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Abstract
Weather extremes have harmful impacts on communities around Lake Victoria in East Africa.
Every year, intense nighttime thunderstorms cause numerous boating accidents on the lake,
resulting in thousands of deaths among fishermen. Operational storm warning systems are
therefore crucial. Here we complement ongoing early warning efforts based on numerical weather
prediction, by presenting a new satellite data-driven storm prediction system, the prototype Lake
Victoria Intense storm Early Warning System (VIEWS). VIEWS derives predictability from the
correlation between afternoon land storm activity and nighttime storm intensity on Lake
Victoria, and relies on logistic regression techniques to forecast extreme thunderstorms from
satellite observations. Evaluation of the statistical model reveals that predictive power is high and
independent of the type of input dataset. We then optimise the configuration and show that false
alarms also contain valuable information. Our results suggest that regression-based models that
are motivated through process understanding have the potential to reduce the vulnerability of
local fishing communities around Lake Victoria. The experimental prediction system is publicly
available under the MIT licence at github.com/wthiery/VIEWS.
1. Introduction

With a surface area of 68 800 km2, Lake Victoria is the
largest lake in Africa. The lake directly sustains the
livelihood of 30 million people living near its coasts
and its fishing industry is a critical natural resource for
communities in East Africa (Song et al 2004, East
African Community 2011).

However, severe thunderstorms and associated
high waves represent a constant threat to the 200 000
fishermen operating on the lake (East African
Community 2011). No reliable figures are available
for the number of incidents in which people drown,
but the International Federation of Red Cross and Red
Crescent Societies (2014) assumes that 3000–5000
fishermen die every year on the lake, and boating
© 2017 IOP Publishing Ltd
accidents are often related to severe weather (East
African Community 2011). Thunderstorms on Lake
Victoria thereby substantially contribute to the global
death toll from natural disasters. Also, these events
have major implications for the regional economies, as
each perished fisherman leaves on average eight
relatives without an income (East African Community
2011). Rapid urbanisation along the lakefront (Seto
et al 2012) will in the near-future likely lead to a sharp
increase in exposure of local fishing communities to
these natural hazards, whereas future climate projec-
tions indicate a strong increase in thunderstorm
intensity especially over Lake Victoria (Thiery et al
2016). In particular, the projected future increase in
extreme precipitation over Lake Victoria is about
twice as large relative to surrounding land under a
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high-emission scenario, and consistently emerges
from single-model, high-resolution simulations and
coarser-scale ensemble projections.

Due to this unacceptable human cost, efforts have
been ongoing to develop a well-functioning early
warning system, which would prevent fishermen from
taking risks when conditions are favourable for severe
storm development. These efforts have aimed to
reduce accidents via storm warnings derived from
operational, high-resolution numerical weather pre-
diction (NWP) systems. Notably, the meteorological
service of the United Kingdom (Met Office, hereafter
referred to as UKMO) has recently established a 4 km
resolution limited-area NWP system for the larger
Lake Victoria region and a first evaluation indicates
better performance than persistence forecasts of ‘today
will be the same as yesterday’ (Chamberlain et al 2014,
Eagle et al 2015). In parallel, a ‘Mobile Weather Alert’
pilot was launched in 2011 by the World Meteorologi-
cal Organization (WMO), providing Kenyan fisher-
men with free forecast and warning information via
their cell phone (East African Community 2011,
Chamberlain et al 2014). A similar effort is currently
undertaken in Uganda by the Trans-African Hydro-
Meteorological Observatory (TAHMO, http://tahmo.
org/), while the Safe Water Foundation (SWF, https://
forsafewaters.wordpress.com/) aims to integrate these
efforts across the three countries bordering Lake
Victoria (Uganda, Kenya and Tanzania). Finally, the
Global Energy and Water Cycle Exchanges Project
(GEWEX) has recently launched the Hydroclimate
project for Lake Victoria (HyVic, www.gewex.org/
hyvic/), which aims to provide scientific understand-
ing of the climate of the region to improve weather
prediction and climate projections (Semazzi et al
2014).

