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Abstract
About a fifth of the global wetland methane emissions originate from boreal peatlands, which
represent an important land cover type in boreal landscapes in the sporadic permafrost zone. There,
rising air temperatures could lead to warmer spring and longer growing seasons, changing landscape
methane emissions. To quantify the effect of warmer spring conditions on methane emissions of a
boreal peat landscape in the sporadic permafrost zone of northwestern Canada, we analyzed four
years (2013–2016) of methane fluxes measured with the eddy covariance technique and long-term
(1951–2016) meteorological observations from a nearby climate station. In May, after snowmelt was
complete, mean air temperatures were more than 2 ◦C warmer in 2013, 2015, and 2016 than in 2014.
Mean growing season (May–August) air temperatures, in contrast, differed by less than 1 ◦C over the
four years. Warmer May air temperatures caused earlier wetland soil warming, with temperatures
rising from ∼0 ◦C to >12 ◦C 25 to 40 days earlier and leading to ∼6 ◦C warmer mean soil
temperatures between May and June. However, from July to August, soil temperatures were similar
among years. Mean May to August and annual methane emissions (6.4 g CH4 m−2 and 9.4 g
CH4 m−2, respectively) of years with warmer spring (i.e. May) temperatures exceeded emissions
during the cooler year by 20%–30% (4.5 g CH4 m−2 and 7.2 g CH4 m−2, respectively). Among years
with warmer springs, growing season methane emissions varied little (±0.5 g CH4 m−2). The
observed interannual differences are most likely caused by a strong soil temperature control on
methane fluxes and large soil temperature differences during the spring. Thus, in a warming climate,
methane emissions from waterlogged boreal peat landscapes at the southern limit of permafrost are
likely to increase in response to more frequent occurrences of warm springs.

1. Introduction

Boreal peatlands contribute about 20% of the global
wetland methane emissions (Bridgham et al 2013,
Saunois et al 2016), which mainly control interannual
variability in global atmospheric methane concentra-
tions (Bousquet et al 2006). At the same time, methane
emissions from wetlands are the largest source of
uncertainty in the global methane budget (Saunois
et al 2016). In a warming climate, boreal landscape

methane emissions are expected to increase with wet-
land extent (e.g. Helbig et al 2017a) and warming
soil temperatures (e.g. Olefeldt et al 2013, Turetsky
et al 2014), while varying in their response to chang-
ing hydrological conditions (e.g. Moore et al 2011).
Peatlands in the sporadic permafrost zone of north-
western Canada store large amounts of organic carbon
(C) (Tarnocai et al 2009), which could be partly
released to the atmosphere as methane in a warm-
ing climate (e.g. Moore et al 1998). For example,
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Figure 1. (a) Land cover types in the southern Taiga Plains (data from Land Cover, ca. 2000-Vector; Olthof et al 2009) and (b)
location of the Scotty Creek watershed (black rectangle) in the Taiga Plains ecozone. (c) Aerial photograph of the boreal peat landscape
surrounding the flux tower (taken on 20 July 2014).

thaw-induced wetland expansion in the sporadic per-
mafrost zone has been shown to increase landscape
methaneemissionsexertingawarmingeffectonclimate
(Helbig et al 2017a).

In boreal peat landscapes at the southern limit
of permafrost, spatial variability in growing season
methane emissions is strongly controlled by the het-
erogeneity in water table position across the landscape
(Bubier et al 1995, Sabrekov et al 2014, Olefeldt et
al 2017). In contrast, temporal variability in methane
emissions is strongly controlled by wetland soil tem-
perature seasonality, when the water table is close to
the peat surface. With a shallow methane oxidation
zone between water table and peat surface, methane
emissions to the atmosphere are primarily driven by
temperature-controlled methane production in the
anaerobic zone (Shannon and White 1994, Wadding-
ton et al 1996, Christensen et al 2003, Treat et al 2007,
Malhotra and Roulet 2015, Helbig et al 2017a). In a
changing climate, wetland soil temperature regimes
will likely be modified by warming air temperatures
and altered snowpack dynamics (Maurer and Bowling
2014, Zhao et al 2016). Warmer wetland soils may
also promote vascular plant productivity and conse-
quently lead to higher root exudation and labile organic
C supply for methanogens (Bergman et al 2000, Rustad
et al 2001, Aerts et al 2006, Chanton et al 2008, Dorod-
nikov et al 2011). For example, Prater et al (2007) have
shown that large methane emissions in recently thawed
wetlands are partly driven by the high productivity
of the colonizing herbaceous vascular plants. These
herbaceous plants with aerenchymous tissue addition-
ally facilitate gas exchange between roots, shoots, and
leaves, and act as conduits between the rhizosphere and
the atmosphere. And as methane is efficiently trans-
ported through air-filled aerenchyma, it can bypass
oxidizing soil layers (Shannon et al 1996).

