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Abstract
This study investigated the changes in the toxicity of chemical emissions from the US industrial sector
over the 1998–2009 period. Specifically, we employed a multiregional input–output analysis
framework and integrated a supply-side index decomposition analysis (IDA) with a demand-side
structural decomposition analysis (SDA) to clarify the main drivers of changes in the toxicity of
production- and consumption-based chemical emissions. The results showed that toxic emissions
from the US industrial sector decreased by 83% over the studied period because of pollution
abatement efforts adopted by US industries. A variety of pollution abatement efforts were used by
different industries, and cleaner production in the mining sector and the use of alternative materials
in the manufacture of transportation equipment represented the most important efforts.

1. Introduction

Toxic chemical management is vital to environ-
mental protection and economic development in
industrialized countries (United Nations Environment
Programme 2013a) because it reduces the abatement
costs associated with the use of toxic chemicals (United
Nations Environment Programme 2013b) and min-
imizes the risk of accidental pollution (Organisation
for Economic Co-Operation and Development 2010).
Consequently, the management of toxic chemicals has
attracted the attention of environmental managers in
developing countries, such as China and India, and
those in developed countries (Fujii et al 2013, Sharma
et al 2014, Sengupta et al 2016). Some studies have
examined the factors affecting chemical emission
changes in the US (Tang 2015), Japan (Fujii et al 2011),
Taiwan (Koh et al 2012) and China (Dou and Sarkis
2013). Most of these studies have examined innova-
tions in the production process (e.g. porter hypothesis)

(Ribeiro and Kruglianskas 2015). However, aspects
related to toxic chemical emissions that are generated
by the product supply chains that connect consumers
to producers have not been widely studied (Koh et al
2012).

Therefore, a demand-side analysis is important
for understanding the countries or sectors that are
primarily responsible for the toxic emissions asso-
ciated with product supply chains and determining
why emissions have changed over time. Input–
output analyses (i.e. ‘demand-driven’ input–output
analyses) (Leontief 1970) are useful for identifying
environmentally responsible countries/industries with
higher consumption-based emissions (Hertwich and
Peters 2009, Peters et al 2011) and examining the
sources underlying changes in environmental loads
over time (Lenzen 2016). Numerous studies have
been conducted on consumption-based emissions
(e.g. CO2 emissions (Kagawa et al 2015, Lan et al
2016), rare metal consumption (Nansai et al 2014,
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Figure 1. Research framework of this study.

Shigetomi et al 2015) and nitrogen circulation (Oita
et al 2016)).

Koh et al (2016) analysed the consumption-based
emissionamountof chemical substances, although they
did not clearly consider the toxicity of the chemical
substances. Policy makers typically focus on the tox-
icity of chemical substance emissions but not on the
emission amount itself (Chakraborty and Green 2014)
because chemical toxicity directly affects human health
and wildlife biodiversity (Romanelli et al 2015). Hor-
vath et al (1995) noted that the chemical toxicity of
the most harmful substances affecting humans is more
than a hundred times greater than that of the least
harmful substances. Thus, simple rankings and time
trends regarding the facilities and industries responsi-
ble for toxic releases can be misleading because they
may neglect relevant toxicological data. Additionally,
industrial companies seek chemical substances with
low toxicity (e.g. green chemistry) to decrease toxic
emissions (Fujii 2016).

Therefore, toxicity reduction, rather than emis-
sions reduction, is a more consistent target due to
the toxic chemical management priority of government
and industry. In this sense, to develop environmental
policies, information about the factors that affect toxi-
city is more important than information about factors
that change the emissions amount.

The objective of this study is to develop a research
framework to identify the determinants that change
the amount of toxic emissions by focusing on the
supply and demand sides. To explain the proposed
research framework, we introduce an empirical study
using data from US industries. The US industrial sector
successfully decreased toxic chemical emissions from
7 trillion tons in 1998 to 1.55 trillion tons in 2009,
even though the industrial value added did not decline
(see figure S1). Thus, the US industrial sector reduced
toxic emissions without a financial sacrifice, which
is favourable for sustainable development. Therefore,
clarifying the main driver of toxic emissions reduc-
tion by the US industrial sector would be helpful
in developing toxic chemical management policies in
other countries.

The novelty of this study was two-fold: first; it
developed a consumption-based accounting frame-
work based on the World multi-regional input–output
database (Dietzenbacher et al 2013, Timmer et al 2015)
with a focus on toxic chemical emissions; and second,
it proposed a new integrated decomposition technique
based on a supply-side ‘index’ decomposition anal-
ysis (Ang et al 2003, Ang 2004) and a demand-side
‘structural’ decompositionanalysis (Dietzenbacher and
Los 1998, Kagawa and Inamura 2001) to identify
the major drivers underlying changes in toxic emis-
sions in the US industrial sector within the context of
changes in technology and demand. The consumption-
based chemical accounting framework was then further
transformed into a ‘structural’ decomposition analysis
(Chang and Lahr 2016). Using these analytical methods
developed in this study, we assessed how toxic chemical
emissions in the US have been affected by changes in
(1) the final demand scale; (2) the production struc-
ture, including international trade patterns; and (3) the
industrial toxic emission intensities.

We then applied the index decomposition
approach (Ang et al 2003, Ang 2004) to clarify the fac-
tors affecting the changes in toxic emission intensities
in US industrial sectors. Moreover, the toxic emission
intensity effects can be decomposed into the following
three supply-side factors: cleaner production effects,
end-of-pipe effects and chemical toxicity effects. Using
this decomposition, we examined how toxic chemical
substance management at an industrial level affected
industrial toxicity intensities during production. The
research framework used in this study is depicted in
figure 1.