Thunderstorms and precipitation display a clear
diurnal cycle over Lake Victoria. In contrast to the
diurnal cycle observed over the surrounding land,
convective activity over Lake Victoria peaks at night
while being suppressed during daytime (figures 1(a)–
(c); supplementary figure 1 stacks.iop.org/ERL/12/
074012/mmedia). This distinct pattern arises from the
lake/land breeze system which induces near-surface
divergence during daytime and convergence at night,
as well as from sustained evaporation over the lake
surface and from anabatic/katabatic flows originating
on the mountain slopes east of the lake (Song et al
2004, Anyah et al 2006, Williams et al 2015, Thiery
et al 2015). Similar patterns are found for the other
African Great Lakes, each time modulated by local
orography (Thiery et al 2015).

A recent analysis of the controlling factors of
extreme thunderstorms over Lake Victoria revealed a
strong dependency of the nighttime over-lake storm
intensity on the antecedent daytime land storm
activity (Thiery et al 2016). Intense daytime land
storms thereby modify the lake/land breeze system and
associated moisture transport, in particular by
2

inducing a moist anomaly in the lower layers of the
atmosphere and by cooling the land surface. This cold
anomaly in turn limits moisture divergence from the
lake (weak lake breeze) while favouring nighttime
near-surface convergence (strong land breeze). Overall
this highlights the key importance of mesoscale
circulation for understanding weather extremes in
the region.

The afternoon control on nighttime storm activity
also indicates an inherent predictability in the system
which has not been exploited so far. Moreover, this
analysis was based on a new proxy dataset for severe
thunderstorm occurrence, suggesting that predictions
might be derived from observational products. Finally,
this proxy is derived from an operational weather
satellite and can thus be made available in realtime.
Altogether this presents an opportunity for developing
a new, satellite-based short-term prediction system for
severe thunderstorms over Lake Victoria.

The main goal of this study is therefore to explore
the potential of satellite-based thunderstorm obser-
vations as a risk indicator for extreme storm
occurrence over Lake Victoria. We propose an
innovative yet simple approach to predict the
occurrence of the 1% most extreme events, that is,
the ∼3–4 nights per year with the most intense
nighttime storm activity. In particular, we develop a
logistic regression model based on a 9 year severe
thunderstorm dataset available for the region. The
main advantages of this approach are the high skill,
minimum computational cost and independence of
existing forecast products. As such our data-driven
approach complements and supports ongoing efforts
from the NWP community (dynamical modelling) to
eventually reduce the vulnerability of local communi-
ties around Lake Victoria.

In this paper, we first establish the proof of concept
of observation-driven storm predictability by applying
logistic regression to three different data products. We
subsequently optimise the statistical model for one
product through an objective calibration procedure,
both at the lake and country scale. Finally, we outline
the structure of the prototype prediction tool which is
released into the public domain.
2. Data and Methodology
2.1. Overshooting top detections and rainfall data
Satellite observations enable the recognition of severe
weather by detecting overshooting tops (OTs), which
appear as dome-like protrusions atop a cumulonim-
bus anvil (Bedka et al 2010). OTs indicate the presence
of deep convective events and are induced by intense
updraughts through the tropopause into the lower
stratosphere (Proud 2015). OT-producing convective
thunderstorms frequently produce hazardous weather
at the Earth’s surface, like heavy rainfall, wind gusts,
large hail and tornadoes (see Bedka et al (2010) and
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Figure 1. Lake imprint on severe thunderstorm occurrence in East Africa. (a–b), Satellite-based OT pixel detections during 2005–2013
from 12:00–18:00 EAT (daytime) and from 00:00 to 12:00 EAT (nighttime), respectively, as derived from the Spinning Enhanced
Visible and Infrared Imager (SEVIRI) over equatorial East Africa (25 °E–41 °E, 10 °S–6 °N). (c), Fraction of OTp occurring during
daytime and nighttime. The blue rectangle denotes land pixels selected to establish the proof on concept (section 3). (d), Temporal
correlation of daytime land OTp (panel a) to nighttime OTp aggregated over Lake Victoria (panel b). As an illustration, all regions
with rank correlation above 0.20 are marked by yellow polygons (section 4).
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Dworak et al (2012) for an overview). The detection of
OTs is therefore a relevant proxy for surface impacts of
severe thunderstorms.

