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Abstract
The amplification of flood frequencies by sea level rise (SLR) is expected to become one of the
most economically damaging impacts of climate change for many coastal locations.
Understanding the magnitude and pattern by which the frequency of current flood levels increase
is important for developing more resilient coastal settlements, particularly since flood risk
management (e.g. infrastructure, insurance, communications) is often tied to estimates of flood
return periods. The Intergovernmental Panel on Climate Change’s Fifth Assessment Report
characterized the multiplication factor by which the frequency of flooding of a given height
increases (referred to here as an amplification factor; AF). However, this characterization neither
rigorously considered uncertainty in SLR nor distinguished between the amplification of different
flooding levels (such as the 10% versus 0.2% annual chance floods); therefore, it may be
seriously misleading. Because both historical flood frequency and projected SLR are uncertain, we
combine joint probability distributions of the two to calculate AFs and their uncertainties over
time. Under probabilistic relative sea level projections, while maintaining storm frequency fixed,
we estimate a median 40-fold increase (ranging from 1- to 1314-fold) in the expected annual
number of local 100-year floods for tide-gauge locations along the contiguous US coastline by
2050. While some places can expect disproportionate amplification of higher frequency events
and thus primarily a greater number of historically precedented floods, others face amplification
of lower frequency events and thus a particularly fast growing risk of historically unprecedented
flooding. For example, with 50 cm of SLR, the 10%, 1%, and 0.2% annual chance floods are
expected respectively to recur 108, 335, and 814 times as often in Seattle, but 148, 16, and 4
times as often in Charleston, SC.
1. Introduction

Coastal flooding is already one of the most damaging
environmental hazards—responsible for a great loss
of life, property, and long-term effects on municipal
services and economic health (Hsiang and Jina 2014,
USACE 2015). Flood height is driven by sea level rise
(SLR) and storm tide, which in turn is composed of
tide and storm surge. Even a small amount of SLR
augments the flood height associated with a storm
© 2017 IOP Publishing Ltd
surge or tidal event. Indeed, flooding amplified by
SLR is projected to be the most damaging market
impact of climate change for many coastal regions of
the US in the 21st century (Houser et al 2015).
Understanding the magnitude and pattern by which
the frequency of current flood levels (such as the 1%
annual chance flood, or equivalently the 100-year
flood) increase is critical for developing more resilient
coastal areas, particularly since coastal infrastructure
management, federal flood insurance, and flood risk
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communications are typically tied to estimates of
flood return periods (e.g. NYC 2013, Douglas et al
2016).

The amplification factor (AF) is a metric that
measures the change in the expected frequency of a
historic annual chance flood with SLR. It has been
calculated explicitly (Hunter 2012, Church et al
2013) and implicitly (by estimating changes in flood
frequency; Tebaldi et al 2012, Lin et al 2012) to aid
stakeholder decision-making about coastal flood
risk management. AFs are a function of the
frequency distribution of storm tide events and
the amount of local SLR—both of which are
uncertain (see section 3). Storm tide distributions
can be simulated with hydrodynamic models, which
may then be fit by an extreme value distribution to
estimate the storm tide frequency distribution
(including or excluding SLR, e.g. Lin et al 2012
and Muis et al 2016, respectively). Alternatively,
observations can be fit to an extreme value
distribution to estimate a storm tide distribution,
which can be adjusted for the distribution of future
SLR. Extreme value theory is commonly used
because of the computational intensity of high-
resolution hydrodynamic modeling and also because
it is data-based, capturing both tropical and non-
tropical storm surges. Although hydrodynamic
modeling can simulate potential changes in storm
surges associated with tropical cyclones in response
to warming sea surface temperatures and changing
wind patterns, there is low confidence in climate
model projections of future tropical cyclone behav-
ior, particularly in individual basins (e.g. Knutson
et al 2010). Here, we assume there are no significant
changes in tides or storm climatology that would
affect storm tide distributions.

