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Abstract
Degrading permafrost can alter ecosystems, damage infrastructure, and release enough carbon
dioxide (CO2) and methane (CH4) to influence global climate. The permafrost carbon feedback
(PCF) is the amplification of surface warming due to CO2 and CH4 emissions from thawing
permafrost. An analysis of available estimates PCF strength and timing indicate 120 ± 85 Gt of
carbon emissions from thawing permafrost by 2100. This is equivalent to 5.7 ± 4.0% of total
anthropogenic emissions for the Intergovernmental Panel on Climate Change (IPCC)
representative concentration pathway (RCP) 8.5 scenario and would increase global
temperatures by 0.29 ± 0.21 °C or 7.8 ± 5.7%. For RCP4.5, the scenario closest to the 2 °C
warming target for the climate change treaty, the range of cumulative emissions in 2100 from
thawing permafrost decreases to between 27 and 100 Gt C with temperature increases between
0.05 and 0.15 °C, but the relative fraction of permafrost to total emissions increases to between
3% and 11%. Any substantial warming results in a committed, long-term carbon release from
thawing permafrost with 60% of emissions occurring after 2100, indicating that not accounting
for permafrost emissions risks overshooting the 2 °C warming target. Climate projections in the
IPCC Fifth Assessment Report (AR5), and any emissions targets based on those projections, do
not adequately account for emissions from thawing permafrost and the effects of the PCF on
global climate. We recommend the IPCC commission a special assessment focusing on the PCF
and its impact on global climate to supplement the AR5 in support of treaty negotiation.

Keywords: permafrost carbon feedback, permafrost, global climate

1. Introduction

Permafrost soils contain ∼1700 gigatonnes (Gt) of carbon in
the form of frozen organic matter, nearly twice as much
carbon than is currently in the atmosphere (Tarnocai
et al 2009). Half of the frozen organic matter lies in the top
3 m of permafrost and the rest is in highly localized deposits
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that can extend down to 30 m depth (Tarnocai et al 2009).
Plant remains and other organic material was buried and
frozen into permafrost during or since the last ice age by dust
deposition, sedimentation in flood plains and peat develop-
ment on time scales of decades to millennia (Zimov
et al 2006a, 2006b, Schuur et al 2008). Vertical mixing of soil
during repeated freeze/thaw cycles accelerated the burial
process (Schuur et al 2008). Nearly all the frozen organic
matter consists of plant remains (roots, stems and leaves) and
partially decayed plant organic material. Decay essentially
stops once the soil is frozen, so this organic matter has been
preserved, frozen in permafrost, for thousands of years.

The permafrost carbon feedback (PCF) is the amplifica-
tion of anthropogenic warming due to carbon emissions from
thawing permafrost. If temperatures rise and permafrost
thaws, the organic material will also thaw and begin to decay,
releasing carbon dioxide (CO2) and methane (CH4) into the
atmosphere and amplifying the warming due to anthropogenic
greenhouse gas emissions (figure 1) (Zimov et al 2006b,
Schuur et al 2009, 2013). Thermokarst lakes are especially
effective in inducing rapid thaw of permafrost, with

subsequent release of substantial amounts of CH4 (Walter
et al 2007), which is 33 times more effective a greenhouse gas
than CO2 (Shindell et al 2009). The release of CO2 and CH4

from thawing permafrost will amplify global warming due to
anthropogenic greenhouse gas emissions and further accel-
erate permafrost degradation. Warmer conditions and
increased atmospheric CO2 will enhance plant growth that
will remove some CO2 from the atmosphere (Friedlingstein
et al 2006), but this may only partially compensate for the
much greater carbon losses from thawing permafrost. The
PCF is irreversible on human time scales because in a
warming climate, the burial mechanisms described above
slow down or stop, so there is no way to convert CO2 into
organic matter and freeze it back into the permafrost.

There are few published estimates that quantify CO2 and
CH4 emissions from thawing permafrost, making it difficult to
evaluate the effects of the PCF on global climate. Here we
perform a detailed meta-analysis of currently published pro-
jections of future permafrost degradation and associated
emissions of CO2 and CH4 to better quantify how the PCF
influences global climate. We then evaluate how the PCF
influences the negotiations of anthropogenic emissions targets
(Schaefer et al 2012).

