44 6.0 1.9 9.0 7.0 3.3
FS_3 13 8.9 2.2 5.4 3.4 1.6
MS_1 32 2.5 1.5 0.4 1.0 0.5

GRAZING_LAND CGL n/a MS_2 43 4.2 1.8 3.4 6.1 2.9
US_1 27 4.7 1.5 3.8 3.3 1.5
US_2 31 4.0 1.8 2.0 3.0 1.4
US_3 28 2.5 1.6 0.4 0.9 0.4

Average 31 5.0 1.9 4.0 4.5 2.1

Figure 5. Proportions of stem density (a), basal area (b), and C-stock (c) across diameter classes in study landscape. Estimated C-stocks
variation between sites (d) and between landscape positions (e). The letter, ‘sn’ indicates a significant difference, whereas ‘a’ indicates
no significant difference.
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diameter is one of the main predictors of tree biomass
in the studied grazing exclosures and CGL. To this line,
similar conclusions were reported in previous studies
[30, 33, 34, 43, 48].

4.2. Multi-species biomass estimation models and
their performances
The predictive performance of different models using
the full dataset ranged from 47%–82%. This varia-
tion might be attributed to allometric differences and
predictors included in the models [39]. Based on cross-
validation and performance statistics test, model Y8
that included D30 and H as predictors are the best
from the given set of model forms. It explained 82% of
the variance in measured AGB and produced the low-
est average relative error (0.01%), implying that using
D30 and H together as predictor may increase model
robustness, as it can partially help to capture the effects
of site-specific H-D30 relationship on biomass allo-
metric equations [47, 49]. Moreover, the performance
of our best model to make an accurate prediction is
not an artifact of overfitting, because the value of the
RMSE in the cross-validation test is close to the stan-
dard error (SE) of the full dataset (table 1, appendix,
table S2).

In addition, the parameter values in the regres-
sion equations and cross-validations were stable across
subsets of the ‘test’ dataset for our best model. The
PRSE, the regression and the influence diagnostic anal-
ysis provided evidence that the parameter estimates
were reliable in model Y8. This further supports our
argument that Y8 is robust and can reliably be used
to estimate the AGB in restoring degraded landscape
and CGL. Moreover, the dominant tree species that are
used for model development also occur dominantly in
the degraded dry Afromontane forest areas and grazing
exclosures in the study region [8, 16, 32, 50–57], indi-
cating that model Y8 is representative for larger areas
of northern Ethiopia. The diameter-alone model (Y1)
is the second-best model and explained 78% of the
variation in measured AGB, with an associated error
of 0.82%. This model also produced acceptable PRSE
values (PRSE< 25%), as well as outliers and influen-
tial points lower than 10% (table 1, SI appendix, figure
S3). Hence, Y1 can be considered as a potential AGB
estimation model for the study area and other similar
regions when data for tree height are not available.

4.3. Model comparison and importance of site-
specific allometric equation
Compared to other generalized biomass estimation
models, our site-specific allometric equation pro-
duced the lowest estimation error for the study area.
A stable spread of error produced across different
diameter-classes indicated that Y8 is able to capture the
heterogeneity of the studied tree population in terms
of species composition and tree-size variation [45, 47].
Our result is in line with several studies, which have
concluded that site-specific AGB estimation models

are more robust and reliable to convert forest inven-
tory data to AGB [41, 43]. Assessing forest C-stock is
an integral part of understanding global climate change
impacts in the tropics [19, 58]. Thus, our model could
play a considerable role in reducing biomass estimation
uncertainties,which resulted fromthe lackof allometric
equations for small-size trees [48]. More importantly,
in northern Ethiopia, the foundation trees species8

(i.e. Juniperus procera and Olea europaea) of the dry
Afromontane forest areas failed to regenerate and other
pioneer species are overtaking the open spaces [51, 54].
Most of thesepioneer species are similar to those species
used to develop our model, thus, our mixed-species
model is crucial to calculate the contribution of under-
story trees and shrubs to total C-stocks in degraded
secondary Afromontane forests. It might also facilitate
a paradigm-shifting towards restoring landscapes from
the focus on values of remnant degraded secondary
forests and woodlands alone.

Furthermore, our model can be used to illustrate
the magnitude of possible uncertainties in biomass
estimation associated with the omission of small diam-
eter trees from tropical forest inventories and C-stock
estimation [59]. For example, the magnitude of AGB
underestimation when small-size trees are not con-
sidered in biomass estimation, accounted for nearly
30% [60], between 12 and 49% [59], 25 and 45% [61]
of total forest AGB. This, in turn, signifies the impo-
tence of small-size trees in forest carbon storage [62].
Therefore, it is obvious that reliable biomass estimation
might have considerable implications in allocations of
funds among various priorities and application and
attribution of international climate-change mitigation
funds for restoration measures. It might as well assist
to evaluate the attainments of globally and regionally
recognized sustainability goals, such as the Sustainable
Development Goals, particularly the land degradation
neutrality target [63] and the African Forest Landscape
Restoration Initiative achievements [15]. Therefore,
our biomass estimation model produced for small-
size trees is relevant to monitor temporal and spatial
changes in C-stocks and to improve the accuracy of
AGB estimations, specifically in the context of moni-
toring carbon dynamics in grazing exclosures and their
potentials in providing ecosystem services like mitigat-
ing climate change through sequestering atmospheric
CO2 in northern Ethiopia.