The first few weeks after the completion of
snowmelt may be a particularly important period
for soil temperature dynamics and thus for methane

emissions: After the removal of the insulating snow
layer (e.g. Zhang 2005), wetland soils often remain
close to 0 ◦C despite positive air temperatures as
ground ice in the top soil layers delays soil warming
by consuming melt energy (e.g. Hayashi et al 2007).
Once ground ice melted in spring, high thermal heat
conductivity of saturated peat soils allows rapid soil
warming (O’Donnell et al 2009). Warmer spring air
temperatures in North America (e.g. Wang et al 2011)
may therefore lead to warmer soil temperatures and
increased spring methane emissions, but their mag-
nitude and the effect on growing season and annual
methane emissions remains unknown. Supported by
long-term meteorological observations, we analyzed
four years of methane emissions from a boreal peat
landscape in the sporadic permafrost zone of north-
western Canada to examine the effect of interannual
variations in air and soil temperature seasonality on
methane emissions.

2. Materials and methods

2.1. Study site
We examined methane fluxes from a boreal peat land-
scape located in the southern portion of the Scotty
Creek watershed (61◦ 18′ 29′′ N; 121◦ 17′ 57′′ W) in the
sporadic permafrost zone of the Canadian Taiga Plains
(figure 1). The continental subarctic climate is charac-
terized by a mean annual air temperature of −2.8 ◦C
and an annual total precipitation of 388 mm [1981–
2010] at Fort Simpson Airport, which is located ca.
60 km north of Scotty Creek (WMO ID: 71946; Envi-
ronment Canada 2016). The Scotty Creek landscape
comprises approximately equal proportions of conif-
erous forests, which are found on forested permafrost
peat plateaus with oxic soil conditions, and mostly
saturated permafrost-free wetlands, mainly collapse-
scar bogs (figure 1). The deep peat soils (>3 m) have
mean organic C stocks of 167 ± 11 kg C m−2 (n = 3;
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Pelletier et al 2017). Thawing permafrost at Scotty
Creek is replacing forested permafrost peat plateaus
with collapse-scar bogs and channel fens (e.g. Quin-
ton et al 2011, Baltzer et al 2014, Helbig et al
2016a). Landscape methane emissions at Scotty Creek
originate almost exclusively from permafrost-free
wetlands, while the black spruce (Picea mariana)-
dominated permafrost peat plateaus appear to be
negligible sources or sinks of methane (Helbig et al
2017a). Collapse-scar bogs are characterized by a shal-
low water table that drops from the moss surface
shortly after snowmelt to about 10 cm to 30 cm below
the moss surface at the end of the growing season (Hel-
big et al 2017a). Collapse-scar bog vegetation mainly
consists of Sphagnum balticum and magellanicum
and ericaceous shrubs (Chamaedaphne calyculata,
Andromeda polifolia, and Vaccinium oxycoccos).
In the wettest bog sections, Scheuchzeria palus-
tris is abundant and its well-developed aerenchyma
and allocation of recent photosynthates to roots
enhances methane emissions (Shannon et al 1996,
Dorodnikov et al 2011).

2.2. Long-term meteorological observations
Long-term monthly air temperature and precipitation
data was obtained from the nearest climate station
at Fort Simpson Airport in order to compare 2013–
2016 site measurements to long-term climate normals.
From year 1951 through 2016, we derived growing
season (average of monthly May to August air tem-
peratures) and May air temperatures and total annual
(October to September) and growing season precipita-
tion. In the southern Taiga Plains, May is usually the
month of snowmelt completion and the first month
with positive monthly mean air temperatures (figure S1
available at stacks.iop.org/ERL/12/115009/mmedia).
For the Scotty Creek watershed, the month of May
is thus defined as spring in this study.