Notably, the analysis developed in this study
includes two types of uncertainties. The first uncer-
tainty comes from which multi-regional input–output
database was selected from a wide variety of such
databases (e.g. Inomata and Owen 2014). This uncer-
tainty can be called ‘wide’ uncertainty among the
input–output databases used in the analysis.

The second uncertainty comes from how the multi-
regional input–output database was constructed by
survey and non-survey methods. As a result, the
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estimated input–output database in question includes
statistical errors (e.g. Dietzenbacher 2006). This uncer-
tainty can be called ‘narrow’ uncertainty in the sense
that we here focus on only errors included in a specific
database.

Although the global uncertainty analysis consid-
ering the two uncertainties is important in evaluating
the validity of the estimated consumption-based toxic
chemical emissions during the study period, this study
reports only the result of the second type of the
uncertainty analysis using the World multi-regional
input–output database (Dietzenbacher et al 2013,
Timmer et al 2015) because we could not obtain a
comparable set of world multi-regional input–output
databases and conduct the first type of uncertainty
analysis. This is a limitation of this study.

The remainder of this paper is organized as fol-
lows: section 2 provides the method; section 3 explains
the data used in this study; section 4 presents and dis-
cusses the results; section 5 provides the result of the
uncertainty analysis; and finally, section 6 concludes
the paper.

2. Method

2.1. Choice of decomposition analysis model
Decomposition analysis is widely applied in energy
and environmental research fields to clarify the driv-
ing forces or determinants underlying these changes
(Wang et al 2017). According to Hoekstra and van den
Bergh (2003), two major techniques that can identify
changes in decomposition indicators at the sector level
are structural decomposition analysis (SDA) and index
decomposition analysis (IDA).

SDA was originally developed as an input–output
analysis for understanding the change in consumption-
based emissions (e.g. carbon footprint). One of the
main advantages of SDA is that it clearly considers the
economic system, including trade patterns, the combi-
nation of intermediate material inputs, and the scale of
final demand.

IDA was developed in energy and environmen-
tal research fields to understand the intensity change
caused by technological development, such as that of
emission intensity due to resource efficiency (Wang
et al 2017). IDA has several estimation options, includ-
ing the Laspeyres index and logarithmic mean Divisia
index (LMDI) (Ang 2015).

Notably, our decomposition analysis is divided into
two steps: SDA is used for demand-side effects analysis
(the first step), and IDA is used for supply-side effects
analysis (the second step). We primarily use two differ-
ent methods to distinguish the change in toxic intensity
(the technology factor) and demand-side effects (the
economic system factor).

In addition, IDA is advantageous in terms of
decomposing emission intensity change. According to
Wang et al (2017), SDA is beneficial when analysing

demand-side effects and trade-related issues. By con-
trast, IDA is preferred for analysing the change in
emission intensity because it is more flexible in
modelling and easier to implement and understand
compared with SDA.

2.2. Structural decomposition of toxic emissions in
the US
The toxicity of emitted chemical substances in the US
induced by the final demand of country k in year t,
𝑄US

𝑡,𝑘
, is expressed in equation (1):

𝑄US
𝑡,𝑘

= 𝐓𝑡 ⋅ 𝐋𝑡 ⋅ 𝐟𝑡,𝑘 (1)

where 𝐓𝑡 is the row vector consisting of the toxic
emission intensity (i.e. toxicity of chemical emissions
(unit: tons) per industrial output (unit: one thousand

dollars) in the US), 𝐋𝑡 =
(
𝐈 − 𝐀𝑡

)−1
is the Leontief

inverse matrix, 𝐀𝑡 is the input coefficient matrix in the
multiregional input–output table for year t, 𝐈 is the
identity matrix, and 𝐟𝑡,𝑘 is the column vector consist-
ing of the final demand (unit: one thousand dollars)
of country k in year t (Miller and Blair 2009). Based
on the number of industries M and countries N, 𝐓𝑡,𝐀𝑡

and 𝐟𝑡,𝑘 can be expressed as follows:

𝐓𝑡 = [0 ⋯ 0 𝑇US
1,𝑡 ⋯ 𝑇US

𝑀,𝑡
0 ⋯ 0],

𝐀𝑡 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐀11
𝑡

𝐀12
𝑡

⋯ 𝐀1𝑁
𝑡

𝐀21
𝑡

𝐀22
𝑡

⋯ 𝐀2𝑁
𝑡

⋮ ⋮ ⋱ ⋮

𝐀𝑁1
𝑡

𝐀𝑁2
𝑡

⋯ 𝐀𝑁𝑁
𝑡

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝐫𝑟,𝑘 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐟1𝑘
𝑡

𝐟2𝑘
𝑡

⋮

𝐟𝑁𝑘
𝑡

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where 𝑇US

𝑖,𝑡
(𝑖 = 1,⋯ ,𝑀) is the toxic chemical emis-

sions per industrial gross output in each industrial
sector i in the US in year t, 𝐀𝑟𝑠

𝑡
is the input coeffi-

cient matrix from country 𝑟 (𝑟 = 1,⋯ , 𝑁) to country
𝑠 (𝑠 = 1,⋯ , 𝑁) in year t, and 𝐟 𝑟𝑘

𝑡
(𝑟 = 1,⋯ , 𝑁) is the

vector of final demand from country r to country k.
Equation (1) calculates the toxicity of emitted

chemical substances in the US through the global sup-
ply chains induced by the final demand of country k. It
should be noted that 𝐓𝑡 is negatively affected by man-
agement efforts focused on reducing toxic chemical
substances in US industrial sectors only, whereas 𝐀𝑡

and 𝐟𝑡,𝑘 are affected as entire supply-chain networks by
changes in production technology and lifestyles of the
different countries, respectively.