4.4. Spatial and temporal variation in AGB and
C-stocks across the study watershed
Tree-size, stem density, and basal area considerably
varied along landscape positions within the same exclo-
sures and CGL. The highest AGB values were recorded
in the plots located in foot slope and mid-slope

8 Foundation species are species whose architecture and functional
and physiological characteristics define forest structure and alter
microclimates, while their biomass and chemical makeup contribute
substantially to ecosystem processes [80–82].
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positions. This might be attributed to the mass translo-
cation from upper to lower landscape positions (e.g.
soil, water, and organic materials such as leaves
and branches), which create a favorable microclimate
and nutrient input in lower topographic positions
[47, 64, 65]. The high number of small-size trees in
the study sites points towards a positive impact of
exclosures to recover degraded landscapes [66, 67].
The magnitude of C-stock variation was considerably
higher between plots in the same exclosures and CGL
than between sites, indicating that micro-site condi-
tions and landscape position play a significant role in
forest C-stock dynamics [68, 69]. This further stresses
that carbon pool investigations across different land-
scape positions are crucial for accurate estimations of
C-stock on watershed levels and that they are needed
to understand C-fluxes after the implementation of
restoration practices. More importantly, together with
remote sensing data, the estimated hectare-level C-
stock might provide a great opportunity to monitor the
dynamics of AGB and C-stock in restoring landscapes
at a regional- or national-scale [70].

The significant positive relationships between esti-
mated C-stocks, stem density and basal area (SI,
appendix, figures S5(a)–(f)), together with similar
patterns of diameter class distribution in terms of
stem density, basal area and C-stocks shown by the
exclosures further supports the important role of small-
sized trees in carbon storage in the exclosures and
young secondary forest (figures 5(a)–(c)). The rela-
tive contribution of small-size trees to AGB stocks
depends on forest type and severity of the distur-
bance [71]. For instance, in secondary forest, trees
<10 cm stem diameter (dbh) accounted for 19% [62]
and 24% [72]. Another study also found that under-
story woody plants (dbh <4 cm) contributes 30%
of total AGB in an old field succession and 17% in
a young secondary forest [73]. Although trees <10
cm dbh can contribute considerably to AGB stocks
in secondary and highly disturbed old growth forests,
they are usually missing from the forest invento-
ries (e.g. [8, 74]), lead to underestimate the forest
biomass when forest inventory data are used, particu-
larly in young secondary forest dominated by small-size
trees [8, 59, 62]

The magnitude of estimated C-stocks in 3–7 years
old exclosures exceeds theC-stock estimates in theCGL
by about 50%, indicating the importance of exclo-
sures to restore the degraded landscapes across the
upper Blue Nile river catchment [16, 66, 75]. Estimated
C-stocks in our study area were similar to estimated
C-stocks in other grazing exclosures in northern
Ethiopia [32, 66]. The estimated C-stocks were not
linearly related to exclosure age, suggesting that land-
scape carbonpool recoverydoesnot onlydependon the
durationof alteredmanagement,but itmayalsodepend
on other features of the biophysical and social systems
within which they are implemented [67, 76]. Another
study indicated that the legacy of the initial vegetation

coverage at the site plays a considerable role in restor-
ing the degraded landscapes and ecosystem process
rates during tropical forest successions [76]. Among
other species, Leucaena sp. is a dominant species in
terms of carbon stock, especially in the KIK (3 yrs)
and ENK (4 yrs) exclosure sites. Although Leucaena
sp. is a multipurpose tree species, it is considered as
an invasive species and is aggressively replacing indige-
nous trees in many parts of the world [77–79]. Hence,
future management options should consider limiting
the expansion of this species and, if possible, replace
this species by indigenous tree species. Concerning car-
bon pool comparison between exclosures and CGL,
future studies should consider increasing the number
of observations from CGL, thereby evaluating the effec-
tiveness of grazing exclosures in recovering degraded
landscapes across the region.

5. Conclusions

This study presents the first mixed-species allometric
equations for small-size trees in northern Ethiopia. The
best model explained 82% of the variation in measured
AGB. It produced the lowest bias and narrow ranges
of errors across different diameter classes, compared
to other generalized biomass estimation models from
Ethiopia and elsewhere in Africa. This confirms that
our model is robust and reliably estimates AGB and
C-stock in grazing exclosures and young secondary
forests dominated by small-size trees. Furthermore, the
model has potential for application in other regions,
where agro-ecological zones, tree-size distribution,
species composition and site characters are similar to
our study area. Exclosures accumulated large AGB and
C-stocks than CGL, indicating the importance of graz-
ing exclosures in assisting the processes of recovering
the degraded landscapes and hence their suitability in
mitigating climate change through sequestering atmo-
spheric CO2. Reported C-stock values can be used
as a reference against which future estimates can be
compared, thereby helping to investigate aboveground
forest carbon dynamics in space and time under possi-
bly different future climate conditions. Finally, future
studies should also try to develop a mixed-species
biomass estimation model for the remnant old growth
and degraded secondary forests, thereby improving
regional carbon assessment and accurate data avail-
ability.
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