
Environmental Research Letters

LETTER • OPEN ACCESS

Using GIS-based methods and lidar data to
estimate rooftop solar technical potential in US
cities
To cite this article: Robert Margolis et al 2017 Environ. Res. Lett. 12 074013

 

View the article online for updates and enhancements.

Related content
Estimating rooftop solar technical potential
across the US using a combination of GIS-
based methods, lidar data, and statistical
modeling
Pieter Gagnon, Robert Margolis, Jennifer
Melius et al.

-

Was it worthwhile? Where have the
benefits of rooftop solar photovoltaic
generation exceeded the cost?
Parth Vaishnav, Nathaniel Horner and
Inês L Azevedo

-

Climate, air quality and human health
benefits of various solar photovoltaic
deployment scenarios in China in 2030
Junnan Yang, Xiaoyuan Li, Wei Peng et
al.

-

Recent citations
Laboratory-based spectral data acquisition
of roof materials
Perla Zambrano-Prado et al

-

Identification of Roof Surfaces from LiDAR
Cloud Points by GIS Tools: A Case Study
of Luenec, Slovakia
Marcela Bindzarova Gergelova et al

-

City-scale urban sustainability:
Spatiotemporal mapping of distributed
solar power for New York City
Job Taminiau and John Byrne

-

This content was downloaded from IP address 207.241.229.49 on 30/10/2020 at 21:48

https://doi.org/10.1088/1748-9326/aa7225
http://iopscience.iop.org/article/10.1088/1748-9326/aaa554
http://iopscience.iop.org/article/10.1088/1748-9326/aaa554
http://iopscience.iop.org/article/10.1088/1748-9326/aaa554
http://iopscience.iop.org/article/10.1088/1748-9326/aaa554
http://iopscience.iop.org/article/10.1088/1748-9326/aa815e
http://iopscience.iop.org/article/10.1088/1748-9326/aa815e
http://iopscience.iop.org/article/10.1088/1748-9326/aa815e
http://iopscience.iop.org/article/10.1088/1748-9326/aabe99
http://iopscience.iop.org/article/10.1088/1748-9326/aabe99
http://iopscience.iop.org/article/10.1088/1748-9326/aabe99
http://dx.doi.org/10.1080/01431161.2020.1798548
http://dx.doi.org/10.1080/01431161.2020.1798548
http://dx.doi.org/10.3390/su12176847
http://dx.doi.org/10.3390/su12176847
http://dx.doi.org/10.3390/su12176847
http://dx.doi.org/10.1002/wene.374
http://dx.doi.org/10.1002/wene.374
http://dx.doi.org/10.1002/wene.374


OPEN ACCESS

RECEIVED

15 January 2017

REVISED

25 April 2017

ACCEPTED FOR PUBLICATION

10 May 2017

PUBLISHED

6 July 2017

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 3.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

Environ. Res. Lett. 12 (2017) 074013 https://doi.org/10.1088/1748-9326/aa7225
LETTER

Using GIS-based methods and lidar data to estimate rooftop
solar technical potential in US cities

Robert Margolis1, Pieter Gagnon, Jennifer Melius, Caleb Phillips and Ryan Elmore
Strategic Energy Analysis Center, National Renewable Energy Laboratory, 901D Street, SW Suite 930, Washington, DC 20024, United
States of America
1 Author to whom any correspondence should be addressed.

E-mail: robert.margolis@nrel.gov

Keywords: rooftop, photovoltaic, technical potential, GIS, lidar, energy generation
Abstract
We estimate the technical potential of rooftop solar photovoltaics (PV) for select US cities by
combining light detection and ranging (lidar) data, a validated analytical method for determining
rooftop PV suitability employing geographic information systems, and modeling of PV electricity
generation. We find that rooftop PV’s ability to meet estimated city electricity consumption varies
widely—from meeting 16% of annual consumption (in Washington, DC) to meeting 88% (in
Mission Viejo, CA). Important drivers include average rooftop suitability, household footprint/
per-capita roof space, the quality of the solar resource, and the city’s estimated electricity
consumption. In addition to city-wide results, we also estimate the ability of aggregations of
households to offset their electricity consumption with PV. In a companion article, we will use
statistical modeling to extend our results and estimate national rooftop PV technical potential. In
addition, our publically available data and methods may help policy makers, utilities, researchers,
and others perform customized analyses to meet their specific needs.
1. Introduction