The Gumbel extreme value distribution was
prominently used in the Intergovernmental Panel
on Climate Change’s (IPCC) Fifth Assessment Report
(AR5; Church et al 2013) and elsewhere (Hunter
2012, Muis et al 2016) because it has the advantage of
simplicity, assuming an exponential relationship
between the level and frequency of flooding.
However, AFs estimated by it are invariant to flood
levels and do not capture the distinct effects of SLR on
flooding in areas with heavy- and thin-tailed flood
frequency distributions. Here we present calculations
of the amplification of flood return periods using
extreme value theory allowing for heavy- and thin-
tailed distributions and their change with SLR. We
combine joint probability distributions of flood
frequency using the Generalized Pareto Distribution
(GPD), incorporating uncertainty in this extreme
value distribution and employing probabilistic local
SLR projections (conditional upon a greenhouse gas
emissions pathway) to provide AFs along US coast-
lines for various flood levels, timeframes, and SLR
scenarios.
2

2. Estimating the amplification of flood
frequencies

There are two main families of extreme value
distributions: the Generalized Extreme Value (GEV)
distribution and GPD. The GEV family of distribu-
tions is used in block maxima analysis, in which
extremes are estimated by maximum water levels over
a unit of time (e.g. annual values). The GPD is used in
peak-over-threshold (POT) analysis, in which the
probability of having an event over a specified
threshold is described by a Poission distribution
and the GPD characterizes the conditional probability
of an event of a given magnitude. In a POTanalysis, all
observations over a high threshold (e.g. the 99th
percentile of hourly water levels; Tebaldi et al 2012) are
used to estimate the distribution of flood events (e.g.
water level extremes). Hence, the GPD incorporates
sub-annual maxima, making use of more of the
available data. For these reasons, the GPD has been
recognized as a hydrological standard since 1975
(NERC 1975, Coles et al 2001).

The number of exceedances of flood level z for the
GEV and Poisson–GPD are given by:

NðzÞ ¼
λ 1þ jðz � mÞ

s

� ��1

j for j≠ 0

λ ⁢ exp � z � m

s

� �
for j ¼ 0

8>>>>><
>>>>>:

ð1Þ

whereby the distributions are characterized by location
(m), scale (s), and shape (j) parameters. The location
parameter relates to local sea level, the scale parameter
to the variability in the maxima of water level caused
by the combination of tides and storm surges, and the
shape parameter to the curvature and upward limit of
a flood frequency curve. These expressions for the
number of exceedances in the GEVand Poisson–GPD
are identical except for λ. For the Poisson–GPD, λ is
the Poisson-distributed annual mean number of flood
events; for a GEV describing annual block maxima,
λ ¼ 1 event/year (Hunter 2012, Buchanan et al 2016).
For j ¼ 0, the expression is identical to that for a
Gumbel distribution, a simple exponential function
(figure 1(a)).

The shape parameter dominates the tail of a flood
frequency distribution (Coles et al 2001), illustrated by
the distinction between curves in figure 1(a) from only
a variation in j, holding all other parameters constant.
Flood frequency distributions with j > 0 are ‘heavy-
tailed’, with a relatively high frequency of extreme
flood levels. Conversely, flood frequency curves with
j< 0 are ‘thin-tailed’, having an upper bound of
extreme flood levels.
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Figure 1. (a) Flood frequency distributions (the number of expected events of flood level z), (b) amplification factors (AFs) of flood
levels z, and (c) AFs of corresponding return periods (1 / N(z)) for 0.5m SLR and three hypothetical GPD curves with equal
parameters except for varying shape factors (j). The green, blue and black lines correspond to a positive (j ¼ .15), negative
(j ¼ � .15), and zero j. The AF of a given flood level z is dependent on the sign of the extreme value shape parameter.
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The AF of a flood of height z after SLR is N
(z � d)/N (z), where N (z � d) is the new expected
number of exceedances of the flood level with SLR:

AFðzÞ ¼ Nðz � dÞ
NðzÞ

¼ 1� d

ðs=jÞ þ z � m

� ��1

j for j≠ 0

⁢ exp d

s

� �
for j ¼ 0

8>>>><
>>>>:

ð2Þ

Taking the derivative of AF(z) with respect to z shows
the dependence of the AF on flood height:

@AFðzÞ
@z

¼
�dj½AFðzÞ�ð1þjÞ

ðjðz � mÞ þ sÞ for j≠ 0

0 for j ¼ 0

8<
: ð3Þ

Assuming AF(z) and d > 0, the sign of ∂AF(z) /∂z is
equal to the sign of �j, so the AF is decreasing with
flood height for positive shape factors and increasing
with flood height for negative shape factors (figures 1
(b) and (c)).

