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Abstract
The Ethiopian economy and population is strongly dependent on rainfall. Operational seasonal
predictions for the main rainy season (Kiremt, June–September) are based on statistical approaches
with Pacific sea surface temperatures (SST) as the main predictor. Here we analyse dynamical
predictions from 11 coupled general circulation models for the Kiremt seasons from 1985–2005 with
the forecasts starting from the beginning of May. We find skillful predictions from three of the 11
models, but no model beats a simple linear prediction model based on the predicted Niño3.4 indices.
The skill of the individual models for dynamically predicting Kiremt rainfall depends on the strength
of the teleconnection between Kiremt rainfall and concurrent Pacific SST in the models. Models that
do not simulate this teleconnection fail to capture the observed relationship between Kiremt rainfall
and the large-scale Walker circulation.

1. Introduction

Ethiopia’s fast-growing economy is heavily dependent
on the climate sensitive sectors of agriculture, water,
energy, health, trade and infrastructure. Agriculture is
one of the main branches of economy, which provides
employment for 85% of the Ethiopian population (CIA
2017). Yet the agricultural activity in most parts of
the country is highly dependent on the performance
of seasonal rainfall. Especially in rural regions, the
population is heavily dependent on rain-fed farming
(Cheung et al 2008). In combination with popula-
tion growth (CIA 2017) and possibly rainfall decrease
(Cheung et al 2008, Funk et al 2012), Ethiopian
society can greatly benefit from reliable seasonal
forecasts.

Climate predictability on seasonal time scales has
two main sources: persistence, and slow variability pat-
terns like the El Niño Southern Oscillation (ENSO).
On seasonal time scales, Ethiopian rainfall variabil-
ity is mostly linked to sea surface temperatures (SST)
in the Indian and Pacific Oceans (Gissila et al 2004,

Hastenrath et al 2004, Korecha and Barnston 2007,
Segele et al 2009, Diro et al 2011a, Endris et al 2016).
In particular, a strong negative correlation between
Ethiopian rainfall and tropical Pacific SST exists in the
main rainfall season (Kiremt, June–September (JJAS)).
In a previous study, we found that anomalous warm
eastern Pacific SST in JJAS cause uplift over the cen-
tral Pacific and thus drive an anomalous large-scale
circulation with subsidence over East Africa. The over-
all subsidence over Ethiopia and related suppression
of low-level moisture influx reduce Kiremt rainfall
(Gleixner et al 2016).

The predictable ENSO phenomenon dominates
Pacific SST variability on interannual time scales and
is the main predictor of statistical predictions of
Ethiopian rainfall (Beltrando and Camberlin 1993,
Gissila et al 2004, Segele and Lamb 2005, Korecha
and Barnston 2007). The operational forecasts of the
National Meteorology Agency (NMA) of Ethiopia
also rely on observed and predicted SST, and sta-
tistical approaches for the seasonal prediction of
rainfall (Korecha and Sorteberg 2013). So far, rainfall
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Table 1. List of CGCMs that provided the seasonal predictions used in this study.

MODEL Atmosphere Ocean Reference

CCCMa-CanCM4
(here: CC4)

CanAM4 (T63L35) CanOM4 (100kmL40) Merryfield et al 2013

Climate Forecast
System (here: CFS)

GFS (T62L64) MOM3 (1◦ × 1/3◦L40) Saha et al 2006

ECMWF System-4
(here: ECM)

IFS (T255L91) NEMO v3.0 (1◦ × 1◦L42) Molteni et al 2011

MPI-ESM (here: MPI) ECHAM6 (T63L47) MPIOM (GR1.5L40) Baehr et al 2015
MRI-CGCM3 (here:
JMA)

MRI-AGCM3 (TL95L40) MRI.COM3 Yukimoto et al 2012

MIROC5 (here: MIR) (T85L40) (1.4◦ × 0.5–1.4◦L50) Watanabe et al 2010,

Tatebe et al 2012
POAMA2 (here: P_A,
P_B, P_C)

BAM (T47L17) ACOM2 (2◦ × 0.5–1.5◦L25) Yin et al 2011,

Hudson et al 2013
ECHAM5/MPI-OM
(here: MP2)

ECHAM5 (T63L31) MPIOM (GR1.5L40) Keenlyside et al 2013

NorESM (here: NOR) CAM4-OSLO

(1.9◦ × 2.5◦L26)

MICOM-HAMMOC

(0.5◦−2◦L53)

Bentsen et al 2013

predictions with dynamical models show little skill
(Diro et al 2012, Jury 2014, Shukla et al 2016).