2. Impacts of thawing permafrost

2.1. Current permafrost status

The Global Terrestrial Network for Permafrost (GTN-P)
monitors permafrost status and degradation (figure 2). The
GTN-P consists of two global networks to monitor perma-
frost: the thermal state of permafrost (TSP) and the Cir-
cumpolar Active Layer Monitoring (CALM) networks. The
TSP network measures permafrost temperature at multiple
depths at 860 borehole sites (Brown et al 2010, Romanovsky
et al 2010a). The CALM network measures active layer
thickness (ALT) or maximum annual thaw depth at 260 sites
either mechanically using a probe, or electronically with a
vertical array of temperature sensors (Brown et al 2000,
Streletskiy et al 2008, Shiklomanov et al 2010). Permafrost
temperature and ALT were both identified as essential climate
variables for monitoring the state of the cryosphere and global
climate by the Global Climate Observing System and the
Global Terrestrial Observing System. The International Per-
mafrost Association currently coordinates international
development and operation of the TSP and CALM networks.
Logistical support costs restrict TSP and CALM sites to areas
with reasonable access by truck, plane or boat, resulting in a
clustering of sites along roads, rivers, and the Arctic coastline.
The number of sites in the GTN-P has doubled in the past
decade, but coverage is sparse in discontinuous permafrost
zones where we expect the greatest permafrost degradation
(Anisimov et al 2007).

Observations from the TSP network indicate rising per-
mafrost temperatures over the last several decades. Coastal
sites show continuous warming since the 1980s and in Alaska
this warming trend has propagated south from the Arctic coast

Figure 1. The permafrost carbon feedback (PCF) is an amplification
of surface warming due to the thaw of organic material currently
frozen in permafrost, which will then decay and release CO2 and
CH4 into the atmosphere.
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towards the Brooks Range, with statistically significant
warming in the upper 20 m of permafrost since 2008
(Romanovsky et al 2011, 2012). Northern Russia and
Northwest Canada show increases in permafrost temperature
similar in magnitude to those in Alaska during the last 30–35
years (Drozdov et al 2008, Oberman 2008, Romanovsky
et al 2010b, Smith et al 2010). The same pattern repeats
across the Arctic with coastal sites warming faster than more
southerly sites (Romanovsky et al 2010a).

Trends in ALT from the CALM network are less con-
clusive, with some sites showing increases and others show-
ing no trend at all. ALT has increased on the Qinghai-Tibet
Plateau and in the Russian European North, but not in West
Siberia (Mazhitova 2008, Vasiliev et al 2008, Wu and
Zhang 2010, Zhao et al 2010). Although ALT has increased
in the Alaskan and Canadian interior, there is no obvious
trend near the Arctic coastline (Streletskiy et al 2008, Shik-
lomanov et al 2010, Smith et al 2009, 2010, Burn and
Kokelj 2009). The melting of excess ground ice can produce
long-term trends in surface subsidence indicative of perma-
frost degradation even if the observed ALT show no con-
sistent trends (Liu et al 2010, 2012, Shiklomanov et al 2013).

2.2. Permafrost in the future

Permafrost degradation in response to warming starts with
increases in ALT followed by talik formation. As tempera-
tures rise, the simulated ALT increases and eventually, the
active layer becomes too deep to completely refreeze during
winter, forming a talik (Sazonova et al 2004, Schaefer
et al 2011). The southern margins of northern hemisphere
permafrost regions have the warmest permafrost and will see

the greatest talik formation (Zhang et al 2008b). Eventually,
the permafrost will become patchy and then disappear, and
the boundaries of continuous and discontinuous permafrost
will move north. Although near-surface permafrost in the top
few meters of soil may disappear, deeper permafrost may
persist for many years or even centuries. Over time the
remaining permafrost will contract around the coldest regions
in the Northern hemisphere, Northern Siberia and the islands
of Northeast Canada, where the permafrost is most resistant
to thaw.