For j ¼ 0 (i.e. a Gumbel distribution), ∂AF(z) / ∂z
¼ 0; there is no dependence of AF on flood height, and
thus its use assumes AFs are invariant to flood levels;
i.e. that all flood frequencies amplify by the same
magnitude (figures 1(b) and (c)). A key question thus
arises among the approaches in extreme value theory
to fit a distribution to flood frequencies—whether to
use the simple Gumbel distribution or the GPD/GEV
that requires fitting of a shape parameter. Because the
shape parameter is dominant in determining a flood
frequency distribution, there is a trade-off between the
simplicity of the extreme value distribution used and
its validity (Coles et al 2001). Simple approximations
are more tractable numerically; however, they are
suboptimal when another accessible approach can
differentiate between varying values of key metrics of
concern—such as changes in the recurrence of the
10-year vs 500-year flood under climate change.

Amplification of flooding frequency is also heavily
influenced by how local SLR is characterized. Under
uncertain SLR, the AF equals E[(N (z)� d) /N (z)]. By
3

Jensen’s inequality (Jensen 1906), the convex trans-
formation of the expectation of a random variable is
less than or equal to the expectation of the convex
transformation of the random variable. As a result of
Jensen’s inequality and the approximate log-linearity
of flood frequency curves, the AF under expected SLR
is less than the expected AF under uncertain SLR, such
that E[(N (z) � d)/N(z)] � N (z � E[d])/N(z). This
inequality holds even if the distribution of SLR is
symmetric, and the discrepancy is larger still if the
distribution is positively skewed (i.e. when expected
SLR is greater than median SLR). Because N(z) is also
a random variable, accounting for the uncertainty in
the extreme value distribution fit is also important.
3. Methods
3.1. Extreme value theory
We analyze National Oceanic and Atmospheric
Administration (NOAA) hourly tide-gauge records
for sites with a minimum 30 year record (which can be
found at http://tidesandcurrents.noaa.gov/) following
the methodology of Tebaldi et al (2012) and Buchanan
et al (2016). The GPD is estimated using hourly water
level exceedances above a high threshold (equal to the
99th percentile of the hourly water level; Gilleland and
Katz 2011). Hourly tide records are used to capture
storm surge, astronomical tides, and interannual sea
level variability, and are detrended to remove the
contribution of changes in mean sea level. To account
for uncertainty in fit, GPD parameters are estimated
by maximum likelihood, and their covariance is
estimated based on the observed Fisher information
matrix (the Hessian of the negative log-likelihood at
the maximum-likelihood estimate). We sample 1000
parameter pairs with Latin hypercube sampling,
assuming the parameter uncertainty is normally
distributed. The expected number of exceedances
under parameter uncertainty is calculated for our
main calculations. Below the GPD threshold of
λ events per year, we fit a Gumbel distribution with
182.6 events exceeding mean higher high water
(MHHW) per year, assuming about half of all days
have higher high water levels above mean higher high

http://tidesandcurrents.noaa.gov/
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water. For a comparative analysis, a Gumbel distribu-
tion is also fitted to the full distribution of threshold
exceedances.

3.2. Sea level rise projections
Weuse10 000MonteCarlo samples ofKopp et al (2014)
local SLR projections, accounting for global and local
contributions, including land subsidence,distributional
effects of land-ice melt (SLR fingerprints), and expert
assessment of dynamic ice-sheet collapse. These SLR
projections are asymmetric, and—due primarily to the
poorly constrained but potentially large contribution of
the Antarctic ice sheet (e.g. DeConto and Pollard 2016)
—positively skewed. We use two Representative
Concentration Pathways (RCP) 4.5 and 8.5 which
represent greenhouse gas concentrations that lead to a
radiative forcing of 4.5 and 8.5 W m�2 by 2100 (Van
Vuuren et al 2011).