How much energy could be generated by select US
cities if solar photovoltaic (PV) systems were installed
on all their suitable roof area? This quantity is the
technical potential of rooftop PV for those cities—an
established reference point for renewable technologies
that quantifies the generation available from a
particular resource (e.g. see Lopez et al 2012). The
metric considers the resource’s availability and quality,
the performance of the technology capturing the
resource, and the physical area suitable for develop-
ment. It does not consider economics, growth
potential, or grid-integration factors, and thus it is
an upper limit of a technology’s current potential
generation, not a prediction of expected deployment.

In this article, we estimate the technical potential of
PV systems on existing suitable roof area in select US
cities. To produce this estimate, the fraction of rooftop
area suitable for PV must be estimated. Melius et al
(2013) identify three main approaches to estimating
rooftop suitability: constant-value methods, manual
selection, and methods based on geographic informa-
tion systems (GIS). Constant-value methods assume a
© 2017 IOP Publishing Ltd
certain percentage of building rooftop area is suitable
for hosting PV and then applies these percentages to
the total building stock to estimate the area available
for PV; most previous estimates of national PV
technical potential have relied on such methods (e.g.
Chaudhari et al 2004, Denholm and Margolis 2008,
Frantzis et al 2007, Paidipati et al 2008). This method
is simple and quick, but it often has had little
validation and does not consider the nuances of
individual buildings. In contrast, manual selection
evaluates the suitability of individual buildings using
sources such as aerial photography, Google Earth,
and the National Renewable Energy Laboratory’s
PVWatts® Calculator to provide visual clues to PV
installation locations (Ordonez et al 2010, Bright and
Burman 2010, Zhang et al 2009, Anderson et al
2010). Manual selection is precise but time consum-
ing, and it cannot be replicated easily on a large scale.
GIS-based methods provide more precision than
constant-value methods while handling much larger
data sets than manual selection. Melius et al (2013)
give many examples of GIS-based applications (e.g.
Hofierka and Kanuk 2009, Compagnon 2004, Santos
et al 2011), and they develop and validate a
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Figure 1. Major steps for determining the suitability of roof
area for PV.
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suitability-estimation method based on best practices
from the literature.

We use the validated GIS-based method from
Melius et al (2013) to provide a detailed data-driven
analysis of US rooftop PV suitability and technical
electricity-generation potential. Specifically, we use
light detection and ranging (lidar) data, GIS methods,
and PV-generation modeling to calculate the PV
suitability of rooftops for 128 cities nationwide—
representing approximately 23% of US buildings—
and we provide PV-generation results for a subset of
these cities. In a subsequent Environmental Research
Letters article, we will use statistical modeling to
extend these results and estimate national rooftop PV
technical potential2.
2. Methods

Figure 1 summarizes our method for estimating
rooftop PV suitability. Inputs include lidar and
building footprint data sets. These data are processed
to determine the shading, tilt, and azimuth of each
rooftop at a horizontal resolution of 1 m2. A set of
criteria is then applied to determine what roof area is
suitable for PV deployment. These results can then be
aggregated to determine the total quantity of rooftop
2 Additional detail on the method and results is provided in Gagnon
et al (2016).

2

area suitable for PV systems at various scales. Once the
suitable rooftop area is quantified, the potential PV
electricity generation is calculated.