Projections indicate ALT will increase and the areal
extent of near-surface permafrost will decrease, but show a
wide range in projected permafrost degradation. Table 1
shows projections of permafrost degradation for various
future emissions scenarios defined for the Intergovernmental
Panel on Climate Change (IPCC) Fourth Assessment Report
(AR4) and Fifth Assessment Report (AR5). Studies high-
lighted in bold also included estimates of PCF strength and
timing (see table 2 below). The current simulated permafrost
area varied by a factor of two between models and the mean
loss of permafrost area by 2100 was 52 ± 23%. Much of the
spread in estimated permafrost degradation resulted from
assuming different emissions scenarios and associated
warming, but even models assuming the same scenario show
a large spread in projected permafrost degradation.

The spread between models resulted from differences in
how they represented snow processes, soil organic matter, and
associated soil and snow thermodynamic properties (Koven
et al 2013). Snow in winter is very insulating, resulting in
permafrost temperatures that are usually several degrees
warmer than the air temperature (Zhang 2005, Schaefer
et al 2009). Most of the spread between models resulted from

Figure 2. The Global terrestrial Network for Permafrost (GTN-P) consists of the Circumpolar Active Layer Monitoring (CALM) network,
which measures ALT, and the thermal state of permafrost (TSP) network, which measures permafrost temperature.
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differences in how they represented snow and associated
insulating effects on soil temperature (Koven et al 2013). The
surface organic layer is very insulating, especially when it
dries in the summer, and tends to slow thawing of the active
layer (Williams and Smith 1989). Models with no organic soil
layer simulated deeper active layers and less permafrost than
currently observed and were more sensitive to permafrost
degradation in response to future climate change (Koven
et al 2013). In addition, none of these models account for
melting of excess ground ice ubiquitous in many permafrost
regions, which will slow permafrost degradation due to latent
heat effects (Burn and Nelson 2006). A more detailed eva-
luation of the AR5 models against observed permafrost
temperatures and ALT will help better isolate how to improve
simulated permafrost dynamics. However, improvements in
projections of permafrost degradation should focus on
improving the representation of the soil organic layer, snow
processes, and excess ground ice.

Although the models vary widely, they all agree that
permafrost degradation will occur in the future, resulting in
substantial changes to the landscape due to abrupt changes in
soil physical properties and hydrology. Expensive and

extensive damage to buildings, roads, and other key infra-
structure can occur quickly once permafrost begins to thaw,
impacting national and regional budget planning and public
services. However, there are very few studies and reports that
quantify the risks, costs and mitigation associated with
property and infrastructure damage due to permafrost
degradation.

2.3. The PCF

There are currently 14 published estimates of CO2 and CH4

emissions from thawing permafrost and impacts of the PCF
on global temperature (table 2). All but three of the projec-
tions in table 2 are based on the IPCC AR5 representative
concentration pathway (RCP)8.5 scenario, or its equivalent in
the AR4, the A2 scenario. The methods used to estimate
permafrost carbon flux vary: nine estimates are based on
models, three on observations (Dutta et al 2006, Schuur
et al 2009, Harden et al 2012), one on qualitative risks
(Gruber et al 2004), and one on an expert solicitation (Schuur
et al 2013). The Burke et al (2013) estimate is an ensemble
average of emissions estimates based on changes in

Table 1. Predicted permafrost degradation by 2100 arranged in order of increasing loss of permafrost area.

Study
Decrease in perma-
frost area (%)

Initial permafrost
area (×106 km2)

2100 permafrost
area (×106 km2)

Increase in
active layer (cm)

IPCC
scenario Domain

Zhang et al (2008b) 17.4 ± 1.5 na na 190–500 A2 Canada
Zhang et al (2008a) 20.5–24.0 na na 30–80 A2 Canada
Euskirchen
et al (2006)

26 ± 1a 21.7 16.1 ± 0.2 na A1B No.
hem.

Koven et al (2011) 30 14 9.8 30–60a A2 No.
hem.

Schaefer et al (2011) 30 ± 10 12.5 7.6 ± 1.3 56–92 A1B No.
hem.

Koven et al (2013) 32 ± 45a 14.4 8.9 ± 6.5 na RCP8.5 No.
hem.