In this study we use a 9 year OT dataset for
equatorial East Africa (25 °E–41 °E, 10 °S–6 °N, figure
1, Thiery et al (2016)) derived from the Spinning
Enhanced Visible and Infrared Imager (SEVIRI) on
board Meteosat Second Generation (MSG; Aminou
(2002)). The OT detection algorithm is described in
detail in Bedka et al (2010) and Bedka (2011); it builds
on the premise that OTs are composed of a small
region of very cold infrared brightness temperatures
surrounded by a warmer cirrus anvil cloud (Wang
2007). The SEVIRI instrument originally provides
images at 15 minute temporal and ∼4-km spatial
resolution over the Lake Victoria region. For our
analysis the dataset was aggregated to a regular
0.2 °× 0.2 ° grid, and from 15-min to hourly resolu-
tion, in both cases by summing all OT pixel detections
3

in the high-resolution imagery. By reducing the size of
the original data set, we increase the speed of the
prediction system without affecting its predictive
power. The dataset comprises more than 50 million
OT pixels (hereafter referred to as OTp) from 2005–
2013 over equatorial East Africa. We note however that
a single OT is generally composed of multiple OT
pixels (11 on average) and that it can persist for more
than 15 minutes, in which case it will be recorded by
consecutive satellite images. Sensitivity tests indicate
that the treatment of occasionally missing data does
not influence our results; we therefore assume that no
OTp occur when a satellite image is missing.

The robustness of the prediction system is
additionally tested against two precipitation products,
which provide valuable information on past events but
are not operationally available. We used satellite
precipitation estimates from the Tropical Rainfall
Measurement Mission product 3B42 (TRMM,



Environ. Res. Lett. 12 (2017) 074012
Kummerow et al (2000)), available at 0.25 ° spatial and
3 hourly temporal resolution from 1998 to 2013, and
from a dynamical downscaling of the ERA-Interim
reanalysis with the COSMO-CLM2 regional climate
model (Davin and Seneviratne 2012) from 1999–2008.
The COSMO-CLM2 simulation is described in Thiery
et al (2015); it benefits from high spatial resolution
(∼7 km; Docquier et al (2016)), an advanced land
surface representation (Akkermans et al 2014) and an
interactive lake model (Thiery et al 2014a, Thiery et al
2014b). For the analysis the TRMM data was
remapped to the 0.0625 ° resolution COSMO-CLM2

grid using bilinear interpolation. Although TRMM
generally outperforms other satellite precipitation
products in Uganda and Kenya, the product under-
estimates extreme precipitation over East Africa
(Maggioni et al 2016).

The selection of the three data sets is based on the
following considerations: (i) product independence,
(ii) coverage of multiple data sources (geostationary
and polar-orbiting satellites and state-of-the-art
climate modelling), (iii) different proxies for severe
weather (OTp and extreme precipitation).
2.2. Statistical model setup
Here we aim to model the probability of extreme
thunderstorm nights as a function of afternoon
conditions over the surrounding land. We thereby
rely on binomial logistic regression, and base our
approach on that of Gudmundsson et al (2014) who
estimated above-normal wildfire activity from mete-
orological drought. To start, we define extreme
thunderstorm nights as nights during which the total
number of OTp over Lake Victoria during 00:00–12:00
East African Time (EAT; 21:00–9:00 UTC) exceeds the
99th percentile (that is, 2236 OTp). This selection
criterion was informed by an earlier analysis by Thiery
et al (2016) suggesting a particularly strong depen-
dency of this class of OT events on afternoon
conditions. From this criterion we construct a binary
series of extreme and non-extreme nights. The
probability of an extreme night (P(ex)) is subsequently
modelled as a function of the total number of OTp
over the surrounding land during the preceding day
(OTday), such that:

ln
PðexÞ

1� PðexÞ
� �

¼ b0 þ b1OTday: ð1Þ

Where b0 and b1 are the model parameters, derived
using generalized linear regression (binomial distri-
bution, logit transformation). b0 is the intercept from
the linear regression equation and sets the probability
for an extreme thunderstorm night when there are no
OTp recorded during daytime, whereas b1 is the
regression coefficient assigned to the explanatory
variable OTday. Here we define OTday as the sum of all
OT pixels detected between 12:00 and 18:00 EAT in an
area enclosed by the blue rectangle in figure 1(c) but
4

excluding Lake Victoria, thereby following Thiery et al
(2016) (hereafter referred to as initial configuration).