2.3. Eddy covariance and supporting measurements
Half-hourly methane fluxes from the boreal peat
landscape were measured using the eddy covariance
technique. Between 15 May 2013 and 16 December
2016, an eddy covariance system was deployed on the
top of a triangular 15 m tower structure. The sys-
tem consisted of an open-path LI-7700 CH4 analyzer
(LI-COR Biosciences, Lincoln, NE, USA), a CSAT3A
sonic anemometer (Campbell Scientific Inc., Logan,
UT, USA), and an open-path EC150 CO2/H2O gas
analyzer (Campbell Scientific Inc.). Between 2013 and
2015, the LI-7700 was removed from the flux tower due
to electrical power limitations between September and
October (at the end of each measurement period) and
reinstalled before the beginning of snowmelt (between
March and April). We checked the performance of the
LI-7700 CH4 analyzer using a zero- and a span-gas
(Ultra Zero Ambient Air and 2.02 ± 0.1 ppm; Praxair
Canada Inc, Mississauga, ON, Canada) at the begin-
ning and end of each measurement period, and once

or twice during growing season. Methane fluxes were
calculated using the EddyPro software (version 6.1.0,
LI-COR Biosciences). A more detailed description of
instrumental setup, post-processing, and quality con-
trol is given by Helbig et al (2017a). Overall, 42%
of half-hourly methane fluxes passed quality con-
trol (2013: 31%; 2014: 46%; 2015: 42%; 2016: 44%).
Gaps in methane fluxes were filled using a marginal
distribution sampling algorithm (Reichstein et al
2005). To estimate annual emissions, we assumed a
constant daily winter methane flux between Novem-
ber and April. We derived the winter flux estimate
(0.006± 0.006 g CH4m

−2 day−1 [±1 standard devi-
ation]) as the average of non-gapfilled wintertime
methanefluxesbetween2013and2016(i.e. soil temper-
ature at 32 cm depth below the moss surface < 0.2 ◦C).
We also assessed if flux footprint contributions from
forested permafrost peat plateaus and collapse-scar
bogs differed among study years using a 2D foot-
print modelling approach (Kljun et al 2004, Kljun
et al 2015). The mean collapse-scar bog contribu-
tion to flux footprints was 53% with individual years
ranging from 52% to 54%. Forested permafrost peat
plateaus contributed on average 47% with individual
years ranging from 45% to 48%. Interannual variabil-
ity in methane emission was therefore not affected
by flux footprint composition. More details on the
flux footprint modelling approach can be found in
Helbig et al (2016b).

Wetland soil temperature and water table position
ca. 100 m north of the flux tower in a collapse-scar
bog within the eddy covariance flux footprint were
examined as environmental controls on methane emis-
sions. Air temperature (at 2 m; HC2-S3, Rotronic AG,
Bassersdorf, Switzerland), rainfall (TE25WS, Texas
Instruments, Dallas, TX, USA), and snow depth (using
a sonic ranger; SR50A, Campbell Scientific, Logan,
UT, USA) were analyzed to characterize the coupling
between soil thermal and moisture dynamics and mete-
orological conditions. Between 2014 and 2016, soil
temperature at 32 cm below the moss surface (just
beneath the water table) was measured with a type
T thermocouple (Omega Engineering, Stamford, CT,
USA). Water table position in the centre of the bog
was recorded with a vented pressure transducer (OTT
PLS, Mellingen, Switzerland). In 2013, water table
position relative to the moss surface was measured
in the same collapse-scar bog using a HOBO U20
Water Level Logger (Onset Computer Corporation,
Bourne, MA, USA). To approximate soil temperatures
in 2013 for our analysis, we used soil temperatures
measured at 30 cm depth (109 Temperature Probe,
Campbell Scientific Inc.) from a collapse-scar bog
located ∼700 m from the flux tower. A linear regres-
sion between soil temperatures in both bogs in 2014
(r2 = 0.98; RMSE = 0.9 ◦C; n = 7838) was used to cre-
ate the soil temperature time series for 2013. We
estimated the relative importance of monthly soil tem-
perature and water table position in a linear model of
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Figure 2. (a) Accumulated air temperature between May 1st and the onset of a continuous snow-cover for the years 2013 to 2016. The
inset figure shows accumulated air temperature for May. (b) Cumulative rainfall at Scotty Creek (May–December, solid lines) and
water table position in the interior of the wetland (dotted lines). Timing of snowmelt completion and snow-cover onset is indicated
by vertical dashed lines.