We set the change in the consumption-based
emissions of chemical substances during year t and
year t+1 as Δ𝑄US

𝑘
= 𝑄US

𝑡+1,𝑘 −𝑄US
𝑡,𝑘

, and these fac-
tors were decomposed into the three effects shown
in equation (S1) in supplementary method 1 avail-
able at stacks.iop.org/ERL/12/124008/mmedia: the
changes in toxic emission intensity (i.e. ΔIntensity),
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in production structure (ΔSTR), and in the final
demand scale (ΔScale) (Sun 1998).

Changes in the toxic emissions intensity effects
(ΔIntensity) are attributed to changes in the toxic
emissions per industrial gross output in the US. The
structural change effects (ΔSTR) are attributed to
changes in the structure of industrial production at
a national scale. Notably, this structural effect includes
the changes in the international trade patterns of inter-
mediate products or national production technologies.
Change in the final demand effects (ΔScale) are directly
affected by changes in the scale of the final demand in
each country.

The final demand effects and the production struc-
tural effects can be considered demand-side effects,
whereas the toxic emissions intensity effects canbe con-
sidered supply-side effects. To further clarify the effect
of toxic chemical management by US industries, the
changes in toxic emissions intensities are decomposed
further in the following section.

2.3. Index decomposition of toxic emissions intensi-
ties in the US
A decomposition framework for the chemical emis-
sions in industrial production processes has been
proposed by Fujii and Managi (2013). By referring
to their framework, the change in the toxic emis-
sions intensity of industry i in the US, 𝑇US

𝑖,𝑡
, can be

further decomposed into the following three factors:
(1) end-of-pipe (EOP) treatment, (2) cleaner produc-
tion (CP) and (3) the toxicity of emitted chemicals
(TEC).

To apply this decomposition approach to the US,
this study used two variables for the toxic chemicals:
total release by industry i in the US in year t (𝐸US

𝑖,𝑡
) and

total waste management by industry i in the US in year
t (𝑀US

𝑖,𝑡
). These data are obtained from the US toxic

release inventory. Using these two variables, we cal-
culated the total amount of toxic chemical substances
generated by industry i in the US in year t (𝐺US

𝑖,𝑡
), and

we herein define𝐺US
𝑖,𝑡

= 𝐸US
𝑖,𝑡

+𝑀US
𝑖,𝑡

. 𝑌 US
𝑖,𝑡

as the gross
output in industry i of the US in year t deflated to the
1995 price.

First, the industrial CP indicator in the US, which

is defined as
𝐺US
𝑖,𝑡

𝑌 US
𝑖,𝑡

, represents the generation of toxic

chemicals per industrial gross output. This indica-
tor can be decreased by reducing the generation of
toxic chemical substances while maintaining industrial
production. The reduction in CP can be achieved by
improved production processes and product designs
that reduce the input of intermediate chemical
materials.

Second, the industrial EOP indicator in the

US, which is defined as
𝐸US
𝑖,𝑡

𝐺US
𝑖,𝑡

, represents the share

of emissions out of the total amount of toxic
chemical substances generated. This indicator can be
reduced by increasing the waste management of total

toxic chemicals. Finally, the industrial TEC indicator in

the US, defined as
𝑍US
𝑖,𝑡

𝐸US
𝑖,𝑡

, represents the toxicity intensity

of emitted chemical substances. 𝑍US
𝑖,𝑡

is the toxic emis-
sions in industry i of the US in year t. Here, the toxicity

per gross output of industry i in the US (𝑇US
𝑖,𝑡

=
𝑍US
𝑖,𝑡

𝑌 US
𝑖,𝑡

)

was decomposed in equation (2).

𝑇US
𝑖,𝑡

=
𝑍US
𝑖,𝑡

𝑌 US
𝑖,𝑡

=
𝑍US
𝑖,𝑡

𝐸US
𝑖,𝑡

×
𝐸US
𝑖,𝑡

𝐺US
𝑖,𝑡

×
𝐺US
𝑖,𝑡

𝑌 US
𝑖,𝑡

= 𝑇𝐸𝐶US
𝑖,𝑡

× 𝐸𝑂𝑃US
𝑖,𝑡

× 𝐶𝑃US
𝑖,𝑡

(2)

Next, we define the change in the toxic emissions

intensity as Δ𝑇US
𝑖

(
= 𝑇US

𝑖,𝑡+1 − 𝑇US
𝑖,𝑡

)
and obtain equa-

tion (3).

Δ𝑇US
𝑖

= 𝑇US
𝑖,𝑡+1 − 𝑇US

𝑖,𝑡
= 𝑇𝐸𝐶US

𝑖,𝑡+1 × 𝐸𝑂𝑃US
𝑖,𝑡+1×

𝐶𝑃US
𝑖,𝑡+1 − 𝑇𝐸𝐶US

𝑖,𝑡
× 𝐸𝑂𝑃US

𝑖,𝑡
× 𝐶𝑃US

𝑖,𝑡 (3)
Similar to the decomposition approach to the

induced effects in equation (1), we apply the Laspeyres
decomposition analysis to equation (3) and decompose
Δ𝑇US

𝑖
into three effects: the changes in EOP treat-

ment, the changes in CP, and the changes in TEC (see
equation (S4) in supplementary method 2).

2.4. Uncertainty analysis for consumption-based
toxic emissions
The World input-output database is conventionally
compiled through non-survey methods; therefore, the
obtained input coefficient matrix tends to contain mea-
surement error problems in the observed transaction
tables (Roland-Holst 1989).

As in Roland-Holst (1989) and Dietzenbacher
(2006), we conducted a Monte Carlo experiment to
examine whether the measurement error in the input
coefficient matrix yields a significant input-output
multiplier bias and whether such a multiplier bias
consequently leads to substantial uncertainty regard-
ingconsumption-based chemical toxicity.MonteCarlo
analysis has the advantage of applicability to simula-
tions based on a variety of actual transaction tables
(Roland-Holst 1989).