By analogy, this setup can be used for forecasting
extreme precipitation from TRMM and COSMO-
CLM2. In this case, the threshold criterion selecting
the 1%most intense nighttime precipitation events are
2.96mmh−1 and 3.01mmh−1 for TRMM and
COSMO-CLM2, respectively. For each product we
additionally construct the persistence forecast, that is,
the logistic regression using conditions over Lake
Victoria during the previous night (and in the
corresponding product) as predictor.

As shown by equation 1, the logistic regression
model does not predict the occurrence of an event, in
this case an extreme thunderstorm night, but rather
the probability of such an event given a certain
precursor condition. Users are therefore faced with the
challenge of deciding which probability is considered
sufficiently large to issue a warning. Once such a
threshold probability (u) is selected, all warnings are
automatically derived from the statistical model. By
construction, the issued warnings will capture only a
fraction of all actual extreme events. This fraction is
known as the hit rate (H), and H will increase with
decreasing threshold probability. Conversely, a false
alarm occurs when a warning is issued without an
extreme event actually occurring. The fraction of non-
extreme events for which a warning is issued is known
as the false alarm rate (F), and F increases with
decreasing threshold probability. Increasing H will
therefore always be at the expense of increasing F, and
vice versa. Depending on the objective of the warning
system, acceptable values of H and/or F can
substantially vary. It is therefore not possible to
present one unique recommendation regarding a most
suitable threshold probability.

The trade-off between the hit rate and false alarm
rate for different threshold probabilities is visualised in
a receiver operating characteristic (ROC) curve. ROC
curves that lie above and to the left of the 1:1 line
indicate improved forecast skill relative to random
guessing, and the better the forecasts, the closer the
ROC curve approaches the upper-left corner of the
diagram (Wilks 2011). One way to summarise ROC
curves using a single scalar value is to compute the
Area Under the ROC Curve (AUC), with AUC¼ 0.5
indicating random guessing and AUC¼ 1 represent-
ing a perfect forecasting system.

A ROC curve can subsequently be analysed to
detect threshold probabilities that are relevant from a
decision-making point of view. For instance, an
‘optimal point’ can be selected as the threshold
probability that maximises the hit rate while
minimizing the false alarm rate (i.e. it sets the highest
value of H − F along the ROC curve). Alternatively,
false alarm rates for predefined, fixed hit rates can be
easily retrieved from ROC curves, and vice versa.
Examples of useful information which can be retrieved
from ROC curves are listed in table 1.



Table 1. Model parameters and skill scores for the optimized configurations. b0, b1 denote the binomial logistic regression
coefficients, PPV and NPV the positive and negative predictive value, respectively. OR, PPV and NPV are defined in the
supplementary information.

Lake Victoria Sector Uganda Sector Kenya Sector Tanzania

Model parameters
b0 −6.7809 −6.2797 −5.3512 −6.5763

b1 0.00026 0.00044 0.0011 0.00017

Nighttime (EAT) 00:00–12:00 2:00–8:00 17:00–23:00 4:00–10:00

Daytime (EAT) 6:00–21:00 5:00–20:00 3:00–14:00 6:00–21:00

Lead time (h) 3 6 3 7

Aggregation time (h) 14 14 10 14

rcrit 0.15 0.15 0.10 0.10

Model skill
AUC 0.93 0.86 0.80 0.91

OR(H–F max) 36 18 11 34

H(H–F max) 0.85 0.82 0.76 0.85

F(H–F max) 0.13 0.20 0.23 0.14

F(H¼ 0.5) 0.04 0.05 0.11 0.05

F(H¼ 0.9) 0.21 0.42 0.43 0.20

F(H¼ 1) 0.30 0.99 0.97 0.67

PPV(H–F max) 0.06 0.04 0.03 0.06

NPV(H–F max) 1.00 1.00 1.00 1.00
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To obtain an independent measure of storm
predictability, we construct the ROC curves using
leave-one-year-out cross-validation. During this pro-
cedure one year is removed from the time series and
the model is fitted to the remaining data. The obtained
model is then applied to generate storm predictions
for the year which was left out. We subsequently repeat
this procedure for all years in the dataset, that is, one-
by-one each year is left out from the training data set
and predictions are made for this left-out year. As
such, we can compile a time series of extreme event
predictions without the observed events in a given year
contributing to the training of the model for that
period. As such this procedure enables an unbiased
assessment of model performance (Gudmundsson
et al 2014).