Marchenko
et al (2008)

53a 1.3 0.6 162b A1B Alaska

Schuur et al (2013) 55 ± 5a 15.3 6.9 ± 0.8 na RCP8.5 No.
hem.

MacDougall
et al (2012)

56 ± 3 15.8 7 ± 0.5 na RCP8.5 Global

Schneider von
Deimling
et al (2012)

57 ± 20 na na na RCP8.5 No.
hem.

Saito et al (2007) 60 18.1 7.3 50–300 A1B No.
hem.

Burke et al (2012) 65 23.8 8.5 59 RCP8.5 No.
hem.

Lawrence et al (2012) 72 12.5 3.5 na A2 No.
hem.

Eliseev et al (2009) 80 ± 7a 21.0 4.2 ± 1.4 100–200 A2 No.
hem.

Lawrence et al (2008) 85 ± 2a 10.7 1.6 ± 0.2 50–300 A1B No.
hem.

Lawrence and Sla-
ter (2005)

90 ± 2a 10.5 1.0 ± 0.2 50–300 A2 No.
hem.

a

Calculated from numbers or tables in text.
b

Calculated from estimated trends.
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permafrost extent from 17 global climate projections from
AR5. Four of the model projections include estimates of
global temperature increases due to emissions from thawing
permafrost: three based on simulated climate sensitivities
(Schneider von Deimling et al 2012, Burke et al 2012,
Raupach and Canadell 2008) and one using a fully coupled
land–ocean–atmosphere model (MacDougall et al 2012). All
four of the estimates of temperature increase account for
subsequent uptake of permafrost emissions by the terrestrial
biosphere and the ocean. Except for MacDougall et al (2012),
none of the projections represent the complete or ‘closed’
feedback loop on global temperature, where emissions from
thawing permafrost influence air temperature and the simu-
lated permafrost thaw rate.

The ensemble average of estimated cumulative emissions
from thawing permafrost by 2100 is 120 ± 85 Gt C and the
median is 100 Gt C, but the spread in flux estimates is as
broad as seen in table 1. Five of the studies include estimates

of CH4 as well as CO2 emissions, but for consistency, we
calculated all CO2 equivalents assuming 2.3% of the emis-
sions from thawing permafrost will be CH4 (Schuur
et al 2013) and a global warming potential of 33 (Shindell
et al 2009). The average of estimated uncertainties from
individual studies is 54% or ±66 Gt C, but a more realistic
estimate is 72% or ±85 Gt C based on the standard deviation
of the model ensemble. Enhanced plant growth currently
removes roughly one-quarter of all anthropogenic CO2

emissions, and projections indicate a cumulative land uptake
by 2100 of approximately 160 Gt C (Friedlingstein
et al 2006). The PCF estimates in table 2 indicate emissions
from thawing permafrost could cancel out 19%–100% of this
global land uptake of CO2 emissions.

The large spread in cumulative flux estimates in 2100
resulted primarily from differences in simulated permafrost
thaw rates, organic matter decay rates, and, to a lesser extent,
differences in assumed initial stock of frozen carbon. Models

Table 2. Projections of cumulative emissions from thawing permafrost, with CO2 equivalents in parenthesesa.

Study 2100

Permafrost car-
bon emissions
(Gt C)2200 2300

Flux uncer-
tainty (%)

Temperature
increase
(K)2100

Initial
carbon
stock
(Gt C)

Permafrost
area loss
(%)2100 Scenario

Zhuang et al
(2006)b

37 (46) nac na 3% na na A2

Dutta
et al (2006)

40 (50) na na na na 460 5 °C
Siberia

Burke
et al (2013)

50 (62)e na 99
(124)e

41% na 850 76 ± 20 RCP8.5

Koven
et al (2011)

62 (78) na na 11% na 504 30 A2

Schneider von
Deimling
et al (2012)

63 (79) 302 (378) 380
(476)

16% 0.13 ± 0.10 800 57 ± 20 RCP8.5

Schuur et al
(2009)b

85 (107) na na 15% na 818 A2

Schaphoff
et al [2013]

98 (122) na 226
(283)b

23% na 952 24 5 °C
global

Gruber
et al (2004)

100
(125)

na na na na 400 2 °C
global

Schaefer
et al (2011)