Melius et al (2013) validate this rooftop suitability
estimation method against installation data from 205
PV arrays across three states. They show that 89% of
modeled slopes were within 10 degrees of the actual
slope, 99% of modeled orientations matched the
actual orientations, and 99% of modeled results had
the actual requiredminimum number of sun hours for
PV to produce 80% generation. All arrays used in the
validation process showed at least some of the rooftop
was suitable for PV, and 79% had an area at least the
size of the actual installed system.

2.1. Input data
Our lidar data were obtained from the US Depart-
ment of Homeland Security (DHS) Homeland
Security Infrastructure Program for 2006–2014.
For each of the 128 cities in the data set, DHS
provided (1) lidar data in raster format at 1 m by 1 m
resolution and (2) a corresponding polygon shapefile
of building footprints. The raster data are based on
the reflective surface return (first return) of the lidar
data, which correlates to the elevation of the first
object detected and creates a digital surface model for
each city.

The DHS data set also includes detailed data for
about 26.9 million buildings and 7.7 billion m2 of
rooftop area, or about 23% of US buildings (EIA 2009,
EIA 2012). The area covered (figure 2) represents
about 122 million people or 40% of the US
population. To better understand the suitability and
technical potential of buildings of various sizes, we
subdivided all buildings into three classes according to
the planar area of their footprints:
�

3

An
Small: < 5000 ft2 (94% of buildings, 58% of
rooftop area in our sample).
�
 Medium: 5000–25 000 ft2 (5% of buildings, 18%
of rooftop area in our sample).
�
 Large: > 25 000 ft2 (1% of buildings, 24% of
rooftop area in our sample).

2.2. Shading
Our first step in processing the lidar data was to run a
shading simulation on the digital surface model of
each city3. Figure 3 provides an example simulation
output, showing how the shadows move throughout a
single day. Seasonal variation in shading was captured
by running the simulation for four days: March 21,
June 21, September 21, and December 21. The hours
of sunlight each square meter received for the four
The standard ArcGIS Hillshade tool (available in the Spatial
alyst extension, ESRI 2014) was used for the shading simulation.



Figure 2. Lidar data coverage.
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Figure 3. Example of hourly shading and sunlight availability.
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days were averaged to determine an average number of
hours of daily sunlight for each square meter, as shown
in figure 44.
4 For each month, we determined a different threshold of
illumination required to classify a cell as being in sunlight; March
requires 60% illumination (values> 152), June 70% (values> 178),
September 60% (values> 152), and December 50% (values> 127).

3

2.3. Orientation (tilt and azimuth)
We determined the tilt for each square meter of roof
area within our lidar data set. To be consistent with
many roofers’ and PV installers’definition of flat roofs,
we defined all roof area with a tilt less than 9.5 degrees
as ‘flat.’ Because illumination is calculated by the angle
at which the sun hits a surface, the shading simulation
underestimates sun exposure for these flat roofs. For a
subset of flat roof areas, we quantified the difference



Number of hourly simulations in sunlight

0 1 2 3 4 5 6 7 8 9

0% 50% 100%

Figure 4. Example of average daily hours of sunlight.
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between predicted hours of sunlight and actual hours
derived from installed system data. Applying a
multiplier of 1.5 to the predicted illumination of all
flat roofs compensated for this difference.

We also determined the azimuth for each square
meter of roof area. Each square meter was categorized
into one of nine azimuth classes (figure 5), where tilted
roof areas were assigned one of the eight cardinal and
primary intercardinal directions; area with a tilt less
than 9.5 degrees was classified as flat. As described in
section 2.4, the northwest, north, and northeast
azimuths were defined as unsuitable, resulting in five
non-flat azimuth classes and one flat class.

The azimuth file was then run through a variety
function, which returned the number of different
values in the 3 � 3 neighborhood surrounding each
square meter of roof area. Area bordered by more than
three unique azimuths was excluded from the data set
to remove areas of changing roof orientations and
excessively noisy data.