2.3. Model optimisation and validation
In a next step we aim at optimising the skill of the
forecasting system. Since, out of the three considered
data sources, the OT dataset is the only one potentially
available in realtime, and thus the only suitable
candidate for an operational early warning system, we
focus on this product from now onwards. First, we
hypothesize that the window defining daytime hours
influences predictive skill. Moreover, we expect that
some regions contribute more to the predictor time
series. This holds, for instance, for those regions
characterised by strong orography, and in particular
for the eastern lake shore, where intense convection is
triggered when the afternoon lake breeze meets the
steep mountain slopes and the westward synoptic flow
(figures 1(a)–(d), see also Anyah et al (2006) and
Ogwang et al (2014)).

We therefore try to optimise the skill by varying
three parameters that shape the predictor time series
5

OTday: forecast lead time λ (h), predictor aggregation
timem (h) and a critical rank correlation threshold rcrit
used for spatial selection (see below). For each pixel p,
we first aggregate all observed OTp in time, such that:

OTp;day ¼
Xm
i¼0

OTp;λ�mþi: ð2Þ

For example, given a lead time λ¼ 6 h and a predictor
aggregation time (i.e. length of the daytime window)
m¼ 5 h, we sum all OTp observed between 13:00 and
18:00 EAT to obtain a daytime OT time series per
pixel (to be used for predicting nighttime OTp
between 00:00 and 12:00 EAT). For each pixel we
subsequently compute the Spearman rank correlation
between the time series of daytime OTp and the time
series of nighttime OTp over Lake Victoria. As a final
step we select only those pixels with a correlation
above the critical threshold rcrit (e.g. figure 1(d)), and
calculate the OTday time series as the sum of all
daytime OTp over the retained pixels. Positive
correlations between daytime OTp on land and
nighttime OTp over the lake (figure 1(d)) are
associated with the mesoscale circulation which
triggers precipitation and extreme thunderstorms
on Lake Victoria (section 1).

To test the model sensitivity, we vary λ, m and rcrit
over a range of plausible values (λ: 3 h to 11 h,m: 2 h to
14 h, rcrit: 0.10 to 0.30). Note that we fix the minimal
lead time to 3 h to account for warning transmission
time in an operational context. Moreover, for high
values of λ andm the predictor time series extends into
the previous night. As an optimisation criterion for
selecting the optimal model configuration, we use the
maximum AUC. In addition to optimizing the
configuration for the whole lake, we also develop
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optimal configurations for the three lake sectors
belonging to different countries (Uganda to the north,
Kenya to the east and Tanzania to the south, figure 1).
3. Proof of concept

Figure 2 shows the ROC curves for the three
considered data products under the initial configura-
tion. This configuration generally displays high skill,
with AUC values of 0.90, 0.85 and 0.92 for the OT,
TRMM and COSMO-CLM2 products, respectively.
Overall there are significant links between extreme
nighttime thunderstorms on Lake Victoria and
afternoon storminess over the surrounding land,
indicating that information on the latter is a suitable
predictor for storm activity on the lake. This is
confirmed by sensitivity experiments wherein we relax
the definition of an extreme event to nights exceeding
the 98th, 97th, 96th and 95th percentile, respectively:
the model skill remains very close to the skill of the
initial configuration.

