ENVIRONMENTAL RESEARCH
LETTERS

LETTER « OPEN ACCESS You may also like

- Viral impacts on bacterial communities

Environmental factors influencing diatom in Arctc crvoconite

g . . . Christopher M Bellas, Alexandre M
communities in Antarctic cryoconite holes Anesio, Jon Telling et .

- A metagenomic snapshot of taxonomic
and functional diversity in an alpine glacier
cryoconite ecosystem
Arwyn Edwards, Justin A Pachebat, Martin
Swain et al.

To cite this article: L F Stanish et al 2013 Environ. Res. Lett. 8 045006

- Large-scale variation in phytoplankton
community composition of >1000 lakes
across the USA
Jolanda M H Verspagen, Xing Ji, Quan-
Xing Liu et al.

View the article online for updates and enhancements.

Fourth edition

'lﬂ.-iibl

DOWNLOAD THE FREE E-BOOK

This content was downloaded from IP address 18.225.31.159 on 27/04/2024 at 12:28


https://doi.org/10.1088/1748-9326/8/4/045006
https://iopscience.iop.org/article/10.1088/1748-9326/8/4/045021
https://iopscience.iop.org/article/10.1088/1748-9326/8/4/045021
https://iopscience.iop.org/article/10.1088/1748-9326/8/3/035003
https://iopscience.iop.org/article/10.1088/1748-9326/8/3/035003
https://iopscience.iop.org/article/10.1088/1748-9326/8/3/035003
https://iopscience.iop.org/article/10.1088/2752-664X/ac788c
https://iopscience.iop.org/article/10.1088/2752-664X/ac788c
https://iopscience.iop.org/article/10.1088/2752-664X/ac788c
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjstLi3Gp1Xr8TcE3t4AIqBbF18AOLWhrCoRXCheS8n6EZwrE08_QL2NI3uZK1bNtQgRoQxfuI7FdQ6nMwNg_OC2B8mTE14GZ88Z027ap1eM-b_ZY4AgtMZxRR-d45fV2VYlQ4rJYYLzyR7fN6d_d0sEfWcNnf3OXSLwsg8jG0WrJytDklvL2BZAPyeW95k3N0kM7Hzyg3pq6BugNPgjbwmC9sP4YH06ydCNAk4mwbHk2uHYI6-So7F3GX8X8JM_qo92FcIGxeDtkUVB13DreEUcVbbBQ44yG5ZC9W6eT7CNJzjfcwHt3jb9SOgd6BzbpOyPyLjWZ_pwC94f5NER6UtA7d3Iepw&sig=Cg0ArKJSzCCCkVCUVO0e&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www.owlstonemedical.com/breath-biopsy-complete-guide/%3Futm_source%3Djbr%26utm_medium%3Dad-b%26utm_campaign%3Dbb-guide-bb-guide%26utm_term%3Djbr

OPEN ACCESS

IOP PUBLISHING

ENVIRONMENTAL RESEARCH LETTERS

Environ. Res. Lett. 8 (2013) 045006 (8pp)

doi:10.1088/1748-9326/8/4/045006

Environmental factors influencing diatom
communities in Antarctic cryoconite holes

L F Stanish!, E A Bagshawz, DM McKnightl , A G Fountain® and

M Tranter?

! Institute of Arctic and Alpine Research, University of Colorado at Boulder, Boulder, CO 80309, USA
2 Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, BS8 1SS, UK
3 Department of Geology, Portland State University, Portland, OR 97207-0751, USA

E-mail: liz.bagshaw @bristol.ac.uk

Received 2 April 2013

Accepted for publication 12 September 2013
Published 8 October 2013

Online at stacks.iop.org/ERL/8/045006

Abstract

Cryoconite holes are ice-bound habitats that can act as refuges for aquatic and terrestrial
microorganisms on glacier surfaces. In the McMurdo Dry Valleys of Antarctica, these holes
are often capped by an ice lid that prevents the exchange of material and gases with the
surrounding atmosphere and aquatic environment. Diatoms have been documented in
cryoconite holes, and recent findings suggest that these habitats may harbour a distinctive
diatom flora compared to the surrounding aquatic environments. In this study, we examined

diatom community composition in cryoconite holes and environmental correlates across three
glaciers in Taylor Valley, Antarctica. The diatom communities were dominated by two genera,
Muelleria and Diadesmis, both of which had high viability and could have been seeded from
the surrounding ephemeral streams. The location of the cryoconite hole within the valley was a
key determinant of community composition. A diatom species richness gradient was observed
that corresponded to distance inland from the coast and co-varied with species richness in
streams within the same lake basin. Cryoconite holes that were adjacent to streams with higher

diversity displayed greater species richness. However, physical factors, such as the ability to
withstand freeze—thaw conditions and to colonize coarse sediments, acted as additional
selective filters and influenced diatom diversity, viability and community composition.