Due to advances in observation methods, assim-
ilation techniques and climate models, SST forecasts
have been improving continuously over recent decades
anddynamicalENSO indexpredictions are competitive
with statistical predictions (Kirtman and Pirani 2008,
Council 2010). Nevertheless, rainfall predictions con-
tinue to provide a challenge for the seasonal prediction
community (Kirtman and Pirani 2008). In this study
we compare Kiremt rainfall predictions from 11 cou-
pled general circulation models (CGCMs) to address
the following questions:

• How well can state-of-the-art CGCMs predict
Kiremt rainfall?

• Where do the large differences in model skill come
from?

• Can the skill of direct CGCM predictions of Kiremt
rainfall be improved by inferring rainfall variability
from CGCM-predicted large-scale variability (e.g.
ENSO variability)?

2. Data

2.1. CGCM seasonal hindcasts
We analyse seasonal hindcasts of 11 CGCMs (table 1).
We use nine hindcast sets from the World Climate
Research Programme’s (WCRP) Climate Historical
Forecast Project (CHFP). We choose the models that
provide forecasts starting in the beginning of May for
the time period 1985–2005 and cover the Kiremt season
of JJAS. Although earlier lead times would give more
time for response planning, May-start predictions are
selected because they have higher prediction skill rela-
tive to earlier leads (Jury 2014). The Australian Bureau
of Meteorology provided three sets of hindcasts of the
POAMA model, which we treat as individual models,
after ensuring that they differ in their mean circula-
tion patterns (not shown) as well as prediction skill.
The three setups differ as follows: P_C is the standard

setup, as used for operational forecasts, P_A uses an
alternative shallow convection parameterization, P_B
is identical to P_A with additional atmosphere–ocean
flux correction. A comparison of P_A and P_B would
allow for an impression of the effect of flux correc-
tion, but that is not the purpose of this study. In
addition to the CHFP models we include hindcasts
from the Norwegian Earth System Model (NorESM)
and ECHAM5/MPI-OM (MPI2). The 11 models vary
strongly in resolution as well as in assimilation method
(not listed), but our results indicate that these differ-
ences are not the dominant source of skill differences
in Ethiopian rainfall predictions.

Since the SST was not available from the CHFP
models, we use surface temperature (TS) and vali-
date it with observed SST over ocean only. We analyze
sevenensemblemembersof eachmodel andpresent the
ensemble average of each model as well as the multi-
model average in the following figures. The data is
availableona2.5◦ × 2.5◦ grid and supplementaryfigure
1 available at stacks.iop.org/ERL/12/114016/mmedia
shows the grid boxes used for the All-Ethiopian average
rainfall.

2.3. Validation data
We compare the seasonal hindcasts of JJAS rainfall
in Ethiopia with blended rainfall observations (Dinku
et al 2014). These observations are based on in situ
measurements from over 500 NMA rain gauges within
Ethiopia. The station data is interpolated with satel-
lite estimates from the TARCAT (TAMSAT African
Rainfall Climatology And Time-series) version 2 from
the TAMSAT (Tropical Applications of Meteorology
using SATellite data and ground-based observations)
research group (Maidment et al 2014). Here we use
rainfall data at 717 points (see supplementary figure 1),
which are unevenly distributed over Ethiopia and cap-
ture the wide range of inhomogeneous rainfall regions
within the country. We are interested in the large-scale
effect on Kiremt rainfall, and therefore only consider
the All-Ethiopian seasonal average. The variability of
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Figure 1. (a) Standardized JJAS All-Ethiopian rainfall from 1985 to 2005 in observations (black solid), 11 CGCM predictions (thin
lines), the multi-model prediction (black dotted) and SST based prediction (red dotted). (b) Correlation between observed and
predicted JJAS ALL-Ethiopian rainfall between 1985–2005 for 11 CGCM predictions, the multi-model prediction (black) and SST
based prediction (red) for the ensemble mean (left columns) and the average of the individual ensemble members (right column).
The horizontal dashed line mark the 95% significance level. (c) The annual cycle of monthly ALL-Ethiopian rainfall between 1985 and
2005 in observations (black) and the May-start predictions of the 11 CGCMs in mm day−1 .

the All-Ethiopian rainfall is dominated by rainfall in
central and northwest Ethiopia, which receives the bulk
of JJAS rainfall.