We then used the azimuth values to identify roof
planes by assuming contiguous areas of identical
azimuth class were a unique plane, and we aggregated
each of the individual square meters of roof area into
polygons representing contiguous roof planes. For
each of the individual roof planes, the ArcGIS Zonal
Mean tool was applied to the tilt raster to determine
the roof plane’s mean tilt. The data set produced
4

through this process consisted of a raster giving a
single tilt value for each unique roof plane.

Once the individual square meters of roof area
were aggregated into contiguous planes, we catego-
rized each plane into one of 21 orientation classes
based on its tilt and azimuth, defining a set of four tilt
classes (figure 6), the aforementioned five azimuth
classes, and a ‘flat’ class. These classes were then used
in the PV electricity generation modeling process
(section 2.5) to more accurately estimate the
productivity of each roof plane.

2.4. Application of suitability criteria
To determine the total roof area suitable for PV, we
excluded area that did not meet criteria for shading,
tilt, azimuth, and a minimum amount of contiguous
roof area. For each city, we used the System Advisor
Model (SAM) to calculate the number of hours a
rooftop would need to be in sunlight to produce 80%
of the energy produced by an unshaded system of the
same orientation. Roof area that did not meet this
shading criterion was excluded based on input from
solar installers and research analysts, who suggested
this minimum threshold was toward the low end of



Table 1. Assumptions for PV Performance Simulations.

PV System characteristics Value for flat roofs Value for tilted roofs

Tilt 15 degrees Midpoint of tilt class (figure 6)

Ratio of module area to roof area 0.70 0.98

Azimuth 180 degrees (south facing) Midpoint of azimuth class

Module power density 160 W m�2

Total system losses 14.08%

Inverter efficiency 96%

DC-to-AC ratioa 1.2

a A system’s direct current to alternating current (DC-to-AC) ratio is the ratio of the nameplate capacity of the PV modules to the

AC-rated capacity of the inverters. For example, a system with a DC-to-AC ratio of 1.2 would have 8.33 kW of inverters installed for

every 10 kW of nameplate PV capacity.
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best practices (i.e. installing a system that received
more shade would not generally be recommended).

Roof planes were also excluded based on their
orientation. All roof planes facing northwest through
northeast (292.5–67.5 degrees) were considered
unsuitable for PV and excluded owing to a lack of
direct sunlight. All tilt values greater than 60 degrees
were removed from the data set, based on the
recommendation of PV installers; in any case, our data
show that roof planes of 60 degrees or steeper are very
uncommon compared with more gradual planes.

We also required a PV-suitable roof to have at least
one contiguous plane with a projected horizontal
footprint of 10m2 or greater that alsomeets the shading,
tilt, and azimuth criteria5. Doing so provides sufficient
area to install a 1.6 kWsystem, assuming a 16%-efficient
panel. We selected this minimum size threshold to
represent a conservative lower-end estimateof viablePV
system sizes, based on current PV performance and
historical patterns in reported PV system sizing.
Specifically, we reviewed reported system sizes for small
PV systems (< 10 kW) through 2014 (Barbose and
Darghouth 2015) and determined that 96% of systems
in this class were larger than 1.6 kW. We considered a
higher threshold of 3 kW, but 20% of historical sub-
10 kW systems would not have exceeded this value, and
therefore we considered it too high.

We calculated the area of each suitable roof plane,
both as a projected area consistent with the building
footprint and as a tilted area, to determine the actual
amount of developable area. Ultimately, we used the
tilted-area values to calculate the installed PV capacity.

The final data set contains the suitable area of every
roof plane in the 128 cities covered by lidar data. This
data set can be aggregated to the level of a building,
ZIP code, utility service territory, state, or any other
region to develop summary statistics describing the
suitability of the geographic region for rooftop PV.

2.5. Simulation of PV productivity on suitable
rooftop area
Our next step was to simulate the productivity of PV
modules covering the suitable roof area within the 21
5 Only about 7% of sampled roof planes are smaller than 10 m2.