Keywords: diatoms, cryoconite holes, dry valley glaciers

1. Introduction

Cryoconite holes are small, transient habitats that exist
for days to decades on the surface of glaciers worldwide
(Hodson et al 2008). They are formed when wind-blown
debris that has been deposited on glacier surfaces melts into
the ice, forming a small, water-filled depression (Wharton
et al 1985). In addition to sediment, the debris typically
includes fragments of algal mat, microorganisms and organic
material from the surrounding environment (Christner et al
2003, Takeuchi et al 2005, Langford et al 2010), and active
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microbial communities can develop (Hodson et al 2008,
Telling et al 2012). Cryoconite holes that form in cold ice
regions, such as Antarctica, are unique compared to those
elsewhere because many retain an ice lid throughout the
summer months, thereby isolating them from the atmosphere
for multiple melt seasons (Fountain er al 2004). This isolation
promotes the development of extreme geochemical conditions
(Tranter et al 2004), since biogeochemical activity in a
closed system results in an accumulation of organic matter
and supersaturation of oxygen (Bagshaw et al 2011). The
existence of diatoms in cryoconite holes has been documented
(Mueller et al 2001, Yallop and Anesio 2010, Cameron et al
2012a), and recent findings suggest that these habitats support
a distinctive diatom flora compared to the surrounding lake
and stream habitats (Van de Vijver et al 2010).

© 2013 IOP Publishing Ltd Printed in the UK
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The landscape of Taylor Valley in the McMurdo Dry
Valleys of Antarctica is comprised of a mosaic of perennially
ice-covered lakes, ephemeral streams, polar alpine glaciers
and poorly developed soils (Priscu 1999). A climatic gradient
exists along the valley axis, from the eastern end at the
coast to the western end 29 km inland: the climate warms,
precipitation decreases and wind speed increases (Fountain
et al 1999, Doran et al 2002), governed by the influence
of onshore breezes from the Ross Sea to the east and
katabatic winds descending from the Antarctic ice sheet to
the west (Nylen et al 2004). The eastern Lake Fryxell basin
is relatively wide and shallow in gradient and is characterized
by higher soil moisture (Barrett et al 2006) and greater snow
accumulation (Fountain et al 2010). This lake basin hence
has a greater extent of suitable stream habitats for algal
mats (McKnight et al 1998) and greater biomass in the local
streams. The diatom communities of the stream and lake
habitats have been well characterized, and are dominated by
benthic, pennate diatoms of aerophilic genera (Konfirst et al
2011, Stanish et al 2011). While eukaryote diversity in the
Dry Valleys is low compared to similar temperate ecosystems,
the relative diversity of freshwater diatoms is high, with 46
species from 17 genera currently described, many of which
have not been found outside of the Antarctic (Esposito et al
2008). Algal mats within the streams and lakes which harbour
diatoms can be redistributed by winds (Nkem et al 2006) and
may be an important source of biomass to cryoconite holes
(Christner et al 2003).