For validation of the TS hindcasts we use the
Extended Reconstructed Sea Surface Temperature ver-
sion 3b (ERSSTv3b) dataset, which is based on in situ
measurements and available on a 2◦ grid. ERSSTv3b
is constructed as the ERSSTv3 (Smith et al 2008),
but excludes satellite SST data that caused a cold
bias.

3. Results

3.1. Rainfall prediction skill
The multi-model prediction—the average of all mod-
els and ensemble members—of Ethiopian summer
rainfall provides an overall impression of the climate
model skill. The time series of the multi-model JJAS
Ethiopian rainfall (black dotted line) agrees with obser-
vations (black line) reasonably well, with anomalies of
the same sign in the most extreme years (figure 1(a)).
The correlation between JJAS rainfall predicted by the
multi-model and observations is 0.45. The individual
models vary strongly in skill. We compare the average
prediction skill of the individual ensemble members of
all models, as well as their ensemble mean prediction
skill.Thefirst is thebasis for the lateranalysis, as it allows

fair comparison of simulated and observed relations
(observations being only one representation of reality).
For all models the ensemble average rainfall predictions
have higher skill than the corresponding individual
ensemble members on average (figure 1(b)). This is to
be expected, as ensemble averaging increases the signal
to noise ratio by averaging out internal variability of the
single runs. The skill of the individual model (ensemble
mean) rainfall predictions reach correlations from 0.08
to 0.53, which agrees with the finding of Jury (2014) for
JJA predictions for the Ethiopian highlands. Only three
models (ECM, P_A and MPI) show a correlation sig-
nificantly different from 0 (5% significance level) when
the ensemble mean performance is considered. They
beat the multi-model prediction skill of 0.45, which
is hampered by including a number of models with
virtually no skill. If we exclude these models and con-
sider a multi-model consisting only of ECM, P_A and
MPI, we find a correlation of 0.57 with observations,
which beats all individual systems. This comes as no
surprise, as multi-model predictions based on systems
of similar skill usually score higher skills than indi-
vidual models and the result is more robust (Palmer
et al 2016, Hagedorn et al 2005, Gleckler et al 2008,
Kirtman and Pirani 2008).

One reason for low skill may be mean biases. How-
ever, while the seasonal cycles of Kiremt rainfall in
the 11 models show a large spread in the rainfall bias
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(figure 1(c)), the bias seems unrelated to the predic-
tion skill. As an example, the model with the strongest
bias (MIR) has medium skill, while P_C has very little
bias and very little skill. The seasonality of the rainfall
is simulated realistically in most models. NOR is an
exception with a bimodal seasonality instead of a peak
during Northern Hemisphere (NH) summer; it has
very low prediction skill for this season. However, while
a realistic seasonal cycle seems to be a requirement, it
by no means guarantees a skillful Kiremt prediction.
The MP2 prediction is an example of a model with a
realistic seasonal cycle (albeit with a weaker amplitude
than observations) of Ethiopian rainfall and yet it has
the lowest prediction skill of the 11 models.

While the multi-model rainfall prediction shows
promise with a correlation with observations of 0.45,
we find higher skill in a simple SST-based predic-
tion: A linear regression model based on the Niño3.4
index (section 3.2) from the multi-model prediction
(figures 1(a) and (b) in red) gives a better recon-
struction of the observed rainfall time series with a
correlationof 0.68.Bootstrapping showed that theSST-
based prediction is more skillful than the dynamical
prediction with a likelihood of around 90%. How-
ever, the superior skill of the SST-based prediction is
very much due to its superior prediction of the years
1987 and 1988. If we exclude those two years, there is
no significant difference between the SST-based and
the multi-model prediction. We get a correlation of
observed JJAS rainfall and predicted JJAS rainfall of
0.54, while the correlation of observed rainfall and
predicted Niño3.4 index is reduced to 0.55. For the
individual models the skill with such an SST-based
prediction ranges from 0.56 to 0.71 (supplementary
figure 2(a)).