As in Dietzenbacher (2006), we see that the
‘observed’ intermediate input matrix 𝐃 =

(
𝑑𝑖𝑗

)
,the

‘observed’ row vector of toxic emissions 𝐙 =
(
𝑍US

𝑗

)
,

and the ‘observed’ column vector of final demand
𝐟 =

(
𝑓𝑖
)

are assumed to be biased as follows:

𝑑𝑘
𝑖𝑗
= 𝑑𝑖𝑗 + 𝜀𝑘

𝑖𝑗
,ZUS,𝑘

𝑗
= ZUS

𝑗
+ 𝛿𝑘

𝑗
, and𝑓𝑘

𝑖
= 𝑓𝑖 + 𝜑𝑘

𝑖

with

𝜀𝑘
𝑖𝑗
∼ 𝑁(0,

[
𝜌 ⋅ 𝑑𝑖𝑗

]2), 𝛿𝑘
𝑗
∼ 𝑁(0,

[
𝜌 ⋅ 𝑍𝑈𝑆

𝑗

]2
), and

𝜑𝑘
𝑖
∼ 𝑁(0, [𝜌 ⋅ 𝑓𝑖]2)

where k=1,2,…, K. Here, k is the sample size of the
MonteCarlomethod, andwe setK = 100 and 𝜌 = 0.1,
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as in Dietzenbacher (2006). Notably, the sample size
of the Monte Carlo method must be set at the rel-
atively small number of 100 due to the larger data
size of the World Input–Output Database. The error
terms of 𝜀𝑘

𝑖𝑗
, 𝛿𝑘

𝑗
, and𝜑𝑘

𝑖
follow normal distributions.

In this multi-regional input–output table including
data noise, the gross outputs include data noise as
𝑌 𝑘
𝑖
=
∑
𝑗

𝑑𝑘
𝑖𝑗
+ 𝑓𝑘

𝑖
and therefore the obtained inter-

mediate input coefficient matrix also includes it as

𝐀𝑘 =
(
𝑎𝑘
𝑖𝑗

)
=
(
𝑑𝑘
𝑖𝑗
∕𝑌 𝑘

𝑗

)
.

Then, the Leontief inverse matrix (i.e. direct and
indirect input requirement coefficients) and the row
vector of toxic emission intensity, including data

noise, are calculated as 𝐋𝑘 =
(
𝑙𝑘
𝑖𝑗

)
=
(
𝐈 − 𝐀𝑘

)−1
and

𝐓𝑘 = (𝑇US,𝑘
𝑗

) =
(
𝑍

US,𝑘
𝑗

∕𝑌 US,𝑘
𝑗

)
, respectively where

𝑌
US,𝑘
𝑗

is the gross industrial outputs of the US including
data noise.

When we set the unknown ‘true’ values of 𝑙∗
𝑖𝑗
, 𝑇US

𝑗
,

and 𝑓 ∗
𝑖
, their t-statistics are obtained as follows:

𝑡𝑙
𝑖𝑗
=

𝑙𝑖𝑗 − 𝑖∗
𝑖𝑗

𝑠𝑙
𝑖𝑗
∕
√
𝐾
, 𝑡𝑇

𝑗
=

𝑇
𝑈𝑆

𝑗
− 𝑇𝑈𝑆∗

𝑗

𝑠𝑇
𝑗
∕
√
𝐾

, 𝑡
𝑓

𝑖
=

𝑓 𝑖 − 𝑓 ∗
𝑖

𝑠
𝑓

𝑖
∕
√
𝐾

respectively, where we have

𝑙𝑖𝑗=
∑𝐾

𝑘=1 𝑙
𝑘
𝑖𝑗

𝐾
, �̄�US

𝑗
=

∑𝐾
𝑘=1 𝑇

US,𝑘
𝑗

𝐾
, 𝑓𝑖 =

∑𝐾
𝑘=1 𝑓

𝑘
𝑖

𝐾
,

with

(
𝑠𝑙
𝑖𝑗

)2
=

∑𝐾
𝑘=1

(
𝑙𝑘
𝑖𝑗
−𝑙𝑖𝑗

)2
𝐾−1(

𝑠𝑇
𝑗

)2
=

∑𝐾
𝑘=1

(
𝑇
US,𝑘
𝑗

−�̄�US
𝑗

)2
𝐾−1 , and

(4)

(
𝑠
𝑓

𝑖

)2
=

𝐾∑
𝑘=1

(
𝑓𝑘
𝑖
− 𝑓𝑖

)2
𝐾 − 1

The t-statistics above can provide 95% confidence
intervals for the direct and indirect input require-
ment coefficients, toxic emission intensities, and final
demand; therefore, these upper values can be used to
estimate the upper value of consumption-based toxic
emissions with equation (1), whereas the lower values
provide the lower value of consumption-based toxic
emissions.

3. Data

3.1. Toxic emissions data
Toxic chemical emissions data from the US industrial
sector are obtained from the toxic release inventory
(TRI) database published by the US Environmen-
tal Protection Agency (US EPA 2017). The TRI
was created by Section 313 of the Emergency Plan-
ning and Community Right-to-Know Act in 1986.
It is a publicly available database that contains

information on toxic chemical releases and waste man-
agement activities,which is reportedannuallybycertain
industries and federal facilities.

In addition, chemical data on seven industries,
which were added to the TRI programme in 1997, only
became available starting in 1998. These newly added
sectors included the mining sector and the electric
power sector,whichproduce large amountsof chemical
emissions. Therefore, we set the research periods from
1998–2009 to ensure that we considered these sectors
as well.