Analysis of microbial communities in cryoconite holes
has previously shown that they contain a diverse range of
bacteria, eukarya and archaea (Cameron et al 2012a, 2012b)
and they are likely seeded from the surrounding aquatic
and terrestrial landscape via aerial deposition (Wharton et al
1981, Porazinska et al 2004, Edwards et al 2010), but
there is still a lack of understanding of the distribution of
and factors affecting microbial communities in Antarctic
cryoconite holes. Diatoms are responsive to their physical
and chemical environments and may therefore act as useful
indicators of habitat conditions in cryoconite holes. Diatom
taxa are also morphologically distinct and are large enough
to allow for direct microscopic quantification, which is
advantageous given the lack of genetic information available
to identify diatoms using molecular methods. The unique
geochemical conditions within cryoconite holes, including
periodic freeze—thaw cycles and oxygen supersaturation
(Bagshaw et al 2011), may select for distinct subsets of
microbiota from the surrounding habitats. Certain taxa may
even be specially adapted to life within the glaciers, as for
example the diatom Muelleria cryoconicola, which thus far
has only been found in cryoconite holes in Taylor Valley
(Van de Vijver et al 2010). In the Arctic, where the holes are
frequently hydrologically connected and lack an ice lid, the
community function and composition appears to be influenced
by surface hydrology (Edwards et al 2010, Irvine-Fynn
et al 2011). However, Dry Valley cryoconite holes are often
isolated from the atmosphere and surrounding supraglacial
hydrological system, thus they are influenced by different
physico-chemical and biological processes. In this study,

we describe the diatom communities in cryoconite holes on
three glaciers in Taylor Valley, Antarctica, with the goal of
identifying the factors that drive community composition and
viability.

2. Field site and methodology

Samples were collected from Taylor Valley at two valley
glaciers (Canada and Commonwealth) and one outlet glacier
of the East Antarctic Ice Sheet (Taylor Glacier) (figure 1).
These glaciers are characterized by low annual accumulation
(<10 cm water equivalent per year), high sublimation (which
constitutes 80% of annual ablation), annual ice temperatures
of —18°C and limited summer melting (Fountain er al
2006). Melt is confined to the top 1 m of ice, flowing
through a network of open-topped supraglacial streams and
subsurface passages that connect supraglacial cryolakes and,
occasionally, cryoconite holes (Fountain et al 2004, Fortner
et al 2005, Hoffman et al 2008). These cryoconite holes
contain water for 4-8 weeks each year, before refreezing
for winter, and the majority remain ice lidded year-round.
Some cryoconite holes may develop a subsurface hydrological
connection with the surrounding drainage system beneath
the ice lid, via cracks and veins in the ice matrix. In a
typical summer, approximately 50% become hydrologically
connected (Fountain et al 2008), whilst the remainder are
hydrologically isolated for multiple melt seasons. Solute and
organic material, which accumulate in the cryoconite holes
over time, can provide bioavailable nutrients to the ephemeral
streams and ice-covered lakes (Foreman et al 2004, Bagshaw
et al 2013), and propagules from cryoconite holes may
re-seed downstream microbial communities (Schutte et al
2009, Yallop and Anesio 2010).

Cryoconite holes were sampled along transects across the
three glaciers (figure 1) in the Austral summer of 2005/6.
A core was collected from the centre of the hole using a
SIPRE corer. If the cryoconite hole was completely frozen
at the time of sampling, drilling continued until clean ice
below the basal debris layer was encountered to ensure that the
entire sediment layer was collected for analysis. Cores were
removed and stored in Ziploc bags that had been triple-rinsed
with deionized water. If any meltwater was present at the
time of sampling, the ice lid was removed with the SIPRE
corer, and then a water sample was pumped out using a
hand powered vacuum pump. A sample of sediment was
scooped out using disposable nitrile gloves and stored in a
triple-rinsed Ziploc bag. Ice cores were stored frozen until
processing up to 30 days later. Samples were eventually
allowed to melt out in the collection bags and water samples
were drawn off using syringes, whilst leaving the sediment
behind. Electrical conductivity and pH of the water were
measured in the field laboratory, and the remaining sample
was filtered and transported to McMurdo Station for major
ion and dissolved organic carbon analysis within 30 days. Full
details of analyses and errors can be found in Bagshaw et al
(2007) and Welch et al (1996). The length of time since the
cryoconite hole was hydrologically connected was determined
using the CI™ age method (Fountain et al 2004, Tranter et al
2004, Bagshaw et al 2007).
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Figure 1. The location of sampled cryoconite holes on glaciers in Taylor Valley, Antarctica, with adjacent streams and lakes. The inset
plots show variation in diatom species richness with longitude (distance inland) on Taylor, Canada and Commonwealth Glaciers ((a)—(c)),
and in streams in the Lake Fryxell ((d); Commonwealth, Canada, Aiken and Green Creeks) and Lake Bonney ((e); Bohner, Priscu,
Wormherder Creek) basins. (f) shows the regression plot of diatom species richness versus longitude for all the cryoconite hole (grey line)

and stream (black line) samples.