Table 1. Growing season (May–August), May air temperatures (Ta), total annual (October–September) and growing season precipitation (P,
May–August) at Fort Simpson Airport for the years 2013–2016 and for the climate normal periods 1951–1981 and 1981–2010. Medians of
growing season and May Ta and of total annual and growing season P and their respective standard deviations are shown for the climate
normal periods (data from Environment Canada 2016).

2013 2014 2015 2016 1951–1981 1981–2010

T
𝑎

(May–August) 15.7 ◦C 15.2 ◦C 15.1 ◦C 15.9 ◦C 13.5 ◦C± 0.8 ◦C 13.9 ◦C± 1.0 ◦C
T
𝑎

(May) 10.8 ◦C 8.4 ◦C 12.5 ◦C 10.8 ◦C 8.0 ◦C± 1.6 ◦C 8.8 ◦C±2.2 ◦C
P (October–September) 327 mm 246 mm 432 mm 351 mm 350± 58 mm 403± 82 mm
P (May–August) 143 mm 121 mm 202 mm 169 mm 160± 43 mm 218± 65 mm

monthly methane emissions using the relaimpo pack-
age (Grömping 2015) in the R statistical computing
environment (R Foundation for Statistical Comput-
ing, version 3.3.2, Vienna, Austria). All statistical tests
used a significance level of 5% (𝛼 = 0.05).

2.4. Vegetation productivity and greenness index
To relate vegetation productivity to methane emis-
sions, we derived daily gross primary productivity
(g C m−2 day−1) of the collapse-scar bog (wetland;
2014–2016) from net ecosystem CO2 exchange mea-
surements at a nearby (ca. 100 m) 2 m eddy covariance
flux tower (see Helbig et al 2017b). Detailed informa-
tion on net ecosystem CO2 exchange measurements
and instrumental setup can be found in Helbig
et al (2016c). Between 2013 and 2015, daily vegetation
greenness of the wetland was tracked with a green-
ness index (green chromatic coordinate; Sonnentag
et al 2012). We obtained the greenness index from
hourly photographs taken during day-time hours from
the 15 m flux tower with a digital camera (Plant-
Cam WSCA04, Wingscapes, Calera, AL, USA). The
green chromatic coordinate was calculated from the
red-green-blue color channel information from the
digital photographs and processed (e.g. outlier filter-
ing) using methods implemented in the phenopix R
package (Filippa et al 2016).

3. Results

3.1. Climate and meteorological conditions
In the southern Taiga Plains, the median of May-
August (i.e. growing season) air temperatures between
the periods 1951–1981 and 1981–2010 significantly
increased by 0.4 ◦C (Wilcoxon rank sum test, p = 0.01,
n = 30; table 1 and figure S2). The growing seasons
during 2013–2016 were 1 ◦C–2 ◦C warmer than mean
growing season air temperature during the period 1981
to 2010.

During 2013–2016, snow disappeared from the
ground each year in early May and the timing
of snowmelt completion varied only by six days
(figure 2). At the end of the growing season, the onset
of a continuous snow-cover ranged from 9 October
(2015) to 4 December (2016). In 2014, average May air
temperature equalled the long-term (1951–2010) aver-
age May temperature. However, 2013, 2015, and 2016
were 2.4 ◦C–4.1 ◦C warmer than the long-term average
(table 1). Between 2011 and 2016, mean May air tem-
perature was warmer than 10 ◦C in 83% of years, while
it was warmer than 10 ◦C in 23% of years between 1981
and 2010 and only in 13% of years between 1951 and
1980. Accumulated air temperature from May through
mid-August was lower in 2014 than in any of the other
years of 2013–2016 driven by cooler air temperatures
in May (figure 2).
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Figure 3. (a) Daily landscape methane emissions (circles) and their 7 day moving average (solid lines) between 2013 and 2016. Timing
of snowmelt completion and snow-cover onset are indicated by dashed lines. (b) Seasonal dynamics of soil temperature at 32 cm in
the wetland between 2013 and 2016.