We used US emissions data for 588 chemical sub-
stances with risk–screening environmental indicators
(RSEI) as proxies for the toxicities of chemical sub-
stances (US EPA 2015). The emissions data cover
toxic chemical releases to all media. Horvath et al
(1995) introduced the TRI as the database with the
most comprehensive and widely reported information
on hazardous discharges into the environment in the
United States.

Additionally, Toffel and Marshall (2004) inves-
tigated the comparative analysis of toxic weighting
methods for the TRI database. They compared 13
methods including RSEI, human toxicity potential, the
Indiana Relative Chemical Hazard Score, and so on.
Toffel and Marshall (2004) concluded that RSEI is the
recommendedweightingmethod for integrationofTRI
data because of greater coverage of TRI chemical sub-
stances. Many previous studies have used the TRI and
RSEI to evaluate toxic chemical substances in environ-
mental indicators (Velagapudi et al 2017) and their
human health impact (Lewis and Bennett 2013) and as
parts of accounting research (Cong et al 2014).

To integrate the toxicities of different chemical sub-
stances, we applied the RSEI published by the US EPA
(2015). The integrated toxicity score (𝑍US

𝑖,𝑡
) for chemi-

cal substances generated by a specific sector i in the US
in year t was estimated by equation (5):

𝑍US
𝑖,𝑡

=
∑
𝑗

(
emission US

𝑖,𝑗,𝑡
× toxicity weight𝑗

)
(5)

where j denotes a specific chemical substance. The toxic
emissions intensity of 16 sectorsbetween1998 and2009
in the US were estimated by dividing the sectoral inte-
grated toxicity score by the sectoral gross output (table
S1 for the sector classification). According to the US
EPA (2015), the toxicities estimated by equation (5)
are hazard-based results, which differ from toxic ‘risks’
to human health that clearly consider the population
density of the region of emissions. Therefore, the toxi-
city scores in this study focus on the ‘toxicity hazard
emission’ or ‘toxicity hazard embedded in produc-
tion processes’. Using the hazard-based toxic emissions
data, we can evaluate how the US sector applied toxic
chemical management in their production processes
considering the toxicity of chemicals.

The list of toxic chemical substances in the TRI
changed with time. To analyse the change in toxicity
using time-series data, we applied the toxic chemical
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data listed in the 1998 core chemical substances pub-
lished by the US EPA (see table S2). Therefore, the toxic
scores in different years are estimated using the same
coverageof chemical substances.Thus,we can compare
the toxicity data directly between different years.

It should be noted that TRI data are subject to
limitations and uncertainty. The US EPA (2009) inves-
tigated the uncertainty involved with seven major
environmental indicators, including TRI. The US EPA
(2009) noted that ‘TRI data reflect only ‘reported’
chemicals, not all chemicals with the potential to affect
humanhealth and the environment.TRIdoes not cover
all toxic chemicals or all industry sectors. The following
are not included in this indicator: (1) toxic chemicals
that are not on the list of approximately 650 toxic
chemicals and toxic chemical categories, (2) wastes
from facilities within industrial categories that are not
required to report to TRI, and (3) releases from small
facilities with fewer than 10 employees or that manu-
factured or processed less than the threshold amounts
of chemicals.’

Inaddition to these limitations,TRIdata are subject
to uncertainty due to facility-level errors caused by the
diverse arraysofmethods and information sourcesused
by facilities to prepare their TRI reports (US EPA 2009).
The uncertainty involved with self-reported environ-
mental data has also been noted by de Marchi and
Hamilton (2006). They find that large decreases in air
emissions reported by firms in the TRI are not always
matched by similar reductions in measured concentra-
tions by EPA monitors.

3.2. World input-output data
We used the World Input–Output Database (WIOD),
which covers 41 countries and regions and 17 industries
between 1998 and 2009 (see table S1) (Dietzenbacher
et al 2013, Timmer et al 2015). Following Temurshoev
et al (2013) and Los et al (2014), the World input–
output tables for 1998–2009 were deflated to the tables
based on 1995 US dollars using price deflators and the
generalized RAS method.

We should note our limitation related to data avail-
ability. The WIOD released data from its 2016 version,
which covers 2000 to 2014. However, the WIOD did
not release the socio-economic data, including price
index data. Thus, we find translating the database into
real terms, which is needed for time-series analysis, dif-
ficult. Additionally, the WIOD released data from its
2013 version, which covers 1995 to 2011. Moreover,
the WIOD only releases price index data from 1995
to 2009 from the 2013 version of its socio-economic
accounting database. Based on these available data, we
create an input–output table data in real terms for 1995
to 2009.

Although the WIOD includes the time-series data
from 1995 to 2009, we used the data from 1998 because
of the consistency of the data for toxic chemical sub-
stances in the TRI in the US. As a result, we compiled
the environmentally extended world input–output

tables from 1998–2009. Because industries are clarified
differently between the TRI and WIOD, we integrated
the TRI industry using North American Industry Clas-
sification System (NAICS) codes (see table S3).

4. Results

4.1. Consumption-based chemical toxicity in the US
Table 1 shows the toxic emissions from the five largest
industries associated with the final demand of coun-
tries around the World in 1998 and 2009 (table 1).
First, we examined the magnitude of chemical pol-
lution in 1998 and 2009. In 1998, the total amount
of toxic chemicals generated by the five industrial
sectors in the US accounted for 5743 billion tons
(table 1). Interestingly, the induced chemical toxicity
(i.e. consumption-based chemical toxicity) decreased
by 4779 billion tons during the decade from 1998–
2009, implying that US industries have contributed
to the rapid decrease in chemical toxicity observed in
the US.

Next, we discuss the regional distribution of
consumption-based toxic emissions by examining sev-
eral countries and regions that induce significant toxic
emissions in theUS.Table 1 shows thatmost of the toxic
emissions in the US industrial sector were triggered
by US domestic final demand. The share of US final
demand increased slightly from 85.2%–87.0% from
1998–2009.Thus, 13.0%of the toxicemissions fromthe
US industrial sector were triggered by the final demand
of other countries outside the US in 2009.

