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Abstract
Current methods for assessing soil organic carbon (SOC) stocks are generally not well suited for
understanding variations in SOC stocks in landscapes. This is due to the tedious and time-consuming
nature of the sampling methods most commonly used to collect bulk density cores, which limits
repeatability across large areas, particularly where information is needed on the spatial dynamics of SOC
stocks at scales relevant to management and for spatially explicit targeting of climate change mitigation
options. In the current study, approaches were explored for (i) field-based estimates of SOC stocks and
(ii) mapping of SOC stocks at moderate to high resolution on the basis of data from four widely
contrasting ecosystems in East Africa. Estimated SOC stocks for 0–30 cm depth varied both within and
between sites, with site averages ranging from 2 to 8 kg m−2. The differences in SOC stocks were
determined in part by rainfall, but more importantly by sand content. Results also indicate that managing
soil erosion is a key strategy for reducing SOC loss and hence in mitigation of climate change in these
landscapes. Further, maps were developed on the basis of satellite image reflectance data with multiple
R-squared values of 0.65 for the independent validation data set, showing variations in SOC stocks across
these landscapes. These maps allow for spatially explicit targeting of potential climate change mitigation
efforts through soil carbon sequestration, which is one option for climate change mitigation and
adaptation. Further, the maps can be used to monitor the impacts of such mitigation efforts over time.

Keywords: soil carbon stocks, cumulative mass, remote sensing, mapping, East Africa

1. Introduction

Soil organic carbon (SOC) is an important indicator of soil
and land health as it integrates several inherent soil properties
and responds strongly to aboveground landscape dynamics,
including land-use change and land degradation processes.
Due to its contribution to agricultural and land productivity,
the maintenance or addition of SOC is critically important
both in potential climate change mitigation and in adaptation

Content from this work may be used under the terms
of the Creative Commons Attribution-NonCommercial-

ShareAlike 3.0 licence. Any further distribution of this work must maintain
attribution to the author(s) and the title of the work, journal citation and DOI.

strategies. Soil is also potentially a major carbon (C) sink
due to its C storage potential, which is generally greater than
that of vegetation (Post and Kwon 2000), and a relatively
stable pool of various organic and inorganic C fractions
(Trumbore 1997, Ingram and Fernandes 2001). Potential
effects of climate change on agricultural productivity, coupled
with recent expansions of agricultural areas in response to
population growth and increasing demand for food, has led
to increased interest in soil carbon sequestration (Vågen et al
2005) and global estimates of SOC stocks (Jobbágy and
Jackson 2000, Lal 2004, Houghton 2007, Berthrong et al
2009, The World Bank 2012). The Kyoto Protocol also
acknowledges the need to consider agricultural soils when
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assessing GHG emissions (sources and sinks). In response,
the IPCC developed methodological tools for assessing the
effects of land-use change on soil organic carbon stocks,
at the country or regional level and for varying land-use
categories (IPCC 2006). These coarse estimates are often
calculated using generic values for SOC (on a mass per area
basis) by ecosystem type (Amundson 2001).

However, landscapes are often heterogeneous and
complex, with complexity generally becoming higher with
increasing fragmentation (Porensky 2011). The areas included
in this study represent smallholder farming and pastoralist
systems in East Africa, which are highly fragmented
encompassing diverse topography, multiple land cover
typologies, as well as varied land-use histories. Therefore,
to develop methodologies applicable for these landscapes, a
more detailed understanding of this landscape complexity,
including changes in SOC and soil health, is necessary. This
calls for new approaches and models for a more detailed
understanding of the heterogeneity of SOC storage and
dynamics in landscapes (Cécillon and Brun 2010, Smith
et al 2012), including more rigorous models for better
assessing SOC variation and scale-dependencies both within
and between land uses (i.e. local scale) and climatic zones
(i.e. regional to global scales). Current models and estimates
(Eswaran et al 1993, West and Post 2002, Batjes 2004),
while potentially helpful in estimating coarse-scale SOC
sequestration potential, are not able to predict the possible
fate of carbon due to land-use change at scales relevant
to management and hence generally have limited utility in
assessing the impacts of changes in agricultural management
such as the introduction of conservation agriculture where
recommendations for management and monitoring of results
need to be done at the farm (local) scale. These new
approaches need to overcome current limitations of small
sample sizes, inconsistent or uncertain field sampling methods
for quantification of SOC stocks, which generally do not
allow for meta-analysis across studies, and costly analytical
methods such as dry combustion for measuring SOC in the
laboratory.