Moreover, the initial configuration substantially
outperforms the persistence forecast. For the observa-
tional products the persistence forecasts generally
show only little added value compared to random
guessing. In addition, the skill of the persistence
forecast, if any, may partly arise from the seasonal cycle
over the region, where wet seasons associated with the
ITCZ overpass alternate with dry periods from June to
September and January to February (Yang et al 2015).
Only in COSMO-CLM2 the persistence forecast
attains appreciable skill. Finally, replacing afternoon
over-land conditions by afternoon over-lake condi-
tions as predictor also leads to a sharp decrease in
predictive skill (not shown), highlighting the impor-
tance of mesoscale circulation for triggering extremes
on Lake Victoria (Thiery et al 2016).
6

As an example, in the early hours of 16 May 2006,
severe thunderstorms struck Lake Victoria (2436 OTp
recorded and over 36 mm of rain observed in 9 h time
over the entire lake). According to both the OT and
TRMM products this night was as an extreme event,
and all three model configurations issued a warning
(optimal point). The consistent behaviour of all three
data products generally underlines the potential of a
data-driven prediction system. It also suggests a
positive relationship between strong updrafts (OT
detections) and increased precipitation: indeed sta-
tistically significant, positive rank correlations are
found at night over Lake Victoria between OTp and
precipitation from TRMM (0.78, p< 0.001, n¼ 3287)
as well as from COSMO-CLM2 (0.38, p< 0.001,
n¼ 1461).
4. Improving forecast skill

In this section we aim to optimise the regression
model configuration to improve forecast skill. The
sensitivity of the AUC to variations in forecast lead
time, predictor aggregation time and threshold
correlation is shown in figures 3(a)–(b). The
sensitivity diagrams indicate a clear tendency towards
higher skill for shorter lead times, longer aggregation
times and less stringent pixel selection. Interestingly,
selecting a large number of land pixels is more
important for the model skill than selecting pixels
which are highly correlated to the conditions on the
lake. Overall this suggests that using more information
throughout the full extent of daytime hours to
construct the predictor time series adds to the forecast
skill. However, it is also clear that the sensitivity
saturates, with only very limited added value of
increasing the aggregation time beyond 10 hours, or of
decreasing the threshold correlation below 0.15.
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In the optimised configuration, boxplots of
afternoon conditions on land associated with extreme
and non-extreme nights are clearly separated, and this
feature is captured by the logistic regression (figure 3
(c)). The best model has an AUC of 0.93 and is
constructed using a lead time of 3 h, a predictor
aggregation time of 14 h and a rank correlation of 0.15
(table 1). It represents a small yet noticeable increase in
model skill relative to the initial configuration, in
particular when considering low false alarm rates
(compare ROC curves in figure 2(a) and figure 3(d)).
Taking a threshold probability u of 0.0129, for
instance, enables the prediction of 28 out of a total
33 extreme events between 2005 and 2013 (H¼ 85%),
while having a false alarm rate of 13%. The associated
odds ratio (OR) is 36, meaning that during days with P
(ex)> 0.0129, the odds of an extreme night are 36
times higher than during other days. However, as the
false alarm rate is still considerable in this case (a false
alarm is issued almost once per week here), a user may
prefer to pre-set a higher threshold probability. In that
case it is, for instance, possible to forecast 50% of all
extreme events while having a false alarm only about
once per month (table 1).

Although false alarms do occur, they clearly tend
to capture intense storm nights rather than calm
nights (figure 4(a)). For instance, 30%, 50% and 70%
7

of all false alarms correspond to nights with OTp
above the 90th, 83th and 72th percentile, respectively
(optimal point; figure 4(b): blue dots). The same
conclusion can be made when choosing a different
threshold probability. For instance, when choosing the
threshold probability such that half of all extreme
events are captured (i.e. H¼ 0.5), 30%, 50% and 70%
of all false alarms lie above the 94th, 87th and 75th
nighttime OT percentile (figure 4(b): red dots). Thus,
while false alarms, per definition, miss the 1% most
intense thunderstorm nights, they nonetheless often
predict nights with strong thunderstorm activity.
Overall this indicates that also false alarms contain
valuable information for intense storm prediction.
Here we note that a systematic recording of boating
incidents would be very useful to further analyse the
skill of our prediction system, and in particular the
role of false alarms. However, such systematic
reporting is currently still lacking.