104
(130)

190 (238) na 36% na 313 30 ± 10 A1B

Burke
et al (2012)

150
(188)

na na 67% 0.22 ± 0.14 951 65 RCP8.5

Schuur
et al (2013)

158
(198)

na 345
(432)

24% na 1488 55 ± 5a RCP8.5

MacDougall
et al (2012)

174
(218)

na na 61% 0.27 ± 0.16 1026 56 ± 3 RCP8.5

Harden
et al (2012)

218
(273)e

na 436
(546)e

85% na 1060 74 RCP8.5

Raupach and
Canadell
(2008)d

347
(435)

na na na 0.7 500 A2

a

CO2 equivalent calculated assuming 2.3% of total emissions is CH4 (Schuur et al 2013) and a global warming potential of 33 (Shindell et al 2009).
b

Calculated from rates in the paper.
c

Not available.
d

Calculated from a predicted atmospheric concentration assuming 0.4606 ppm Gt C−1 and half of all emissions stay in the atmosphere (Schaefer et al 2011).
e

Assumes half of the estimated committed carbon is respired by 2100 and the rest by 2300.
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assumed different amounts of initial frozen carbon, which
determined the theoretical upper limit on the cumulative flux
in 2100. However, the change in permafrost area determined
the amount of thawed organic matter and the simulated flux.
The correlation between estimated cumulative flux and the
permafrost area in 2100 is 0.9, which is statistically sig-
nificant at 95% confidence using a two-tailed Student t-test.

Essentially, the factors described above that determine
the projected areal loss of permafrost in 2100 also determine
the cumulative flux from thawing permafrost. However, the
simulated temperature sensitivity of organic matter decay
plays a role as well. For example, the Raupach and Canadell
(2008) cumulative flux in 2100 is double the next lowest
estimate not because of the simulated loss of permafrost area,
which is comparable to the other estimates, but because their
model did not shut down respiration when the organic matter
refreezes in winter, resulting in relatively fast decay and a
large cumulative flux. Consequently, improving how models
represent the effects of soil organic matter, snow processes,
excess ground ice, initial frozen carbon, and decay tempera-
ture sensitivity will improve estimates of emissions from
thawing permafrost.

We may be committed to long-term CO2 and CH4

emissions from thawing permafrost that will influence the
climate system for centuries (Schaefer et al 2011, Burke
et al 2012, Schaphoff et al 2013, Schuur et al 2013). The
decay of thawed organic material is slow in permafrost
regions because the soil will always be cold and wet in
summer and periodically refreeze in winter (Koven et al 2011,
Schaefer et al 2011, Schneider von Deimling et al 2012).
Schaefer et al (2011) simulated a characteristic carbon turn-
over time of ∼75 years, indicating it would take ∼150 years
for 95% of the thawed organic matter to decay away. Also,
permafrost and additional organic matter will continue to
thaw for decades or even centuries after warming stops
(Schaefer et al 2011). The six long-term estimates in table 2
indicate that ∼60% of the cumulative emissions from thawing
permafrost will occur after 2100. Future studies should extend
their projections to 2200 or even 2300 to evaluate the long-
term impacts of the PCF on global climate.

Using the model results summarized here, we estimate
that the PCF will increase the global average surface air
temperature by 0.29 ± 0.21 °C in 2100. To make this estimate,
we first calculated the regression of global temperature
increase as a function of cumulative flux for the four estimates
in table 2 that include temperature impacts: 0.0019 °C Gt C−1.
Although the four studies used different estimates of climate
sensitivity, this regression has an r2 of 0.95 and is statistically
significant at 95% confidence using a two-tailed Student t-
test. These four estimates account for subsequent terrestrial
and ocean uptake of CO2 from thawing permafrost, so this
regression represents the temperature impacts of net carbon
emissions from permafrost. Multiplying by the ensemble
average cumulative emissions of 120 ± 85 Gt C gives a tem-
perature increase of 0.23 ± 0.17 °C in 2100, consistent with
temperature increases due to historical anthropogenic emis-
sions (IPCC 2013). Using the CO2 equivalent emissions
increases this to 0.29 ± 0.21 °C by 2100, indicating CH4

emissions from thawing permafrost would increase global
temperatures by 0.06 ± 0.05 °C in 2100. The assumed cumu-
lative anthropogenic emissions for RCP8.5 is ∼2100 Gt C in
2100 (IPCC 2013), so the PCF would increase emissions by
5.7 ± 4.0%. The projected increase in global average air
temperature for RCP8.5 is 3.7 ± 1.1 °C in 2100 (IPCC 2013),
so the PCF would increase global temperatures by 7.8 ± 5.7%.