Bulk density is a common measurement in soil science
used for converting carbon concentrations (mass of carbon/
mass of soil) to an areal basis (mass of carbon/area) using
weight/volume estimates. Yet, bulk density measurements,
especially of subsoil, are cited as being labor intensive
and tedious (Benites et al 2007), and often uncertain (Lee
et al 2009), particularly in eroded soils. Traditional bulk
density measurements (for example, using the clod method
or undisturbed cores) are not easily replicated in the field,
which makes it practically impossible to obtain the sample
size required for landscape-scale carbon assessments. In
addition, these traditional measurements are not able to assess
variation in soil mass over time, especially in soils with
shrink-swell properties or in soil that has undergone tillage,
compaction or erosion (Gifford and Roderick 2003). Several
alternative methods have been proposed including the fixed
depth approach (Lee et al 2009), equivalent soil mass (Ellert
and Bettany 1995, Ellert et al 2001, 2002, Lee et al 2009,
Wuest 2009) and the coordinate system method (Gifford

and Roderick 2003, McBratney and Minasny 2010). Yet,
these approaches have yet to be evaluated beyond the soil
profile (e.g. at landscape scale). To avoid taking bulk density
measurements in the field, researchers have also developed
pedotransfer functions using soil attributes to estimate bulk
density (Manrique et al 1991, Bernoux et al 1998, Tomasella
and Hodnett 1998, Heuscher et al 2005, Benites et al 2007,
Tranter et al 2007).

One of the primary objectives of the current study was
to explore an alternative approach to bulk density based on
the use of cumulative soil mass for field-based estimates of
SOC stocks in landscapes. The cumulative mass methodology
integrates soil mass at a given depth using a constant sampling
volume, which is simpler to sample in the field and more
robust statistically to calculate soil mass per volume. This
approach is simple and allows for direct calculations of SOC
stocks, without the use of bulk density. The results presented
here were based on data from 640 soil profiles in four 100 km2

sites (figure 1) within three countries, which were sampled
using a stratified hierarchical random sampling design. The
approach presented also allows for assessments of changes
in soil mass with depth due to for example compaction and
erosion, in addition to being useful for estimating soil carbon
stocks across landscapes, between varying land uses and soil
types, and over time. The study employed recent advances
in infrared (IR) spectroscopy of soil (Terhoeven-Urselmans
et al 2010) and the use of ensemble prediction methods (Opitz
1999).

Another primary objective of the current study was to
assess various approaches for moderate to high resolution
mapping of SOC stocks in order to target specific areas
where climate change mitigation strategies for increased soil
C sequestration should be concentrated, as one climate change
and mitigation option. Recent advances in the mapping of
SOC in Kenyan rangelands (Vågen et al 2012) show that
these approaches have significant potential for high resolution
mapping of SOC concentrations. In the current study we
explore these approaches further, but for predicting SOC
stocks, using freely available satellite imagery and data from
areas with a wide range of climate conditions and soils.

2. Materials and methods

2.1. Study area

Data from a total of four sites, each covering an area of
100 km2 (10 × 10 km) from three east African countries
were included in the current study (figure 1). Dambidolo
(35.0◦ East; 8.6◦ North) and Mbinga (35.2◦ East; 11.1◦ South)
represented higher rainfall agricultural areas with a mean
annual precipitation (MAP) (Hijmans et al 2005) of about
1300 mm, while Kipsing (37.1◦ East; 0.5◦ North) and
Mega (38.3◦ East; 4.2◦ North) represented pastoral rangeland
landscapes with drier climates (600–850 MAP). All sites were
located in highland areas, with altitudes ranging from 1000
to 1500 m above mean sea level. These sites were selected
to test the methods presented in the current study as they
represent rangeland and smallholder agricultural systems with
contrasting environments, climates and different soil types.
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Figure 1. Map showing location of sites for which SOC stock maps were generated. Topographic shading was based on Shuttle Radar
Topography Mission (SRTM), while the precipitation map was derived from WorldClim data (Hijmans et al 2005).