As storms typically develop in the eastern part of
the lake and intensify as they are advected westward
along the trade winds (Thiery et al 2016), the diurnal
thunderstorm cycle varies between the different lake
sectors. In Sector Kenya (northeast), storm activity
peaks in the late afternoon, whereas the diurnal cycle
attains a maximum during early and late night in the
Sector Uganda (north) and Sector Tanzania (south),
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respectively (figure 1(b); supplementary figure 1).
Given these strong differences and the need to
facilitate warnings at the country scale, it is appropri-
ate to apply the optimisation procedure to each
individual sector. The results overall indicate similar
skill compared to the whole lake case, albeit a small
reduction in skill owing to the reduced information
content in the predictant time series and the imposed
minimum lead time (supplementary figures 2–4 and
table 1).
5. Towards operational warnings

Building on previous analyses, a software package was
developed for Matlab and GNU Octave to enable
automated extreme storm predictions over Lake
Victoria in operational mode. Version 1.0 of the
package, termed Lake Victoria Intense storm Early
Warning System (VIEWS), is available at http://github.
com/wthiery/VIEWS and is released under the MIT
licence. At this stage the prediction system needs to be
considered as a prototype; more research as well as
input from the user community is needed to improve
its skill, strengthen the links to societal losses (e.g.
Semazzi and Mera (2006)), assess uncertainties (e.g.
Lhermitte et al (2010)), and test its applicability to
other tropical lakes. In particular, the African Great
Lakes in East Africa and Lake Maracaibo in Venezuela
experience similar thunderstorm dynamics (figures 1
(a)–(b); Albrecht et al (2016)). Thus, communities
living around these lakes may eventually also benefit
from satellite-based storm warning systems.

At forecast lead time, the software first reads in the
OT images corresponding to the daytime hours. It
subsequently computes the predictor value OTday for
each country and for the whole lake by performing
the appropriate spatial and temporal selection (see
equation 2 and table 1). TheOTday values then serve as
input for the respective logistic regressions (see
8

equation 1), yielding the probability for an extreme
event. The operational statistical model employs the
logistic regression coefficients derived for the optimal
configuration for the whole lake and the individual
lake sectors (see table 1 and section 4). Depending on
the threshold probability defined by the user, the
software will indicate whether or not a warning is to be
issued for a specific lake sector or the whole lake.
6. Summary and discussion

In this study we present a new approach to predict
hazardous thunderstorm activity over Lake Victoria.
The prediction system, called VIEWS, relies on logistic
regression to forecast the 1% most extreme thunder-
storm nights based on observed afternoon land
conditions, and is designed to complement and
support ongoing efforts from the Numerical Weather
Prediction (NWP) community in the region. VIEWS
demonstrates substantial skill during the 2005–2013
hindcast period, especially relative to persistence
forecasts. As it builds on predictability inherent to
the lake-land breeze system, predictive skill is
identified for different proxy variables for thunder-
storm activity (Overshooting Top pixels (OTp) and
extreme precipitation) as well as for different data
sources (satellite products and dynamically down-
scaled reanalysis). Optimizing the OT configuration
for the whole lake and individual sectors yields a small
yet noticeable increase in skill.

This is a pilot study describing a new, experimental
prediction system, and future research should aim at
overcoming its current limitations. For instance,
forecast skill may be further increased through the
use of other environmental parameters, such as cloud
cover, surface temperatures, wind velocities or
atmospheric profiles. Those fields could be derived
from remote sensing, but also from NWP output (e.g.
Chamberlain et al (2014)) or in-situ measurements

http://github.com/wthiery/VIEWS
http://github.com/wthiery/VIEWS
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(e.g. Jacobs et al (2016a), Jacobs et al (2016b))
resulting in hybrid forecast products. Enhanced
predictive skill may also be achieved by accounting
for large-scale teleconnections and their influence on
inter-annual circulation variability in East Africa (e.g.
Hawinkel et al (2016), Souverijns et al (2016)).
Another option could be to increase the information
content of the forecast by using other regression-based
statistical tools that describe the full OT distribution
(rather than predicting the probability of occurrence
of an extreme event). In this case predictions can also
be made on a continuous scale, or be separated into
different categories of thunderstorm intensity (e.g.
light, moderate, strong and extreme).

Finally, to implement and improve VIEWS as well
as other warning systems for the region, it will be of
key importance to collect experiences from the user
community. Besides identifying impact-relevant pa-
rameters, users may also help to establish optimal
operating points of scientific warning systems.
Together with user input and high-resolution NWP,
regression-based models have the potential to
substantially reduce the vulnerability of local commu-
nities around Lake Victoria.
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