Annual precipitation (October–September) incr-
eased significantly by 53 mm from 1951–1980 to
1981–2010 (Wilcoxon rank sum test, p = 0.02, n = 30)
owing to an increase in May to August rainfall (table 1).
Between 2013 and 2016, 2014 was the driest year and
2015 was the wettest year. May to June rainfall ranged
from 24 mm (2015) to 100 mm (2016), whereas July to
August rainfall ranged from 68 mm (2014 and 2016) to
179 mm (2015, figure 2). Mean March snow depth at
Scotty Creek ranged from 47 cm to 67 cm (2013–2016).

3.2. Water table dynamics
Interannual variability in water table position between
May and June was small with mean positions rang-
ing from −10 cm (2013) to −6 cm (2016), with −8 cm
in 2014. Mean May to August deviations from the
four-year average water table position ranged from
−0.6 cm (2013) to +1.4 cm (2016). In July to August,
mean water table deviations were slightly more pro-
nounced ranging from −4.5 cm (2016) to +4.7 cm
(2015). Despite considerable interannual variability in
precipitation (see above), maximum interannual dif-
ferences in water table position never exceeded 20 cm
at any time of the year.

3.3. Soil temperature dynamics
During the snow-cover period from December to
April, wetland soil temperatures at 32 cm depth
remained close to 0 ◦C despite large variations in air
temperature from−40 ◦C to+10 ◦C (figure S3). In the
three warmer years (i.e. 2013, 2015, and 2016), rapid
soil warming from 0 ◦C to >12 ◦C occurred earlier
than in 2014. Consequently, mean soil temperatures
between May 15 and June 30 were about 6 ◦C warmer
in 2013, 2015, 2016 (9.8 ◦C± 0.5 ◦C [±1 standard devi-
ation]) than in 2014 (3.8 ◦C). The earliest soil warming
occurred in 2016, but was followed by up to 2.5 ◦C
cooler soil temperatures later in May compared to 2013
and 2015 (figure 3). The interannual soil temperature
differences were less pronounced during the four study
years in July (13.2 ◦C–14.5 ◦C) and August (13.5 ◦C–
14.0 ◦C) and therefore May and June appear to have
the largest interannual soil temperature variability.

3.4. Methane emissions from the boreal peat land-
scape
Summertime methane emissions characteristic for
Scotty Creek (> 0.05 g CH4 m−2 day−1) were reached
several weeks earlier (by the end of June) in years with
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Figure 4. Relationship between mean monthly soil temperature and monthly methane emissions between 2013 and 2016. The dashed
line shows best linear least-squares regression fit for all months with the grey shading showing the 95% confidence interval as derived
from bootstrapping the dataset 1000 times. Solid lines indicate significant linear regressions for individual years, while the 2013
regression shown by the dotted line is not significant. Note that the number of months differs between years due to different lengths
of measurement periods.

warmer May air and soil temperatures than in 2014
(figure 3(a)). During the growing season, daily
methane fluxes continued to increase before peaking
in July and August at about 0.08 g CH4 m−2 day−1 in
the warmer years and at only 0.06 g CH4 m−2 day−1 in
2014. At the start of the snow-cover period, methane
fluxes dropped again close to pre-snowmelt methane
emissions in each year. Total methane emissions
between May 15 and August 31 were not significantly
different among years with warm May temperatures
(2013: 6.2 [6.0–6.6] g CH4 m−2 with 95% confidence
interval [CI]; 2015: 6.5 [6.4–6.9] g CH4 m−2; and 2016:
6.4 [6.3–6.8] g CH4 m−2). However, for the same
period in 2014, total methane emissions were signifi-
cantly smaller with 4.5 [4.3–4.7] g CH4 m−2 (i.e. about
25% smaller). The same pattern continued through to
October 31, with total May to October methane emis-
sions in the warm years exceeding the 2014 emissions
by about 30%. About half of the observed interan-
nual differences in May to October methane emissions
accumulated between May and June, while the remain-
ing differences accumulated between July and October
(total May to October differences: +2.4 g CH4 m−2 in
2015 and +1.9 g CH4 m−2 in 2016). Similarly, annual
methane emissions in 2014 were about 20%–25%
smaller than in 2015 and 2016 (2014: 7.2 g CH4 m−2,
2015: 9.6 g CH4 m−2, 2016: 9.1 g CH4 m−2).