5

different orientation bins for every ZIP code in the
lidar data set. These PV performance simulations were
executed using SAM (version 2015.1.30). SAM is a
performance and economic model designed to
facilitate decision making and analysis for renewable
energy projects (Gilman and Dobos 2012). It uses
hourly meteorological data, a PV performance model,
and user-defined assumptions to simulate the techni-
cal performance of a PV installation.

The solar resource and meteorological data used
for this analysis are from the Typical Meteorological
Year 3 (TMY3) data set of the National Solar Radiation
Database (Wilcox and Marion 2008). The TMY3 data
set includes hourly representative profiles for 1001
stations throughout the United States. For a given
simulation, we used the TMY3 station profile closest
to the boundary of the ZIP code under consideration.
Because the TMY3 stations are frequently located in or
near major cities, the average distance from a ZIP code
to a station for the lidar data set was 9 km.

The technical performance of PV systems can also
vary depending on the equipment used and design
choices of the installer. We made a set of technical
assumptions to represent the average performance of
PV systems as they are being installed in 2015 (table 1).
We used these values in SAM, in conjunction with the
TMY3 solar resource and meteorological profiles, to
determine the electrical output of PV systems6.

The power density value used in this analysis
corresponds to a module with approximately 16%
efficiency. This value is the median module efficiency
from approximately 48000 systems installed during
2014 (Barbose and Darghouth 2015). This value was
selected to represent an installed mixture of mono-
crystalline-silicon, multicrystalline-silicon, and thin-
film modules, as opposed to universal installation of
premium systems.

The losses from soiling, shading, snow, wiring, and
other sources are captured in the total system losses
parameter, which was chosen to remain at the SAM
default value for this analysis. The inverter efficiency
Documentation of the mathematical models used by SAM can be
found internally within the program, under the ‘Help’ Section (see
sam.nrel.gov).

http://www.sam.nrel.gov


Table 2. Roof Area Suitability Trends by Building Class.

Building Class (Building Footprint) Percent of Buildings with a Suitable Location Percent of Total Area that is Suitable

Small (< 5000 ft2) 83% 26%

Medium (5000–25 000 ft2) 99% 49%

Large (> 25 000 ft2) 99% 66%

All Buildings 84% 32%

Environ. Res. Lett. 12 (2017) 074013
value also remained at the SAM default level. These
levels have been selected to be representative of typical
systems. A DC-to-AC ratio of 1.2 was selected based
on existing literature on the optimal sizing of inverters
to minimize the cost of PV-generated electricity
(Mondol et al 2009).

For flat roofs, the ratio of module area to roof area
was assumed to be 0.7 to reflect the row spacing
necessary to incur only approximately 2.5% losses
from self-shading for south-facing modules at
15-degree tilt. For tilted roofs, the value was assumed
to be 0.98 to reflect 1.27 cm of spacing between each
module for racking clamps7.

Using the above assumptions, we ran simulations
in SAM to estimate the installed capacity and annual
energy generation for each roof plane. We modeled all
planes assuming a PV system aligned with the
midpoint values of their orientation class’ tilt and
azimuth ranges. For example, any roof plane with a tilt
value between 47.4 and 60.0 degrees and an azimuth
between 157.5 and 202.5 degrees was modeled with a
module tilted at 53.7 degrees and facing 180 degrees
(south). We then summed the potentials of all of the
roof planes within a ZIP code to arrive at total
production values.
3. Results and discussion

Small buildings—with their more diverse architectures
and more shadowing from trees and neighboring
buildings—show substantially more variability in
rooftop PV suitability than do medium and large
buildings (table 2). Within the 128 cities covered by
our lidar data, 83% of small buildings have a suitable
PV installation location, but only 26% of the total
rooftop area of small buildings is suitable for
development8. There is some variability among states,
with central and southeastern states showing the
greatest fraction of suitable rooftops on small
buildings. In contrast, more than 99% of large and
medium buildings have at least one qualifying roof
7 Representative spacing between modules for racking clamps was
obtained from a SnapNrack Series 100 UL installation manual, a
SunFix Plus Installation Guide, and an IronRidge Roof Mountain
System Design Guide. These racking systems are meant to illustrate
existing products; mentioning them does not constitute an
endorsement.
8 Because of obstructions, the tilt of a small fraction of roof area
within the lidar data set was unknown. Statements about the total
percentage of suitable roof area therefore assume the obstructed
rooftops follow the same distribution of tilt as the rest of the stock.
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plane, with 49% of total rooftop area suitable for
medium buildings and 66% for large buildings. Across
all building sizes, 32% of total rooftop area is suitable
for PV deployment.