2.1. Diatom preparation and analysis

After meltwater samples were removed for chemical analyses,
sediment samples for diatom analysis were scooped into
triple-rinsed, combusted glass bottles, and were preserved
in 5% formalin. Samples were kept chilled (<4 °C) during
storage and transport to the United States up to 4 months
after sample collection. A subsample of the preserved
sediments was prepared for diatom community analysis by
digestion with heat and H,O, and then by several rinses with
distilled water (Blanco et al 2008). The inorganic remains
were collected on a nucleopore filter (1.0 mm pore size,
Whatman, USA) to remove fine particulates and resuspended
in distilled water to remove clumps prior to counting. A
subset of this homogenate was dried onto cover slips and
permanently mounted on glass microscope slides with the
mounting medium Zrax (W P Dailey, Philadelphia, USA).
Relative abundances of diatom species were determined
using an Olympus Vanox light microscope (Japan) at
1250 x magnification, with >250 valves enumerated per slide.
Diatoms were very rare in some samples, and in these
instances the entire slide was counted. Relative abundance
data were not analysed for samples with fewer than 250

valves counted, although these data were included in richness
analyses. In total, 16 samples were used for community
analyses, with an additional 4 samples from Taylor Glacier
analysed for richness estimates. Taxonomic identifications
were done according to the descriptions of Sabbe et al (2003),
Van de Vijver et al (2004), Van de Vijver and Mataloni (2008),
Esposito et al (2008), and the Antarctic freshwater diatoms
database (http://huey.colorado.edu/diatoms).

The proportion of viable cells was assessed for selected
samples (n = 4) by determining the per cent of cells
with viable chloroplasts in wet mounts of preserved
samples. Chloroplast viability was determined based on
light microscopy and chloroplast autofluorescence in at least
100 intact cells. When possible, cells were taxonomically
identified to the genus level.

2.2. Diatom community analysis

Diatom community composition was analysed using non-
metric multidimensional scaling (NMDS), which is an
ordination method that reduces the complexity of community
data into fewer dimensions, and can use any distance
matrix (Shepard 1962). NMDS was performed using a
similar approach to that employed by Stanish et al (2011).
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Table 1. Species richness and geochemical characteristics of sampled cryoconite holes. C1™ age represents the length of time that the
cryoconite hole has remained hydrologically isolated (Bagshaw et al 2007).

Glacier Richness pH DOC (mg1™") Total cations (11 eq1™')  Sediment thickness (cm)  Cl™age (yr)
Commonwealth

Mean 20.0 7.02  0.88 418 2.75 0.52
St. Dev. 1.40 1.06  0.63 204 3.20 1.24
n 7.00 10.0  10.0 9.00 10.0 9.00
Canada

Mean 13.7 6.89 1.14 225 4.50 0.25
St. Dev. 4.70 1.30 0.53 147 343 0.46
n 8.00 8.00 4.00 8.00 8.00 8.00
Taylor

Mean 7.00 6.17 0.24 319 2.69 11.0
St. Dev. 4.00 0.64 0.05 291 1.10 7.79
n 5.00 8.00 5.00 8.00 8.00 7.00

Briefly, after removing rare species (<1.0% abundance),
a Bray—Curtis dissimilarity matrix of diatom community
data was made, and the NMDS analysis was run in
R’s vegan package (R Development Core Team 2009). A
three-dimensional model produced a goodness-of-fit value
of 0.11 using Kruskal’s stress formula, indicating that
the ordination reasonably approximates the among-sample
relationships (Clarke 1993). A Shepard plot of calculated
versus raw dissimilarities showed strong nonmetric (R> =
0.987) and linear (R? = 0.924) fits.