3.5. Soil temperature controls on methane emissions
Monthly methane emissions were significantly corre-
lated with monthly mean soil temperature at 32 cm and
explained 90% of the variance in monthly methane
emissions (2013–2016; r2 = 0.90; p < 0.001; n = 28,
figure 4). In three out of four years (2014–2016),

monthly methane emissions were correlated with soil
temperature (p ≤ 0.01; n = 6 [2014], 8 [2015], 10
[2016]) with linear regression slopes ranging from
+0.09 g CH4 m−2 per ◦C [2014] to +0.14 g CH4 m−2

per ◦C [2016]. No significant correlation with soil tem-
perature was observed in 2013 (p = 0.21; n = 4), most
likely due to a smaller sample size and less varia-
tion in temperature than in the other three years.
In contrast, monthly wetland water table position
was not correlated with monthly methane emissions
(p = 0.14; n = 28; figure S4). A multiple linear regres-
sion model with soil temperature (p < 0.001) and
water table position (p = 0.03) explained only 1%
more of the variance in monthly methane emissions
(adjusted R2: 0.91) than soil temperature alone. The
relative importance of water table position in the
model was only 2.1% (95% CI: 0.5%–15.8%) com-
pared to 97.9% (95% CI: 84.1%–99.5%) for soil
temperature.

3.6. Vegetation productivity
Similar to the reduction in methane emissions in
2014, gross primary productivity of the wetland was
smaller in 2014 than in the warmer years (figure 5).
During the warmer years, a more rapid increase in
gross primary productivity in the early growing sea-
son resulted in peak gross primary productivity rates
exceeding those in 2014 by about 1 g C m−2 day−1.
Only in early September, did gross primary produc-
tivity rates become similar again. There were also
interannual differences in green chromatic coordinate
(GCC), with a consistently lower GCC between May
and August 2014 compared to the warmer years 2013
and 2015.
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Figure 5. Daily gross primary productivity (2014–2016, circles) and camera-derived green chromatic coordinate (2013–2015, solid
lines) of the wetland.

4. Discussion

4.1. Methane flux response to soil temperature and
hydrology
We show that warmer May air and soil tempera-
tures significantly increase annual landscape methane
emissions by 20%–25% in a boreal peat landscape
with sporadic permafrost. Increases in annual methane
emissions are mainly caused by the large interannual
variability in spring and early summer soil tempera-
tures. Despite similar end-of-winter soil temperature
profiles (figures S6 and S7), the interannual differ-
ences in wetland soil temperatures (at 32 cm below
the moss surface) exceeded 10 ◦C in May, with cool
May air temperatures in 2014 contributing to delayed
soil thaw and warming. However, interannual differ-
ences in ground ice content in wetlands may have
additionally modified soil warming rates in spring
(e.g. Hayashi et al 2007). Soil temperature exerts a
strong control on methane emissions in waterlogged
boreal peat landscapes. For example, Helbig et al
(2017a) showed that large differences in summer-
time methane emissions between forested permafrost
peat plateaus and wetlands are reflected in up to
10 ◦C cooler soils (at 32 cm below the moss surface)
on the plateaus compared to the wetland.

At Scotty Creek, the wetland water table posi-
tion remained always within about 30 cm from the
moss surface (figure 2) despite large variability in total
annual precipitation (table 1). Thus, the water table
likely did not drop below the rooting depth of herba-
ceous vascular plants, which usually extends to about
30 cm below the moss surface in peatlands (e.g. Pel-
letier et al 2017, Strack et al 2006) and can extend
to more than 60 cm in collapse-scar bogs (Finger
et al 2016). When water table positions are close to
the moss surface early in the growing season, any delay
in soil warming is likely to result in lower methane

emissions. Thus, warmer May air temperatures and
an earlier soil warming lead to increased annual
methane emissions.