Flat planes are very common on large buildings
(93% of planes on large buildings are flat) and
medium buildings (74%) but less common on small
buildings (26%). Most other suitable rooftop planes
fall into the 28 degree tilt category, and steep rooftops
(54 degrees) are an order of magnitude less common
than the next category (41 degrees). Azimuths facing
east, west, and south are most common, particularly
among the 28 degree category of rooftops. These
azimuths correspond to the alignment of buildings on
a cardinal street grid. These observations appear to
hold for small, medium, and large buildings alike.
Large cities have the most flat-roofed small buildings,
with the fraction decreasing in more urbanized areas.
Large cities also have a more homogeneous tilt/
azimuth distribution than do small suburbs.

The following subsections provide detailed suit-
able-rooftop-area and PV-generation results for select
cities.

3.1. Small buildings
We mapped results for 11 cities chosen based on (1)
good coverage of the ZIP codes within each city’s
boundaries and (2) how the cities illustrate the data
variation geographically. Figure 7 shows the percent-
age of small buildings that have at least one suitable
roof plane at the ZIP-code level. Only the suitability of
small buildings is mapped, because over 99% of
medium and large buildings have at least one roof
plane suitable for PV deployment. Figure 7 and figure
8 both show the nominal city boundaries, as defined
by the US Census Bureau 2013 TIGER/Line Shapefiles.

Figure 7 shows only a weak trend of high building
density driving down the suitability of small buildings.
Most of the highly developed downtown ZIP codes in
the 11 cities have suitability similar to the suitability in
other ZIP codes within the city boundaries, although
some suburban ZIP codes outside city boundaries
show higher levels of suitability.

Figure 8 shows the average relative production of
small buildings, which is defined here as the annual
electricity generation potential for an average small
building as a percentage of the average household
annual electricity consumption in that city’s state (EIA
2009). Because the national building stock is estimated
to contain 78 million single-family households but
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Figure 7. Percent of small buildings with at least one plane suitable for PV by ZIP code in 11 select cities.
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only 3.2 million commercial buildings with a footprint
less than 5000 ft2, figure 8 can be interpreted as
approximately comparing the potential electricity
production of an average single-family household in
a given ZIP code with the state average household
electricity consumption9. This metric should not be
confused with the ability of small-building PV to offset
9 Because the consumption value is a state average, it is constant
across all ZIP codes for a given city and therefore does not capture
household-level variation in consumption that would be driven by
socioeconomic status, building size, or other household-specific
factors. Therefore, the average relative production value mapped in
figure 8 should only be interpreted as a simple estimation of the
potential ability for a group of households in a given ZIP code to
offset its consumption.

7

a state’s total electricity sales. Furthermore, because
this metric includes buildings unsuitable for PV and
presents an average for each ZIP code, it should not be
interpreted as predicting the productivity of individual
buildings, which would vary significantly within each
ZIP code.

Figure 8 shows strong regional variation in the
average relative production of small buildings. The
average productivity of households within a ZIP code
is driven by average suitability, household footprint,
and solar resource. The average relative production is
then also a function of the state average household
consumption. For example, high-quality solar re-
source and low state average household energy
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Figure 8. Small building average relative production for 11 select cities (average small building PV production / state average
household electricity consumption).