The contribution of the final demand of BRIC
countries (Brazil, Russia, India and China) to US toxic
emissions increased from 1.2%–2.0% from 1998–2009,
whereas that of other countries decreased or remained
steady over the same period (see figures S2 and S3 in
the supplementary information for the geographical
distribution).

The data in table 1 indicate that the contribution
of each industry to the final demand differed among
countries and regions because different countries have
their own relative industrial strengths in the global mar-
ket as well as different objectives and characteristics that
drive the importation of US products as intermediate
goods or final products.

4.2. Factor decomposition analysis of the change in
toxic emissions in the US
Thedriving forcesunderlyingchanges inconsumption-
based chemical toxicity and chemical toxicity
transferral can be captured using economic factors,
such as the industrial structure, international trade
structure, final demand structure, andproduction tech-
nology.

Figure 2 shows the trends for consumption-based
toxicity in the US. The plotted line shows the changes in
the consumption-based toxicity of the US as a ratio of
that in the base year 1998, and the bar chart shows the
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Table 1. Induced toxic emissions of US industrial sectors associated with final demand by country.

World US Canada Mexico EU Japan BRICs Others
Year Industry billion billion % billion % billion % billion % billion % billion % billion %

tons tons tons tons tons tons tons tons

1998 TOTAL 5743.586 4896.027 85.243% 126.780 2.207% 56.150 0.978% 213.115 3.710% 93.417 1.626% 67.453 1.174% 290.645 5.060%
MINING 4600.025 3990.320 86.746% 89.241 1.940% 37.176 0.808% 150.248 3.266% 73.081 1.589% 49.477 1.076% 210.483 4.576%
CHEMICALS 249.838 191.418 76.617% 7.172 2.871% 5.039 2.017% 18.202 7.286% 5.629 2.253% 6.264 2.507% 16.114 6.450%
METALS 304.626 234.268 76.903% 12.029 3.949% 7.263 2.384% 16.750 5.499% 6.083 1.997% 5.220 1.714% 22.968 7.540%
TRANSPORT 316.110 235.494 74.497% 14.072 4.452% 4.085 1.292% 20.199 6.390% 5.583 1.766% 4.267 1.350% 32.410 10.253%
UTILITIES 137.265 129.458 94.312% 1.044 0.761% 0.590 0.430% 2.179 1.587% 0.862 0.628% 0.635 0.463% 2.497 1.819%

2009 TOTAL 964.171 839.117 87.030% 13.754 1.427% 7.989 0.829% 36.813 3.818% 10.667 1.106% 19.201 1.991% 36.586 3.795%
MINING 648.425 589.597 90.928% 6.809 1.050% 2.633 0.406% 19.155 2.954% 6.264 0.966% 7.535 1.162% 16.432 2.534%
CHEMICALS 103.539 71.946 69.487% 2.814 2.718% 2.542 2.455% 10.077 9.733% 2.270 2.192% 5.674 5.480% 8.171 7.892%
METALS 71.084 50.884 71.583% 2.406 3.385% 1.861 2.618% 4.085 5.747% 1.135 1.597% 3.904 5.492% 6.809 9.579%
TRANSPORT 12.574 8.897 70.757% 0.545 4.334% 0.227 1.805% 0.953 7.579% 0.182 1.447% 0.454 3.611% 1.362 10.832%
UTILITIES 99.726 93.916 94.174% 0.590 0.592% 0.363 0.364% 1.453 1.457% 0.454 0.455% 0.953 0.956% 1.952 1.957%

Note: BRICs includes Brazil, Russia, India, and China.
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Figure 2. Accumulated changes in toxic emissions by driving factors. Note: Each acronym represents the following: ΔScale is the
change in the final demand effects, ΔSTR is the changes in the structure of industrial production, ΔTEC is the change in the toxicity
intensity of emitted chemical substances, ΔEOP is the changes in end-of-pipe treatment effects, and ΔCP is the changes in cleaner
production effects.

effects of economic factors on the consumption-based
toxicity of the US. The summationof the bar chart score
is equivalent to the value of the plotted line.

From figure 2, consumption-based toxic emissions
in the US decreased by approximately 83% from 1998–
2009, and an 80% reduction was achieved by 2004. The
main drivers for this rapid reduction were the observed
decreases in TEC and EOP treatment, which together
accounted for a 66% reduction. Thus, pollution abate-
ment technologies and initiatives in the US industrial
sector have markedly contributed to the reduction in
toxic emissions in the US. In addition, changes in
the production structure (STR) and CP methods con-
tributed to decreasing the toxicity by 24% and 17%,
respectively.

Next, we consider the changes in induced toxicity
in each industrial sector. Table 2 shows the changes in
the induced toxic emissions in the US industrial sector
related to increased product demand in 41 countries
and regions. The trading-factor results were estimated
by the environmentally extended multi-region input–
output analysis model, and the breakdown of toxic
emission intensity change (ΔT) was calculated by a fur-
ther decomposition analysis using the Laspeyras index
decomposition approach. The LMDI is an alternative
approach for further decomposition analysis (see sup-
plementary method 3) (Lan et al 2016). To confirm the
robustness of the results obtained by further decom-
position, we compared the estimation scores obtained
using the Laspeyres index and LMDI approaches. Table
S4 in the SI describes the results of these further
decomposition approaches, and the results appear to
corroborate the obtained results.