3.2. Kiremt–Pacific teleconnection
In order to capture Kiremt rainfall predictability asso-
ciated with tropical Pacific SST, it is crucial that the
models correctly simulate the teleconnection between
the Pacific and East Africa. The observed correlation
between Kiremt rainfall and SST shows an El Niño like
structure with negative correlations in the central and
eastern Pacific and positive correlations in the region
of the warm pool (figure 2(a)). This SST anomaly pat-
tern matches a canonical El Niño, but Preethi et al
(2015) show that El Niño Modoki events have a sim-
ilar albeit weaker impact on JJAS rainfall in tropical
Africa. On average, the 77 individual simulations of the
CGCMs (seven simulations per model) show a strik-
ingly similar, albeit weaker correlation pattern (figure
2(b)). In the multi-model mean, the teleconnection
pattern is stronger than observations, with correlations
exceeding 0.8 (figure 2(c)). This is not surprising as
observations represent one realization only and aver-
aging over several realizations reduces the impact of
atmospheric variability unrelated to SST. In all pan-
els the strongest correlations are in the Niño3.4 region
with value exceeding −0.7. Therefore in the following

analysis we use the Niño3.4 index as representative of
the Pacific SST variability.

We can improve our understanding of the impor-
tance of this teleconnection for the Kiremt prediction
skill of the models with a basic linear regression model.
Here, we assume Kiremt rainfall (P) can be linearly par-
titioned into a part driven purely by Niño3.4 SST (N)
and an independent part 𝛽:

P = 𝛼N + 𝛽. (1)

According to this model we can express the correlation
between observed and predicted Kiremt rainfall as the
product of the prediction skill for the Niño3.4 index
(correlation between observed (NO) and predicted
Niño3.4 index (NM)), the observed teleconnection
strength (correlation between observed Kiremt rainfall
PO and observed Niño3.4 index NO) and the simulated
teleconnection strength (correlation between predicted
Kiremt rainfall PM and predicted Niño3.4 index NM):

Corr(Po, PM) = corr(No,NM)
∗ corr(Po,No) ∗ corr(PM,NM).

(2)

Here we assume that the rainfall variability indepen-
dent of ENSO is unpredictable and thus unrelated (i.e.
corr (𝛽_obs, 𝛽_model) = 0). As we are interested in
the source of raw skill of the models rather than the
benefit of ensemble averaging, we look at the average
of the correlation values of the seven realizations for
every model, instead of the correlation of the ensem-
ble mean. This also allows direct comparison to the
observed teleconnection strength, which by definition
isderived fromasingle realization.The theoretical value
of Kiremt prediction skill (equation (2)) shows a strong
linear relationship to the actual prediction skill of the
models (figure 3(a)). The correlation between these 11
points is 0.84, which means the theoretical model can
explain 71% of the variance of the Kiremt prediction
skill.

To quantify the relative importance of the terms of
equation (2), we compare the Kiremt prediction skill
to the Niño3.4 prediction skill corr(NO, NM) and the
teleconnection strength corr(PM, NM). Niño3.4 pre-
diction skill shows little spread between the models,
the correlation ranges from 0.7 to 0.83 (figure 3(b) and
supplementaryfigureS2(b)).There is aweak linear rela-
tionship between Niño3.4 prediction skill and Kiremt
prediction skill. Correlation between the two is 0.41,
therefore only 17% of the Kiremt prediction spread is
explained by differences in Niño3.4 skill. In contrast,
the Kiremt prediction skill seems to depend strongly
on the strength of the teleconnection, those variables
have a 0.8 correlation (figure 3(c)). Thus, 65% of the
model spread in Kiremt prediction skill is explained
by the differences in teleconnection strength. Note that
only three of the models have a teleconnection strength
similar to the observed value of 0.7.

As already shown in figure 2(c) the multi-model
teleconnection is stronger than any of the individ-
ual models’ teleconnection (correlation −0.83). A far
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Figure 2. Correlation between JJAS All-Ethiopian rainfall and JJAS SST/TS (OBS/models) in (a) observations, (b) the individual
ensemble members’ predictions (averaged) and (c) the multi-model prediction from 1985–2005. Only values significant on the 5%
level are shown. The green boxes mark the Niño3.4 region.

superior prediction to the purely dynamical rainfall
predictions can be realized by combining the multi-
model SST predictions with the multi-model mean
teleconnection patterns, using the linear regression
model (equation (1)). The time series of this SST-based
rainfall prediction (figure 1(a)) has a correlation to
observations of 0.68 (figure 1(b)) and is identical to the
correlation between observed Kiremt rainfall and the
predicted JJAS Niño3.4 index.