Our simple estimate of a 0.06 ± 0.05 °C increase in global
temperature in 2100 due to CH4 emissions from thawing
permafrost is consistent with other published estimates based
on more sophisticated models. We estimate that CH4 emis-
sions will contribute 21% of the total warming due to the PCF
while Schneider von Deimling et al (2012) and Burke et al
(2012) estimate CH4 will contribute 10% and 25% respec-
tively, corresponding to 0.013 °C and 0.055 °C in 2100.
Anisimov (2007) estimated a global temperature increase of
0.012 °C and Gao et al (2013) estimated an increase of 0.1 °C
in 2100 due to CH4 releases from thawing peatlands and
wetlands. Anisimov (2007) and Gao et al (2013) did not
include CO2 emissions, but comparing to our ensemble
average of 0.29 ± 0.21 °C indicates their estimates would
contribute 4% and 34% of the total warming due to the PCF
respectively. All these are less than the estimated 30–50%
based on an expert solicitation (Schuur et al 2013). An
ensemble average of these estimates indicates that CH4

emissions from thawing permafrost will contribute no more
than 0.05 ± 0.04 °C or ∼16% of the warming due to the PCF
in 2100 and represents no more ∼1% of the warming due to
anthropogenic emissions.

There are large sources of uncertainty in these PCF
estimates that need to be quantified and reduced. The simu-
lated permafrost extent and the loss of permafrost area for a
given warming scenario is the largest source of uncertainty in
these projections (Koven et al 2013). Differences in the
assumed IPCC scenario and associated warming rates and the
exact amount of frozen organic matter are also large sources
of uncertainty. These estimates also do not account for pro-
cesses that could either enhance or reduce emissions from
thawing permafrost. For example, these estimates do not
account for either potential enhanced peat growth, which
would compensate for permafrost emissions (Camill
et al 2001), or the development of thermokarst features and
thermal erosion, which would accelerate permafrost emis-
sions. Some of the thawed organic matter will be dissolved
into the ground water and carried off into lakes and oceans,
but how much would be buried in deep water and how much
would be oxidized and released into the atmosphere as CO2

and CH4 is not known.
The PCF should influence the negotiation of emissions

reductions in the international treaty to address global climate
change. The treaty currently under negotiation to replace the
1997 Kyoto Protocol focuses on a target warming of 2 °C
above pre-industrial temperatures by 2100 (UNEP 2011).
When adopted and ratified, this treaty would succeed the 1997
Kyoto Protocol and place limits on anthropogenic greenhouse
gas emissions for each country. The estimates in table 2 are
on par with the differences in the total greenhouse gas
emissions between RCP scenarios, so the long-term climate
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after 2100 will be determined by both permafrost and
anthropogenic greenhouse gas emissions. The IPCC scenario
closest to the 2 °C warming target is RCP4.5, corresponding
to an upper limit on anthropogenic emissions of ∼900 Gt
(IPCC 2013). Most of the estimates in table 2 correspond to
RCP8.5, but, fortunately, both Schneider von Deimling et al
(2012) and Burke et al (2013) ran projections for the RCP4.5
and estimated permafrost emissions by 2100 of 27 and
100 Gt C and temperature increases of 0.05 and 0.15 °C in
2100 respectively. Based on these two estimates, the PCF
would account for 3%–11% of the total allowed emissions,
indicating the relative importance of the PCF is greater under
scenarios of lower anthropogenic emissions. If we assume
60% of committed permafrost emissions will occur after
2100, these numbers increase to 9%–33% of total allowed
emissions, indicating that failure to account for CO2 and CH4

emissions from thawing permafrost in the treaty may result in
overshooting the 2 °C warming target.