Environ. Res. Lett. 12 (2017) 074013
consumption lead to a high average relative produc-
tion for small buildings in Los Angeles. However, the
outcome of the interaction among these four drivers is
not always obvious. For example, although Colorado
has low state average household consumption
(7.4 MWh/year or 65% of the national average),
Denver’s low suitability, moderate solar resource, and
moderate household sizes lead to generally low average
relative production for small buildings within the city
boundaries. In contrast, despite Florida’s relatively
high state average household consumption of 14.8
MWh/year (130% of the national average) and low
8

state average square footage per housing unit (85% of
the national average), Miami’s high suitability and
good solar resource result in generally high average
relative production for small buildings. This demon-
strates that one or even two metrics are not sufficient
for predicting the ability of aggregations of households
to offset their consumption.

Although it is generally understood that a
household with adequate roof area can generate
greater than 100% of its annual energy consumption
with PV, the variation in rooftop suitability and
building characteristics makes it less obvious whether



10 See maps.nrel.gov/pv-rooftop-lidar. Detailed documentation of
each step in our analysis, including scripts for running the GIS tools,
are linked to in the metadata section of each layer. This information
can be accessed by clicking the question mark icon next to each layer
in the table of contents in the Data Viewer.
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that trend holds for groups of buildings. This analysis
suggests that, in many parts of the United States, ZIP-
code-sized aggregations of households can collectively
generate an amount of electricity that exceeds their
annual consumption. However, notable exceptions
include Atlanta and Portland, which have relatively few
ZIP codes in which annual energy generation would
match expected consumption as estimated by state
average household consumption.

3.2. All buildings
To summarize the technical potential of the lidar
regions at an accessible resolution, we aggregated the
ZIP code results for 47 cities whose ZIP codes all have
at least some coverage by the DHS lidar data and have
ZIP code boundaries that approximately align with
city boundaries (US Census Bureau 2013 TIGER/Line
Shapefiles). In contrast to the previous section, which
only explored data for small buildings, the results here
aggregate the productivity of all building sizes. Table 3
gives the estimated total installed capacity and annual
energy generation potential for the 47 cities. Many
cities have lidar data that extend beyond official city
boundaries. ZIP codes outside the city boundaries
were not included in calculations of the total capacity
and energy estimates.

To enable a simple estimation of these cities’
abilities to offset their electricity consumption with
PV, each state’s total electric-industry sales were
distributed to its cities by population weight. For
example, Florida has 222 TWh of annual sales, and
1.5% of Florida’s population lives within the
boundaries of Tampa; therefore, the estimated
consumption of Tampa is 3.33 TWh. This approxi-
mation will overestimate the potential for PV tomeet a
city’s actual consumption for cities that consumemore
per capita than the state average, and it will
underestimate the potential for cities that consume
less.

Owing to their size and building density, the cities
with the largest potential installed capacity are Los
Angeles and New York, with 9.0 GW and 8.6 GW,
respectively—illustrating that, even in dense urban
areas, shading from buildings does not prevent
appreciable PV installation. Even with large potential
capacities in these dense cities, however, PV cannot
meet the same percentage of city electricity demand as
can be met in some smaller cities. For example,
Syracuse and New York City have similar solar
resources, but Syracuse can generate 57% of its
associated consumption with rooftop PV, whereas
New York City can generate only 18%. The total
percentage of roof area suitable for PV is similar in the
two cities (48% in Syracuse and 46% in New York
City), suggesting the difference is driven by low roof
area per capita in New York City.

Mission Viejo has relatively high per capita
production, driven in part by a low proportion of
multi-unit households (which constitute only 15% of
9

total housing units, as compared to an average of 30%
throughout the rest of California), resulting in a high
quantity of residential roof area per resident. When
combined with a relatively low average state per capita
consumption and high-quality solar resource, the city
can generate 88% of its estimated consumption using
rooftop PV.
4. Conclusion

Based on our analysis of cities completely covered by
lidar data, rooftop PV’s ability to meet estimated
electricity demand varies widely—from meeting 16%
of demand (in Washington, DC) to meeting 88% (in
Mission Viejo, CA). Important drivers include average
rooftop suitability, household footprint/per-capita
roof space, and solar resource as well as estimated
electricity consumption. All these metrics must be
considered in order to predict the ability of
aggregations of households to offset consumption
with rooftop PV.