Table 2 shows that the induced toxic emissions
of the US industrial sector decreased by 83% from
1998–2009. The main driver of this dramatic reduc-
tion is a decrease in the toxic emissions intensity (i.e.
toxic emissions per industrial gross output). These
findings imply that the reduction in induced toxic

emissions was achieved by decreasing the toxic emis-
sion intensity in the US industrial sector. Compared
with the demand-side effects, we found that the supply-
side effects exert a markedly stronger influence on the
changes in induced toxic emissions in most industries
and countries (see table 2 and table S5 in SI). This
trend differs from that reported in previous studies
that focused on consumption-based increases in CO2
emissions and concluded that consumption scale is
the main driver of changes in emissions (Kagawa et al
2015). One possible reason for the observed disparity
is that toxic chemicals can be managed by EOP, which
is a difficult approach to inducing reductions in CO2
emissions. Another reason is the marked difference in
toxicity among chemicals, which means that substitut-
ing a highly toxic chemical with a less toxic chemical
can cause a marked reduction in toxic emissions. The
finding that supply-side effects lead to a greater reduc-
tion in induced toxic emissions relative to demand-side
effects is explained by the simultaneous application of
supply-side and demand-side approaches.

4.3. Major driver of changes in the toxicity of emis-
sions in key industries
Table 2 shows that the toxicity induced by the min-
ing and transportation equipment industries decreased
markedly because of a reduction in the toxic emission
intensity. However, the main determining factors for
the observed change in toxic emission intensity differed
between the two industries.

Figure 3 shows a comparison of the main driving
factors affecting changes in induced toxic emissions
in the mining and transportation equipment sectors.
Toxic emissions in the mining sector mainly decreased
becauseofCP factors. In themining sector, compounds
of copper, zinc and arsenic accounted 67% of the total
toxic chemical release in 1998. However, the chem-
ical release from these three metal compounds was
reduced by 63% from 1998–2009, especially that from
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Table 2. Decomposition of changes in US chemical toxicity from 1998–2009.

Change in toxic emissions Demand-side effect Supply-side effect Breakdown of Δ Intensity

Δ Scale Δ STR Δ Intensity Δ TEC Δ EOP Δ CP

billion tons % % % % % % %

TOTAL −4779.424 −83.213% 23.334% −24.153% −82.395% −40.699% −25.066% −16.630%
MINING −3951.573 −85.904% 26.763% −27.068% −85.598% −5.322% −0.702% −79.574%
FOOD 0.517 74.001% 17.146% −12.001% 68.857% 67.454% −222.802% 224.204%
TEXTILES −0.118 −57.104% −31.488% −56.743% 31.128% 95.107% −109.508% 45.529%
LEATHER −8.161 −79.285% −32.688% −20.189% −26.408% 39.277% −9.997% −55.689%
WOOD −0.522 −51.124% −6.221% −16.933% −27.969% 100.694% −71.127% −57.537%
PAPER −32.024 −91.408% 7.380% −11.104% −87.683% −55.944% −27.448% −4.291%
FUEL −39.337 −72.987% 14.936% −9.993% −77.930% −67.360% 20.508% −31.078%
CHEMICALS −146.321 −58.566% 15.620% −14.106% −60.080% −26.148% −22.999% −10.933%
RUBBER −1.357 −80.407% 12.491% −21.869% −71.029% −4.095% −38.309% −28.624%
MINERALS −5.433 −55.292% 5.711% −23.931% −37.071% −13.334% 68.607% −92.344%
METALS −233.565 −76.669% 9.686% −18.161% −68.194% −47.956% −12.710% −7.528%
MACHINES −7.281 −79.956% −0.615% −8.481% −70.860% −20.319% −33.191% −17.349%
ELECTRIC −0.767 −56.640% 33.428% −4.169% −85.900% 197.300% −5.449% −277.750%
TRANSPORT −303.514 −96.016% 4.984% −3.668% −97.332% −81.202% −3.993% −12.136%
MISCELLANEOUS −12.428 −98.410% 6.674% −4.302% −100.782% −94.116% −2.935% −3.731%
UTILITIES −37.548 −27.356% 11.354% −17.566% −21.144% 9.046% −33.271% 3.082%
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Figure 3. Major drivers of induced toxic emission changes in the mining and transportation equipment sectors. Note: Each acronym
represents the following:ΔScale is the change in the final demand effects,ΔSTR is the changes in the structure of industrial production,
ΔTEC is the change in the toxicity intensity of emitted chemical substances, ΔEOP is the changes in end-of-pipe treatment effects,
and ΔCP is the changes in cleaner production effects.

copper and arsenic compounds, which decreased by
87% and 83%, respectively. Copper and arsenic com-
pounds rapidly decreased during this period for two
main reasons.

First, copper and arsenic compounds were reduced
due to scaled-down production in the US copper and
gold mining sectors, respectively. The copper min-
ing sector accounted more than 90% of the release
from copper compounds in the US mining sector in
1998. Meanwhile, the production in US copper mines
decreased from 1.86 million tons to 1.18 million tons
from 1998–2009 (US Geological Survey 2017). Simi-
larly, the gold mining sector accounted for more than
95% of the arsenic compound release in the US min-
ing sector in 1998, as arsenic compounds are mainly
released through the roasting of arsenious gold ores
(Wang and Mulligan 2006). US gold mine production

decreased from 366 tons in 1998 to 210 tons in 2009
(US Geological Survey 2017). Thus, the scaling down
of copper and gold mine production contributed to
the decrease in the total release of copper and arsenic
compounds in the US mining sector, respectively.

Second, corporate pollution prevention activities
are another contributing factor to toxic chemical
release reduction in the mining sector. Especially
in large-scale US mining companies, such activ-
ities were implemented to prevent environmental
pollution in cyanidation practices and to enhance
acid mine drainage control (Hilson and Murck
2001). Table S6 shows the corporate activities imple-
mented for pollution prevention in the metal mining
industry, as listed on the US EPA homepage
(www3.epa.gov/enviro/facts/tri/p2.html). From this
information, we can see that corporate pollution
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prevention activities also effectively contribute to
reducing the sources of metal compound releases.