3.3. Impact of large-scale characteristics on the tele-
connection
While it is clear that the strength of the teleconnection
of Kiremt rainfall and Pacific SST is decisive for the
models’ prediction skill of Kiremt, it is unclear why
models differ so strongly in regard to this teleconnec-
tion. The strength of the teleconnection depends on
the strength and structure of the diabatic heating over
the tropical Pacific, and how the ocean–atmosphere
system responds to the induced large-scale circulation
changes (Gill 1980). The strength of the diabatic heat-
ing depends, among other things, on the strength of

surface wind convergence and the amount of surface
evaporation. These in turn are also both related to the
magnitude of the SST anomalies (Lindzen and Nigam
1987, Zebiak and Cane 1987). The vertical structure of
the diabatic heating depends on the vertical moisture
and temperature structure of the atmosphere and on
closure assumptions in the atmospheric model con-
vection schemes, such as moisture entrainment and
detrainment (Yano 2014).

Thus, fully understanding the differences in the
teleconnections would require a detailed analysis of
all of these processes. This is difficult to accomplish
with the data available from the CHFP database, and
is beyond the scope of this study. Nevertheless, we
have investigated some basic relations in an effort
to shed some light on the cause of model differ-
ences by comparing the four models with the strongest
teleconnections to the four models with the weakest
teleconnections.

Velocity potential at 200 hPa serves as an indicator
of large-scale vertical motion, with positive upper-
level velocity potential representing positive large-scale
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Figure 3. (a) Theoretical prediction skill for JJAS ALL-Ethiopian rainfall according to equation (2) versus the actual JJAS prediction
skill in the individual ensemble members (averaged over each model). (b) Niño3.4 JJAS prediction skill versus prediction skill for JJAS
ALL-Ethiopian rainfall in the individual ensemble members (averaged over each model). (c) Correlation between JJAS Niño3.4 index
and JJAS All-Ethiopian rainfall and prediction skill for JJAS ALL-Ethiopian rainfall in the individual ensemble members (averaged
over each model). The observed correlation is −0.7 (horizontal line). All correlations are computed over the time period 1985–2005.

convergence and therefore upward motion. Therefore
the most direct approach to investigate the telecon-
nection between the Niño3.4 index and Kiremt rainfall
is the correlation between each index and the veloc-
ity potential. The observed correlation of the Niño3.4
index with velocity potential at 200 hPa shows a large
cell-like structure: during warm SST events in JJAS, the
uplift over the central Pacific (correlation of more than
0.9 to the Niño3.4 index) is balanced by a wider region
ofweaker regionof downwardmotion fromthewestern
Pacific over the Indian Ocean into Africa (figure 4(a)).
In terms of the teleconnection between the Niño3.4
index and the large-scale circulation, the models with
strong teleconnections and the models with weak tele-
connections largely agree and there are no systematic
deviations from the average pattern of all 11 models
(figures 4(b) and (c)).

The observed correlation between JJAS All-
Ethiopian rainfall and JJAS velocity potential at 200 hPa
is generally weaker than the correlation to the Niño3.4
index, not exceeding values of 0.8 (figure 4(d)).
However, the cell structure looks very similar, especially

the pattern over the Pacific. The balancing circulation
over the Indian Ocean and Africa is more localized
and centered over the Indian Ocean. Here, the mod-
els with the strongest teleconnections reproduce the
observedpatternverywell and there is strongagreement
among the models (figure 4(e)). In contrast, the mod-
els with the weakest teleconnections hardly show any
correlation between rainfall and the large-scale circula-
tion (figure 4(f)). A weaker influence of the large-scale
circulation on Ethiopian rainfall suggests a stronger
influence of local effects. However, a comparison of
the correlation between Ethiopian rainfall and local
surface temperature among the models (not shown)
could not support this assumption and more detailed
analysis is required to understand this discrepancy to
observations.

In addition, we compared the four models with the
strongest teleconnections to the four models with the
weakest teleconnections in regard of bias and variance
of velocity potential, rainfall, and SST (not shown).
However, we did not find common features related to
the strength of the teleconnection.
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Figure 4. Left panels: Correlation between JJAS Niño3.4 index and JJAS velocity potential at 200 hPa in (a) observations, (b) the four
models with the strongest correlation between JJAS All-Ethiopian rainfall and Niño3.4 index and (c) the four models with the weakest
correlation between JJAS All-Ethiopian rainfall and Niño3.4 index. Right panels: Correlation between JJAS All-Ethiopian rainfall and
JJAS velocity potential at 200 hPa in (d) observations, (e) the four models with the strongest correlation between JJAS All-Ethiopian
rainfall and Niño3.4 index and (f) the four models with the weakest correlation between JJAS All-Ethiopian rainfall and Niño3.4 index.
All correlations are computed over the time period 1985–2005. Hatching in panels (b)–(f) shows regions where all four models have
the same sign deviation from the average of the correlation of all 11 models. Only values significant on the 5% level are shown.