4.2. Methane flux response to vegetation productiv-
ity
Large July and August methane emissions were only
observed in years with warmer May temperatures
despite similar average soil temperatures in July and
August in all years. The observed differences in late
growing season methane emissions are reflected in
interannual differences in wetland vegetation pro-
ductivity and phenology (figure 5). Earlier onset of
soil warming likely enables faster vegetation growth
(Natali et al 2012, Peichl et al 2014, Zhao et al
2016) and leads to a ‘greener’ (i.e. more abun-
dant) vegetation, more plant biomass, and higher
peak gross primary productivity rates (figures 5 and
S5). Increased availability of labile organic C and a
higher biomass of aerenchymous plants with larger
wetland vegetation productivity likely explains larger
late growing season methane emissions in the years
with warmer spring seasons. Small mean growing
season methane uptake rates on forested permafrost
peat plateaus with lower soil moisture content typi-
cally range between −0.2 and −1 mg CH4 m−2 day−1

(Bubier et al 2005, Savage et al 1997) and are therefore
unlikely to explain interannual variability in methane
emissions.

Plant productivity rapidly increased during warm
springs (figure 5) and may have rapidly mini-
mized substrate limitation of methane production
and boosted methanogen activity. Metabolic activity
of methanogens has been shown to increase expo-
nentially with temperature (e.g. Yvon-Durocher et al
2014). In many wetlands, methane emissions show
a similar exponential increase with soil temperature
(e.g. Hartley et al 2015, Helbig et al 2017a). Here, we
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did not observe exponentially increasing, but linearly
increasing methane emissions with soil temperatures
on a monthly time-scale (figure 4). However, if sum-
mer soil temperatures become warmer in a changing
climate, water table position remains close to the peat
surface, and labile organic C supply is maintained,
monthly methane emissions may deviate from the
observed linear relationship. The methane emission
response to warming spring air and soil temperatures
may therefore change with continued warming.

4.3. Methane flux response to soil warming in warm
spring seasons
Methane production rates at low soil temperatures
(<5 ◦C) are strongly temperature-limited (Treat et al
2014). However, differences in annual and growing
season methane emissions between years with warmer
springs were small, despite differences in the timing of
spring soil warming. The earliest soil warming among
the four study years in 2016 was followed by soil
cooling in late May (figure 3). A return to stronger
temperature-limitation of methane production could
explain the attenuated response of methane emissions
to the early onset of soil warming. Also, vegetation
productivity may not have immediately responded
to the rapid and short-term warming (∼four days)
in May 2016 and the following return to lower soil
temperatures may have further limited vegetation pro-
ductivity. As a result, low production of root exudates
may have limited the supply of labile organic C for
methane production. In contrast, later onset of spring
soil warming in 2015 was accompanied by increasing
vegetation productivity (figure 5).

In peatlands, water table positions above the moss
surface can reduce methane emissions (Pelletier et al
2007) and tend to limit plant productivity due to pre-
vailing anoxic soil conditions (e.g. Sulman et al 2012).
After snowmelt in 2016, water table position was above
the moss surface and higher than in the other study
years (figure 2). The high water table position may
have contributed to the attenuated responseofmethane
emissions to the early soil warming. Thus, our results
suggest that warmer spring air temperatures and ear-
lier soil thaw lead to larger growing season and annual
methane emissions. However, spring methane emis-
sions may be less sensitive to soil warming, if followed
by intermittent cooler periods or if accompanied by
flooding.

Here, we show that warmer spring temperatures
can increase annual methane emissions by 20% to
25%. Thus, in a changing climate, an increase in
long-term methane emissions from boreal peat land-
scapes in the sporadic permafrost zone can be expected
with warmer spring conditions. Additionally, methane
emissions in the southern Taiga Plains and similar
regions in North America are projected to increase
with thaw-induced wetland expansion (Lara et al
2016, Turetsky et al 2008, Helbig et al 2017a). In
a warming climate with warmer spring temperatures

(Wang et al 2011), thawing boreal peat landscapes
along the southern limit of permafrost may there-
fore become increasingly important for the global
methane budget.
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