CO2 and CH4 emissions from thawing permafrost will
also complicate treaty verification. Verification of emission
reductions will involve a combination of emissions reported
by individual countries confirmed by estimates of actual
emissions derived from models using direct measurements of
atmospheric greenhouse gas concentrations. Many countries
already have infrastructure to measure atmospheric green-
house gases and estimate regional emissions, such as the
Carbon Tracker system in the United States (Peters
et al 2005). However, it is not clear whether this infrastructure
can detect emissions from thawing permafrost and distinguish
them from anthropogenic greenhouse gas emissions.

Treaty negotiators will use the climate projections in
AR5 to help negotiate emissions targets, but none of these
projections include the effects of the PCF. Participating model
teams had to stop new model development in 2009 in order to
meet AR5 deadlines, before the scientific community fully
realized the potential effects of the PCF on global climate and
too late to incorporate PCF dynamics into their models. The
AR5 sections on permafrost and the global carbon cycle
evaluate our current knowledge of the PCF, but the PCF is not
included in the climate projections (IPCC 2013). Most models
in the AR5 simulate carbon cycle dynamics in the active layer
with varying degrees of success (Todd-Brown et al 2013), but
none of them include deep, frozen carbon in the permafrost
below the active layer. The simulated carbon fluxes into the
atmosphere are biased low because they do not account for
the decay of carbon that thaws as the simulated permafrost
degrades. Atmospheric CO2 concentrations are prescribed for
each RCP based only on fossil fuel emissions and do not
include emissions from thawing permafrost. Other key
reports, such as the Global Outlook for Ice and Snow com-
missioned by UNEP and the Snow, Water, Ice, and Perma-
frost in the Arctic assessment commissioned by the Arctic
Monitoring and Assessment Programme mention CO2 and
CH4 emissions from thawing permafrost, but do not quantify
how these emissions influence global climate. Since none of
the models participating in the AR5 include thawing of deep,
frozen carbon as permafrost degrades, all climate projections
in AR5 are biased low relative to global temperature and all

emissions targets based on those projections would be
biased high.

We recommend the IPCC prepare a special assessment or
similar report on CO2 and CH4 emissions from thawing
permafrost suitable to supplement the AR5 in support climate
change policy discussions and treaty negotiations (Schaefer
et al 2012). The special assessment would require new
simulations that evaluate future permafrost degradation, esti-
mate potential CO2 and CH4 emissions from thawing per-
mafrost, identify key unknowns, and quantify uncertainty.
Most importantly, the IPCC should assess the potential effects
of permafrost CO2 and CH4 emissions from thawing perma-
frost on global temperatures in 2100 to support treaty nego-
tiations and in 2300 to evaluate the effect of committed
emissions on long-term global climate. An IPCC special
assessment on permafrost degradation and the PCF would
complement the AR5 and provide international community
with the scientific information required to negotiate anthro-
pogenic emissions targets for the climate change treaty.

3. Conclusions

Degrading permafrost can alter ecosystems, damage infra-
structure, and release enough CO2 and CH4 to initiate the PCF
and influence global climate. Available estimates of the PCF
indicate 120 ± 85 Gt of carbon emissions from thawing per-
mafrost by 2100. This is equivalent to 5.7 ± 4.0% of total
anthropogenic emissions for the RCP8.5 scenario and would
increase global temperatures by 0.29 ± 0.21 °C or 7.8 ± 5.7%.
For RCP4.5, the scenario closest to the 2 °C warming target
for the climate change treaty, the range of cumulative emis-
sions in 2100 from thawing permafrost decreases to between
27 and 100 Gt C and the impact on temperature to between
0.05 and 0.15 °C, but the relative fraction of permafrost to
total emissions increases to between 3% and 11%. Projections
indicate 60% of the permafrost emissions will occur after
2100, indicating that not accounting for permafrost emissions
risks overshooting the 2 °C warming target. AR5 climate
projections, and any emissions targets based on those pro-
jections, do not include the PCF. Consequently, we recom-
mend the IPCC commission a special assessment focusing on
the PCF and its impact on global climate to support treaty
negotiation.
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