3.3. Amplification factors
The distribution of AFs and the expectation over 1000
samples of the AF are calculated for a given site. In our
main calculations, AFs estimated by the GPD include
uncertainty in local SLR and in the GPD fit, while AFs
estimated by the Gumbel distribution include
uncertainty in local SLR.
4. Amplification of current flood levels with
sea level rise

The shape factors, j, reflect meteorological and
hydrodynamic differences among sites (figure 1(a)
in Buchanan et al 2016). Exposed to tropical cyclones,
sites along the Gulf and Atlantic coasts tend to have
heavy-tailed flood frequency distributions, with
positive j. Conversely, sites along the Pacific coast,
limited by steeper coastal slopes into the seabed and
fewer barrier beaches (Pugh 1996), tend to have thin-
tailed distributions, with negative j.

The sensitivity of flood frequency distributions to j
(Coles et al 2001) yields distinct behavior: AFs increase
as a function of zwhen j> 0, decrease as a function of z
when j< 0, and are greatest for z at which the slope ofN
(z) is steepest. Hence, sites with positive j face a large
amplification of traditionally less extreme storm tide,
whereas those with negative j face high amplification of
traditionally extreme storm tide.

Sea level rise not only amplifies flood heights but
also changes the relation of flood height to flood
frequency across locations. We refer to the relationship
between flood height and flood frequency changes
under SLR as an emerging flood regime. It can be
simply illustrated by the ratio of the AF of the 500 year
flood to the AF of the 10 year flood (RAF). Take, for
example, the flood frequency distributions of four US
tide gauge sites with varying j: Charleston, SC with a
large positive shape factor (j ¼ 0.23 [0.10, 0.36];
maximum-likelihood, median [5th and 95th percen-
4

tiles]), New York City with a more moderately positive
shape factor (j¼ 0.19 [0.07, 0.30]), San Francisco with
a near-zero shape factor (j ¼ 0.03 [�0.10, 0.16]), and
Seattle, WAwith a large negative shape factor (j¼�0 .
17 [�0.27, �0.06]; figure 1). Fifty cm of local SLR
amplifies the 10-year, 100-year, and 500-year floods by
148, 16, and 4 times in Charleston (yielding a RAF of
0.03) and by 109, 335, and 814 times in Seattle (RAF ¼
7.47). AFs are less divergent acrossN(z) for places with
smaller j (in absolute value): RAF is 0.17 in New York
and 0.43 in San Francisco.

The Gumbel distribution fits the majority of
observations of extreme water levels poorly. For a
subset of qualifying sites, we define △AIC as the
difference between the Akaike Information Criterion
(AIC) with the Gumbel distribution and the AIC with
the GPD, whereby lower AIC values indicate higher
model quality. The△AIC is negative for only 5 out of
23 sites and has a mean of 11.77 and s.d. of 6.97
(supplementary table 4 available at stacks.iop.org/
ERL/12/064009/mmedia). When j is assumed to be
zero, the AF is reduced to a single scalar, invariant to
flood level—196 for Charleston and 86 for Seattle
(equation (2)). This underestimates the recurrence of
the 500-year flood in Seattle and overestimates it in
Charleston by 1–2 orders of magnitude, respectively
(figure 2, columns G and GPD). This illustrates the
Gumbel distribution’s poor approximation for storms
far in the tail and reflects the larger problemwith using
the Gumbel distribution to estimate flood frequencies.
Accounting for uncertainty in the GPD significantly
widens the distribution of AFs for sites with positive j,
with more uncertainty in the far tail of storm surges
(columns for Uncertain SLR and Uncertain GPD in
figure 2; see Methods).

AFs are also sensitive to the characterization of
SLR. Using the GPD and a central estimate of SLR—
rather than a probability distribution—underesti-
mates by an order of magnitude the AF of the 500-year
flood for places with negative j and by two orders of
magnitude the AF of the 10-year flood for places with
positive j (columns for E[SLR] and Uncertain SLR in
figure 2). The expected AFs for Seattle and San
Francisco are much larger than the median estimate
partly because of the large positive skewness in their
local SLR distributions.