3. Results

There was a clear relationship between longitude and diatom
species richness (R* = 0.70, figure 1(f)). This trend was
particularly prevalent on Canada Glacier (mean 13.8, standard
deviation (sd) 4.7, range 11-29), in which longitude explained
almost all of the variation in richness (figure 1(b), R? =
0.92). At the eastern and western ends of Taylor Valley
(respectively), richness was greatest on Commonwealth
Glacier (mean 19.6, sd 1.4), and lowest on Taylor Glacier
(mean 7.0, sd 4.0). The same longitudinal trend, although
less pronounced, was displayed when species counts only
included samples which contributed >1% of the total diatom
abundance, where Commonwealth Glacier had a greater
number of species (mean 13), compared with an average of
10 and 8 species on Canada and Taylor Glaciers, respectively.
Geochemical and physical factors of the parent cryoconite
hole, such as sediment thickness, DOC, pH, and total cations
(table 1), had little control on species richness, with no
significant correlation found. The length of time that the hole
had remained hydrologically isolated (Bagshaw et al 2007)
also showed little correlation with richness, with the exception
of Taylor Glacier, where the small sample size prevented a
significant result (C1™ age, table 1).

Diatom species richness in the streams of Taylor Valley
also varied with longitude (figures 1(d)—(f), R? = 0.50 for
all stream samples), with a mean of 23.0 species (sd 4.1) in
streams in the coastal Fryxell basin, and 12.4 in the furthest

inland Bonney basin streams (sd 3.2). Whilst streams in the
Fryxell basin (Canada, Green, Commonwealth and Aiken
Creek) had greater species richness than those in Bonney,
richness in the Bonney basin (Bohner, Priscu and Wormherder
Creek) varied more widely, possibly due to large, basin-wide
differences in stream geomorphology and hydrology (Stanish
et al 2012). The relationship between richness and longitude
was nevertheless similar on the glaciers and in the streams
(figure 1(f)), with similar regression slopes of 9.2 and 10.0,
respectively.

The diatom taxa inhabiting cryoconite holes represented
a subset of the taxa found in stream habitats, with 29 of
the 46 stream taxa also present in cryoconite holes (stream
n = 39, cryo-holes n = 16). The taxonomic distribution
of these species, however, was strikingly different, with
an absence of Hantzschia species that are abundant in
stream algal mats (figure 2). Species of the genus Luticola
were also differentially distributed in stream algal mats
and cryoconite holes, in particular with higher abundances
of the cosmopolitan species L. gaussii in cryoconite holes
(t-test p = 0.001), and reductions in the abundances of other
taxa, such as L. austroatlantica and L. muticopsis. The two
dominant cryoconite hole genera, Diadesmis and Muelleria,
had significantly lower abundances in stream habitats.

As a result of these genus-level differences, cryoconite
hole diatom communities also differed significantly from
stream algal mat diatom communities (PERMANOVA results,
F = 16.48,p = 0.001). After controlling for the effect of
habitat, diatom communities also differed by lake basin
(PERMANOVA, F = 7.61,p = 0.001). Visualization of
diatom communities across samples showed an overall
clustering of samples by habitat along NMDS axis 1, with axis
2 separating samples from different locations (figure 3).

Cell viability counts showed that Muelleria spp. and
Diadesmis spp. had the highest viability in the cryoconite
holes, with up to 85% of the cells in a sample showing viable
chloroplasts (table 2). Viability increased for both genera after
the cryoconite holes melted later in the season (p < 0.05 for
both genera), indicating biological activity within the holes
after melting.
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Figure 3. Nonmetric multidimensional scaling of diatom communities from cryoconite holes and surrounding streams: K refers to the
number of dimensions of the ordination model, and stress measures the fit of the modeled ordination distances to the Bray—Curtis distances.
Hulls are drawn around samples derived from cryoconite holes and streams. Diatoms with relative abundances greater than 10% are plotted.
Species abbreviations: Pinbor—Pinnularia borealis, Stalat—Stauroneis latistauros, Hampmuell—Hantzschia amphioxys f. muelleri,
Habund—Hantzschia abundans, Fispel—Fistulifera pelliculosa, Diaper—Diadesmis perpusilla, Psapap—Psammothidium papilio,
Hanamp—Hantzschia amphioxys, Lutmuticop—Luticola muticopsis, HanspS—Hantzschia species #5, Lutaus—Luticola austroatlantica,
Diacon—Diadesmis contenta, Mueper—Muelleria peraustralis, Muemer—Muelleria meridionalis, Diaconpar—Diadesmis contenta var.
parallela, Lutgau—Luticola gaussii, Lutmut—Luticola mutica, Lutmuticopevo—Luticola muticopsis var evoluta, Lutlae—Luticola laeta,
Lutdol—Luticola dolia, Muelsp—Muelleria sp., Muesup—Mauelleria supra, Muecry—~Muelleria cryoconicola.