In the transportation equipment industry, ΔTEC
strongly contributed to reducing the induced toxic-
ity, whereas ΔCP did not have much of an effect
on driving toxicity compared with that observed in
the mining sector. These results imply that the trans-
portation equipment industry improved its production
processes using less toxic substances in its manufac-
tured goods and these improvements manifested as a
decrease in TEC substances, whereas the amount of
chemical substances emission per industrial gross out-
put did not change markedly. Specifically, we found
that the reduction in induced toxicity in the transporta-
tionequipment industrywas achievedbydecreasing the
release of asbestos. In the US transportation equipment
sector, asbestos was responsible for 97% of the toxicity
in termsof chemical releases in1998.However, asbestos
emissions were reduced from 1843 tons in 1998 to 54
tons in 2009, which decreased the share of asbestos in
total chemical toxicity to 28.5% in 2009.

Asbestos was widely used in the production of
high friction automotive parts (e.g. brake pads, clutch
pads, etc.) (Cowan et al 2015). However, advances in
materials have enabled the production of asbestos-
free products (e.g. antimony compounds) (Iijima
et al 2007). In the same period, the emissions of anti-
mony compounds have increased three-fold (31 tons
to 93 tons) in the transportation equipment industry.
This increase implies that the transportation industry
increasingly uses antimony compounds in its pro-
duction processes. This substitution of chemicals and
materials was the main reason for the reduction in the
toxicity of chemical emissions induced by the trans-
portation equipment sector from 1998–2009.

Here, we investigate how our estimation results
are different from those in previous studies focusing
on toxic chemical substance management but not on
chemical toxicity. Fujii and Managi (2013) and Koh
et al (2016) used decomposition analysis to anal-
yse toxic chemical substance management in various
industrial sectors in the US.

Both studies indicate that CP is a major contributor
to emission intensity reduction in many industries. In
this study, we reveal that TEC is a more important fac-
tor in reducing chemical toxicity in industrial sectors,
especially the paper, fuel, metal, and transportation
equipment sectors (see table 2). This information is
useful when evaluating toxicity management activities
by substituting the reduction of chemical substances or
the input amount of chemical materials.

5. Uncertainty of consumption-based toxic
emissions in the US

As we reported in the previous section, consumption-
based toxic emissions in the US decreased by 83%
from 1998–2009 (figure 2). However, an important

problem is that this result may be seriously statistically
biased due to data errors. To validate the statistical
bias, we conducted a Monte Carlo analysis for the
consumption-based accounting described in section
2.4. table S7 in the supplementary information shows
the results for 95% confidence intervals of the induced
toxic emissions of US industrial sectors associated with
final demand by country.

Table S7 illustrates that for 1998, the consumption-
based toxic emissions in the US associated with the
final demand of countries (i.e. world final demand)
ranged from a low of 5654 billion tons to a high of
5906 billion tons (see ‘TOTAL’ in 1998 of table S7 in
the supplementary material). For 2009, we observed
that the consumption-based toxic emissions in the US
associated with the final demand of countries ranged
from a low of 926 billion tons to a high of 973 billion
tons (see ‘TOTAL’ in 2009 of table S7).

These results imply that the induced toxic emissions
in the US in 1998 and 2009 are not significantly affected
by data errors. Using the 95% confidence intervals for
the induced emissions in 1998 and 2009, we can easily
calculate the 95% confidence intervals for the change in
the induced emissions from 1998–2009 as [926−5906,
973−5654]=[−4980, −4681]; therefore, we ultimately
verified a sharp 82%−84% decline in consumption-
based toxic emissions in theUSduring the studyperiod.
Similarly, we see that the toxic emissions in the US
associated with the final demand of a specific country
are also not significantly biased due to data errors (see
table S7).

6. Conclusions

This article examined how the final demands of
different countries induced changes in the toxic emis-
sions in US industrial sectors. We focused on three
factors–changes in the demand scale, production struc-
ture, and the toxic emission intensity–to identify
the major drivers responsible for inducing changes
in toxic chemical emissions in the US. In addi-
tion, a further decomposition approach was proposed
to clarify the reason why the toxic chemical inten-
sity changed. This approach used three factors that
describe pollution abatement in industrial production
processes. Our findings revealed the following three
key results.

First, pollution abatement efforts by US industries
have resulted in a decrease of 83% in toxic emissions
induced by the US industrial sector from 1998–2009.
In 2009, 87.0% of the toxic emissions in the US were
induced by final US domestic demand and 13.0% were
induced by foreign final demand.

Second, the largest contributors towards pollution
abatement differed among industries. In particular, we
found that CP methods had a significant effect on
reducing toxic emissions in the mining sector from
1998–2009. Similarly, decreasing toxicity per chemical
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emission was a key factor in reducing the induced toxic
emissions in the transportation equipment industry.

Finally, the changes in induced toxic emissions dif-
fered among importing countries and industries in
exporting countries. These results imply that combi-
nations of demand-side effects and supply-side effects
are diverse. These different trends provide useful infor-
mation for discussing the toxic chemical management
policy that considers the product supply chain.

The integrated decomposition analysis framework
developed in this study is considered useful for under-
standing why industrial toxic emissions have changed
over time by focusing on demand-side effects and
supply-side effects. In addition, the chemical toxicity
accounting framework proposed in this study can be
used to estimate the changes in toxic emissions induced
by specific regions and countries.

To understand the change in toxic emissions in
moredetail, emissionsdischargemethods (e.g. air emis-
sions,waterdischarge) are alsokey factors in addition to
supply anddemand-side effects. Future research should
attempt to provide a more comprehensive evaluationof
toxic emissions changes based on the type of discharge
method.
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