4. Summary and conclusions

We showed that some CGCMs have significant skill
in forecasting JJAS Ethiopian rainfall. The rainfall pre-
diction of the most skillful model from ECMWF has
a correlation of 0.53 with observations, and the multi-
model prediction has a correlation of 0.45. These values
are comparable to previous research (Jury 2014, Shukla
et al 2016). However, the majority of the 11 models
studied here are not skillful.

The Kiremt rainfall prediction skill of the individ-
ual models depends strongly on the strength of the
simulated teleconnection between Kiremt rainfall and
Pacific SST and is improved by ensemble averaging, but
not necessarily by model averaging. Models with a weak
teleconnection between Niño3.4 index and Kiremt
rainfall do not capture the impact of the large-scale
atmospheric circulation on local rainfall, and therefore
have no or low Kiremt rainfall prediction skill. Such
a missing relationship between local Ethiopian rainfall
and the large-scale circulation is likely related to differ-
ences in the model physics. Further analysis is necessary
to identify these differences and provide suggestions
how to improve the models accordingly. For example,
we expect the skill of a model in simulating Ethiopian
rainfall to depend on the choice of convection scheme,
as generally seasonal forecasts of rainfall differ strongly
with different convective schemes (Shin et al 2003).
Biases in local wind pattern or the representation of
topography might play a role as well.

While some CGCMs have moderate prediction
skill for Kiremt rainfall, the predictions are not yet
competitive with simple linear SST-based predictions.
Higher skill can be achieved by using the predicted
Niño3.4 index directly (correlation of 0.68 for the
multi-model). This way the model imperfections in
the teleconnection strength are circumvented with a
linear approximation. Such a ‘hybrid’ method for rain-
fall prediction—statistical forecast using dynamically
predicted predictors—has been shown to beat multi-
model prediction of NH spring rain in East Africa
(Shukla et al 2014)) and provide skillful forecasts for
rainfall in West and South Africa (Ndiaye et al 2011,
Landman et al 2012).

The assumption that Kiremt rainfall is a linear
function of the Niño3.4 index implies a predictabil-
ity limit for dynamical models. If we consider a model
with perfect SST skill (corr (NO, NM) = 1) and a very
strong teleconnection (corr (PM, NM) = 1), according
to equation (2) prediction skill for Kiremt would never
exceed the strength of the observed teleconnection of
0.7. Such skill is almost reached with the SST based
prediction. Therefore for dynamical models to beat
the simple dynamical–statistical model, forecast skill
must arise from either predicting the potential non-
linear relationship to Pacific SST or different oceanic or
atmospheric variability patterns. Such additional
sources of predictability would result in the beta term
(equation (1)) not being white noise, but with a short
record it is difficult to find conclusive evidence of this.
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However, there is some indirect evidence of other
sources of predictability. First, the multi-model tele-
connection strength between Kiremt rainfall and
Niño3.4 is only −0.83. We found this to be the upper
limit of the teleconnection strength when testing the
skill of multi-model predictions as a functionof ensem-
ble size (not shown). An upper limit of 1 would
be expected if 𝛽 were completely unpredictable. Sec-
ond, the correlation of predicted Niño3.4 indices and
observed Kiremt rainfall is higher than the theoretical
prediction skill due to equation (2) (figure 3(a)), also
implying that there must be a predictable component
to 𝛽. Predictability of 𝛽 can arise from either other
SST teleconnections impacting Kiremt rainfall or from
non-linear ENSO impacts. For example, several stud-
ies found SST in the Atlantic and Indian Oceans to be
useful predictors for Kiremt rainfall (Gissila et al 2004,
Korecha and Barnston 2007, Diro et al 2011b).

Lastly, while our SST-based prediction model is
clearly overly simple, it nevertheless serves to shed light
on the Kiremt prediction skill differences among the
models, and we hope this work stimulates greater effort
to improve rainfall predictions in this region.
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