4. Discussion

Taylor Valley is an ideal location to assess the ecology of
cryoconite hole diatoms because strong gradients in physical
and environmental factors exist, and the effects of such drivers

on community composition can be tested. Furthermore, the
surrounding habitats have been well characterized, allowing

for improved interpretation of the connections between
cryoconite holes and other habitats. Previous studies have
hypothesized that cryoconite holes are predominantly seeded
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Table 2. Cell viability in the genera Muelleria and Diadesmis in
cryoconite holes that were frozen at the time of sampling (frozen)
and those that had thawed (melted).

Viability (%)

Sample Muelleria Diadesmis
Commonwealth Glacier (frozen) 21.4 10.0
Canada Glacier (frozen) 62.5 34.7
Commonwealth Glacier (melted) 51.5 16.7
Canada Glacier (melted) 85.7 43.7
Standard deviation (frozen) 29.0 17.5
Standard deviation (melted) 24.2 19.1
P-value (frozen versus melted) 0.041 0.046

by aeolian transport from surrounding aquatic environments
(Christner et al 2003, Cowan and Tow 2004, Budgeon
et al 2012), and this trend is also reflected in the diatom
communities in cryoconite sediment from Taylor Valley.
Diatom diversity was also linked to the position of the
parent glacier within the Taylor Valley landscape. The
cryoconite holes on Commonwealth Glacier, which is in
the most productive hydrological basin (Virginia and Wall
1999, Barrett et al 2006) and is closest to the Ross Sea,
had the highest diatom richness. This relationship is strongly
displayed in the cryoconite across Canada Glacier, where a
clear east—west gradient of richness exists (figure 1(f)), with
highest richness in holes closest to the coast.

A number of physical differences exist between
cryoconite holes on the three glaciers. Geochemical indicators
of biological activity, such as pH, bacterial carbon production,
and the concentration and phase association of nutrients, show
that cryoconite holes at the western end of Taylor Valley
(Taylor Glacier) have less active biological communities than
those closer to the coast (Commonwealth Glacier) (Foreman
et al 2007, Bagshaw et al 2013). Cryoconite holes on Taylor
Glacier are larger and deeper, and remain hydrologically
isolated for longer periods (Bagshaw et al 2007, table 1).
They have predominantly coarser sediment, with a median
grain size of 170 pum, compared with 150 and 130 um on
Canada and Commonwealth glaciers, respectively (Bagshaw
et al 2013). These physical differences may impact the success
of colonizing species. The lower species richness on Taylor
Glacier, for example, may result from coarser cryoconite
sediment providing less favourable habitat than the diatom
source in the stream beds, or because the stronger winds that
transport these larger grains damage cells during transport
(Nkem et al 2006).

The glaciers at the coastal end of the valley are adjacent
to more productive soils, which have higher soil moisture,
organic carbon content and lower salinity than those at
the western end (Barrett et al 2004). A denser network of
ephemeral streams surrounds Lake Fryxell (figure 1), and
it is likely that dehydrated algal mats in the stream beds
are a significant source of biological material to the glacier
surfaces (Lancaster 2002). Indeed, flakes of cyanobacterial
mat were a common sight on the surface of Commonwealth
Glacier, but were much less common on the western flanks of
Canada Glacier and were virtually absent from Taylor Glacier.

The majority of aeolian material is transported during severe
drainage winds (Sabacka et al 2012), which blow from the
west (Doran et al 2002, Nylen et al 2004, Speirs et al 2010).
However, lighter algal fragments and microorganisms could
be transported via the prevailing easterly sea breezes that can
reach speeds of 20 m s~! at 3 m above the ground during
the winter months (Doran et al 2002). These wind speeds are
above the 5 m s~! threshold for particle saltation observed
0.4 m above the ground in the neighbouring Victoria Valley
(Speirs et al 2008). Turbulent eddies that develop during
drainage wind storms can also redistribute algal material in an
easterly direction (Speirs et al 2008), and result in deposition
relatively close to the source area. This means that the glaciers
at the coastal end of the valley that receive aeolian inputs from
the local area are more likely to collect biological material,
including diatoms, from stream beds and exposed lake shores.