Figure 3 shows the expected amplification of the
current 10-year flood and its ratio to other flood levels
for a set (N¼ 69) of long-duration tide gauges acrossUS
coastlines under RCP 4.5, corresponding to a likely
global mean temperature increase of 2 °C–3.6 °C by
2100 (Van Vuuren et al 2011). While the Gumbel
distributionunderestimates andoverestimates theAFof
the current 500-year flood by 1–2 orders of magnitude
(figures 3(d) and (h)), the GPD captures distinct flood
regimes—the heightened AF of more extreme flooding
for areas with negative j (and the opposite for areas with
positive j; figures 3(b), (c), (f) and (g)). AFs in figure 3
are drastically different than those for the US in the AR5

http://stacks.iop.org/ERL/12/064009/mmedia
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Figure 2. Expected amplification factors (AFs) of different flood return levels (10% (�), 1% (△), and 0.2% (◊) annual chance
floods) for different extreme value distributions (GPD and Gumbel) and characterizations of sea level rise (SLR) for sites (Seattle, San
Francisco, Charleston, and New York City) with varying shape parameters (negative, near-zero, and positive j). Amplification
scenarios include: (1) the Gumbel distribution with 0.5m deterministic SLR (column G), (2) the GPD with 0.5m deterministic SLR
for the 10-, 100-, and 500 years floods (GPD), (3) the GPD with expected SLR for 2050 under RCP 4.5 for the 10-, 100-, and 500-year
floods (E[SLR]), (4–6) the GPD with uncertain SLR for 2050, integrated over the full probability distribution for SLR under RCP 4.5
for the 10-, 100-, and 500-year floods (Uncertain SLR), and finally (7) the GPD with uncertain SLR for 2050, integrated over the full
probability distribution for SLR under RCP 4.5 and accounting for uncertainty in the GPD fit (see Methods) for the 500-year flood
(Uncertain GPD). With the Gumbel distribution, differences in the expected amplification of various flood levels with the same
amount of SLR are undetectable (�). The extreme value distribution (Gumbel vs. GPD) and use of only the expected level of SLR are
responsible for the largest degrees of error in flood frequencies with respect to SLR. Boxplots correspond to the 5th, 17th, 50th, 83rd,
and 95th percentiles of the distribution of AFs. Median estimates of the shape factor are shown in the panel titles.
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figure 13.25 (Church et al 2013), which used a Gumbel
distribution. With 50 cm of SLR, the AR5 under-
estimates the AF of the 500-year flood in areas with a
negative j andoverestimates it in areaswith positive j by
1–3 orders of magnitude, respectively.

Under probabilistic relative sea level projections
of Kopp et al (2014) for RCP 4.5 and when
accounting for uncertainty in the GPD, we project
a median 25-fold increase (range of 1- to 914-fold) in
the expected annual number of local 100-year floods
for tide-gauge locations along the contiguous US
coastline by 2050 (measured with respect to
detrended sea level over the entire length of the
record; Buchanan et al 2016). These values jump
significantly by 2100 (median: 1729, range: 5–12
546). As SLR gets to such high levels, lower flood
levels saturate first, yielding flooding influenced
5