Our results require several caveats. First, they are
sensitive to assumptions about PV system perfor-
mance, which is expected to continue improving. For
example, if we assumed an average module efficiency
of 20% instead of 16%, each technical potential
estimate would increase by about 25%. Second, we
only estimate the potential from existing, suitable roof
planes—not the immense potential of ground-
mounted PV. Actual generation from PV in urban
areas also could exceed these estimates if systems were
installed on less suitable roof area, PV were mounted
on canopies over open spaces such as parking lots, or
PV were integrated into building facades. Finally, our
results do not consider the full set of challenges related
to exploiting PV’s technical potential. In practice,
integrating significant rooftop PV into the national
electricity portfolio would require a more flexible grid,
supporting infrastructure, and a suite of enabling
technologies.

The results we present here provide valuable
insights into the technical potential of US rooftop PV,
and—in a subsequent Environmental Research Letters
article—we will use statistical modeling to extend
these results to a nationwide estimate of technical
potential. Just as importantly, we hope our data and
methods spur creative future analyses by municipali-
ties, utility providers, solar energy researchers, and
others. We have made a wide range of data from our
analysis publically available, including regional and
ZIP-code-level summaries for all areas with lidar
data10.

http://www.maps.nrel.gov/pv-rooftop-lidar


Table 3. Technical Potential of Rooftop PV from all Building Sizes within Boundaries of Cities Completely Covered by lidar Data.

City Installed Capacity

Potential (GW)

Annual Generation

Potential (GWh/year)

Ability of PV to meet

Estimated Consumption

Mission Viejo, CA 0.4 587 88%

Concord, NH 0.2 194 72%

Sacramento, CA 1.5 2293 71%

Buffalo, NY 1.2 1399 68%

Columbus, GA 1.1 1465 62%

Los Angeles, CA 9.0 13 782 60%

Tulsa, OK 2.6 3590 59%

Tampa, FL 1.4 1952 59%

Syracuse, NY 0.6 657 57%

Amarillo, TX 0.7 1084 54%

Charlotte, NC 2.6 3466 54%

Colorado Springs, CO 1.2 1862 53%

Denver, CO 2.3 3271 52%

Carson City, NV 0.2 386 51%

San Antonio, TX 6.2 8665 51%

San Francisco, CA 1.8 2684 50%

Little Rock, AR 0.8 1099 47%

Miami, FL 1.4 1959 46%

Birmingham, AL 0.9 1187 46%

St. Louis, MO 1.5 1922 45%

Cleveland, OH 1.7 1881 44%

Toledo, OH 1.4 1666 43%

Providence, RI 0.5 604 42%

Worcester, MA 0.5 643 42%

Atlanta, GA 1.7 2129 41%

New Orleans, LA 2.1 2425 39%

Hartford, CT 0.4 404 38%

Baltimore, MD 2.0 2549 38%

Bridgeport, CT 0.4 435 38%

Detroit, MI 2.6 2910 38%

Portland, OR 2.6 2811 38%

Milwaukee, WI 2.1 2597 38%

Boise, ID 0.5 760 38%

Des Moines, IA 0.8 1026 36%

Cincinnati, OH 1.0 1176 35%

Norfolk, VA 0.8 1047 35%

Wichita, KS 1.1 1537 35%

Newark, NJ 0.6 764 33%

Philadelphia, PA 4.3 5289 30%

Springfield, MA 0.3 370 29%

Chicago, IL 6.9 8297 29%

St. Paul, MN 0.8 903 27%

Pittsburgh, PA 0.9 907 27%

Minneapolis, MN 1.0 1246 26%

Charleston, SC 0.3 407 25%

New York, NY 8.6 10 742 18%

Washington, DC 1.3 1660 16%
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