However, whilst our results suggest that the holes are
probably seeded by surrounding environments, the diatom
species composition is not directly representative of either
the ephemeral streams (figure 3) or the ice-covered lakes
(Spaulding et al 1997, Konfirst et al 2011). The cryoconite
holes have distinctive diatom communities that are dominated
by a subset of the regional diatom community (figure 3) and
are enriched in diatoms that are uncommon or rare in streams.
Indeed, cryoconite holes are home to a unique diatom, M.
cryoconicola (Van de Vijver et al 2010). Interestingly, the
inland decrease in diatom species richness does not seem
to be constrained by aeolian transport across lake basins, as
the diatom species on Taylor Glacier are more commonly
found in the Fryxell basin. The clustering of Priscu Stream
diatom communities with other Fryxell basin streams, to the
exclusion of other Bonney basin streams, further supports
this assertion (figure 3). These findings suggest that, while
the suite of organisms available to colonize Taylor Valley
glaciers does not vary greatly longitudinally, the mass of
biological material varies based on local productivity, which
in turn alters the probability of viable propagules seeding the
local glacial habitats. Second, the physical stresses of aeolian
transport and cryoconite hole environmental extremes select
for a subset of the diatom metacommunity that is uniquely
suited to glacial life.

Habitat variation is a likely explanation for this finding.
The cryoconite hole habitat is markedly different than the
stream habitat. Within streams, previous findings suggest that
species composition is controlled by habitat variation (Stanish
et al 2011), and our results support this finding. For example,
as previously mentioned, samples from Priscu Stream do
not cluster with the other Bonney basin streams, but instead
cluster with samples from the Fryxell basin (figure 3). Priscu
Stream has a markedly different bed type, with a shallow
gradient and sandy bottom that is more similar to other
streams in the Fryxell basin than the adjacent, steep gradient
and stony-bottomed Bohner Stream. Therefore, while the
streams provide a major source of propagules to cryoconite
holes, the species that are more resistant to environmental
conditions in the cryoconite holes may be superior colonizers:
Muelleria and Diadesmis appear to have an advantage in this
habitat compared to other stream diatoms.
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Diadesmis and Muelleria were the most abundant diatom
genera in the cryoconite holes, and both have also been
identified in cryoconite holes on Cirque Glacier, Greenland
(Yallop and Anesio 2010). These two groups appear to have a
survival advantage, either during aeolian transport, or within
the hole itself. Our viability counts (table 2) suggest that these
taxa can survive the winter months in the frozen cryoconite
hole. A similar result of higher viability of Muelleria
species was reported by Mueller er al (2001). The increased
percentage of viable cells after thawing also suggests that
the diatoms became metabolically active and divided when
liquid water was available. Because many of the holes retain
an ice lid after thawing, it seems likely that the changes in
metabolic activity within the holes resulted from the resident
community rather than from recent external aeolian inputs.
We propose that the thicker frustules found in Muelleria
and Diadesmis species increase survivability when subjected
to frequent freeze—thaw events, and possibly increase their
tolerance to other extremes that can occur in cryoconite holes,
such as pH (Tranter et al 2004). Alternatively, it is possible
that these genera have higher survivability from collisions
during aeolian transport. Different species traits, such as
the ability to colonize new substrates, may also explain our
results. Additional studies on the physiology of Dry Valley
diatoms and their survivability under different conditions are
needed to identify the mechanism.

5. Conclusions

Diatom communities in cryoconite holes on glaciers in
Taylor Valley are probably seeded by the surrounding aquatic
environments. Cryoconite holes on glaciers that are closer
to more productive stream and lake ecosystems are richer
in diatom taxa, suggesting strong linkages between glaciers
and the local basin characteristics. However, the proximity
to seeding communities is not the only control on diversity;
the cryoconite habitat also selects for particular suites of
diatoms. Species that can survive freeze—thaw cycling and can
colonize coarse substrates appear to have the highest viability
and relative abundances. The unique selective pressures of
cryoconite holes suggest that these habitats may promote
speciation. Finally, the occurrence of diatoms in cryoconite
holes across the globe (Yallop and Anesio 2010) support the
idea that these icy habitats may act as refugia during extreme
cold periods in polar environments.
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