primarily by tidal events rather than storm surges,
and dampening the growth of the AF of all flood
levels along all coastlines (figures 3(e), (g) and (h)).
This effect is also illustrated by the red curve in online
supplementary figure 1, demarcating flood levels in
2100. Under RCP 8.5, a high greenhouse gas
emissions pathway, a median 40-fold increase (range:
1–1314) in the annual number of local 100 year floods
is expected by 2050 and a median 3467-fold increase
(range: 5–16 829) by 2100. For illustrative purposes,
the current 100-year flood in Seattle is expected to
occur 50.9 times a year, equal to an average of one
100-year flood per week. The expected AFs of various
flood levels by 2050 and 2100 under RCP 4.5 and 8.5,
accounting for uncertainty in the GPD fit, are
provided in online supplementary tables 1–2. Annual
expected flood frequencies of the 10-year, 100-year,
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Figure 3. Amplification factors (AFs) and ratios thereof estimated for 2050 (a)–(d) and 2100 (e)–(h) under uncertain local sea level
rise under RCP 4.5. (a), (e) AF of current 10 year flood return levels estimated by the GPD, (b), (f) the ratio of the AFs of the 100- to 10
year flood estimated by the GPD, (c), (g) the ratio of the AFs of the 500- to 10 year flood estimated by the GPD, and (d), (h) the ratio of
the AFs estimated by the Gumbel distribution to the 500 year flood estimated by the GPD. All GPDAFs account for uncertainty in the
GPD fit.
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and 500-year floods by 2050 and 2100 are in online
supplementary tables 5 and 6.

It should be noted that the distributions of tropical
and extra-tropical cyclones may be systematically
different and the significance of any such difference is
unknown. Here, contributions of tropical and extra-
tropical cyclones are combined as in other studies (e.g.
Hunter 2012, Tebaldi et al 2012). Separation of these
storm events would likely lead to a scarcity of very
extreme events. Inclusion of uncertainty in the extreme
value distribution helps account for potential sensitivity
of the shape parameter to different storm events.
5. Conclusion

SLR imposes slow but steady inundation of coastal
land and property. However, the more immediate
6

threat from SLR is an amplification of flooding,
independent of any potential changes in the
distribution of coastal storms from climatological
factors (Houser et al 2015, Church et al 2013).
Amplification of current flood levels and emerging
flood regimes have critical implications for cities,
states, and federal entities interested in adapting to
coastal impacts.

The expected amplification of flooding frequency
is highly sensitive to the characterization of SLR
and flood frequency curves; the commonly used
Gumbel extreme value distribution can, depending
on j, underestimate or overestimate—flood extreme
increases in the far tail. Its use cannot distinguish
emerging flood regimes, the pattern by which flood
frequency responds to SLR. Among the prominent
uses of the Gumbel distribution was the IPCC AR5
(Church et al 2013). Additionally, Muis et al (2016)
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use the Gumbel distribution to derive a global data set
of extreme sea levels; this data now populates the
Dynamic Interactive Vulnerability Analysis (DIVA)
model, which is used extensively to assess impacts of
sea level rise (e.g. Hinkel et al 2014). The AR5
amplification values may be seriously misleading
because using the Gumbel distribution implies that
amplification of flood frequency is invariant across
flood levels. For example, this assumes that the
frequency of extreme events like a 500-year flood will
increase by the same magnitude as lesser extremes,
potentially projecting overly catastrophic flood haz-
ards in some areas while underestimating flood
hazards elsewhere. Prominent use of the Gumbel
distribution in the IPCC—which has a special
influence on policy makers—and elsewhere creates a
risk that policy makers will implement policy based on
the wrong information. While using a rule of thumb
(implicit in the Gumbel distribution) is practical, it
over-simplifies flood hazard characterization and
could result in costly misjudgments by planners. This
is particularly important as coastal areas tend to be
early adopters of climate change adaptation planning
(nearly 80% of US adaptation plans in a recent meta-
analysis were in coastal states; Woodruff and Stults
2016). The use of the GPD is therefore preferable for
flood risk assessment of the emerging non-stationary
climate.

Using the GPD, locations with positive j (like New
York City, Baltimore, Washington DC, and Key West)
can expect disproportionate amplification of higher
frequency events, whereas those with negative j (such
as Seattle, San Diego, and Los Angeles) can expect a
disproportionate amplification of lower frequency
flooding. Effective policies should initially increase
resilience to historical flooding in areas with emerging
flood regimes associated with positive j, and prepare
for largely unprecedented flooding in areas with
negative j. Policies should also allow for adjustment
over time to address eventual flooding dominated by
tidal events and permanent inundation (Sweet and
Park 2014). Identification of areas with similar flood
regimes by shape factor could facilitate the sharing of
adaptation strategies across coastal areas.
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