2.2. Field sampling

The field methods used in the current study are referred to
collectively as the Land Degradation Surveillance Framework
(LDSF) (Vågen et al 2012), which is a standardized set of
procedures for the establishment of land health baselines
and for monitoring of change. The aboveground components
of the framework are based on the FAO Land Cover
Classification System (LCCS) (Di Gregorio and Jansen 1998).

In short, within each 10×10 km site, 16 cluster centroids
were stratified into 2.5×2.5 km tiles and their locations within
the tiles were randomized, but buffered to avoid overlapping
with neighboring tiles. Around each cluster centroid 10
sampling plots, each a 1000 m2 circle, were randomly located

to fall within a circular area of 1 km2 using a 564 m radius
from the cluster center-point. Each plot consisted of four
100 m2 subplots.

At the plot level, basic site characteristics were recorded,
including name, ID, georeferencing (coordinates) of the
center-point, altitude, date and a photograph was taken
for later reference. The data collected included information
on slope and landform, vegetation cover types and strata,
land use, land ownership and primary current use. Other
information collected included presence/absence of soil and
water conservation structures, and descriptions if present. At
the subplot level, signs of visible erosion were recorded,
including erosion types and rock/stone/gravel cover on the soil
surface was scored. High erosion prevalence was determined
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if three of the four subplots had observations of visible
erosion. Woody- and herbaceous cover ratings were made
using a Braun-Blanquet (Braun-Blanquet 1928) vegetation
rating scale from 0 (bare) to 5 (>65% cover). Woody plants
(shrubs (1.5–3 m height) and trees (>3 m height)) were
counted, and distance-based measurements were made using
the T-square method (Krebs 1989) to determine vegetation
distribution.

Soil samples were collected at each subplot, then
composited into one top- and one subsoil sample for each
plot. Standard top- and subsoil samples were collected at
0–20 cm and 20–50 cm depth increments, respectively. In
the absence of depth restrictions, 160 topsoil and 160 subsoil
samples were hence collected from each site. Any auger depth
restrictions were noted (in cm) if present during soil sampling.

2.2.1. Soil cumulative mass sampling. In addition to the
standard soil samples mentioned above, augering was done
to 100 cm depth at the center-point of each sampling plot at
increments of 0–20, 20–50, 50–80 and 80–100 cm, to estimate
the mass of soil to a given depth and volume. A soil auger with
a diameter of 7.6 cm, clearly marked at 10 cm increments was
used, and the auger hole was back-filled with sand to assess
the accuracy of the sampling volume (data not presented here).
All of the soil from each auger hole and depth increment
was collected and brought to the laboratory. A cumulative soil
mass sampling plate was used to collect any soil that fell out of
the auger during sample collection. In the laboratory the soil
was air-dried and weighed. A subsample was then oven-dried,
and gravimetric water content was calculated to establish the
oven-dried weight of the total sample.

2.3. Soil analytical procedures

The soils sampled were analyzed at the World Agroforestry
Centre’s Spectral Diagnostics Laboratory in Nairobi, Kenya
using dry combustion for SOC measurements on 10%
of the samples and mid-infrared (MIR) scanning on all
samples collected (Vågen et al 2010). Infrared spectroscopy
(IR) is an established technology for rapid, non-destructive
characterization of the composition of materials based on the
interaction of electromagnetic energy with matter (Ben-Dor
and Banin 1995, Shepherd and Walsh 2002, Viscarra Rossel
et al 2006, Vågen et al 2006, Brown 2007). The MIR analysis
was done according to methods and procedures described in
Terhoeven-Urselmans et al (2010). Particle size analysis was
done using a Horiba Model LA 950A2 particle size analyzer,
which can analyze particles in the size range 0.04–3000 µm.
Samples used in this study were subjected to dispersion with
Calgon for 4 min before particle size analysis.

2.4. Modeling framework

All analysis and modeling was conducted in R-statistics
version 2.15.1 (R Development Core Team 2011).

Models for estimating the stocks of SOC to 30 cm were
developed by first calculating the mass of soil carbon (mSOC)

at each depth increment in the soil profile and taking the
cumulative sum by depth as follows;

mSOCi =

i∑
l=1

SOCl · soilmassl. (1)

The mSOC estimates were scaled to represent a standard area
of 1 m2, and the change in the resulting SOC stock (kg m−2)
with depth was estimated by using a linear mixed effects
model from the ‘nlme’ package in R (Bates and Pinheiro 1998,
Pinheiro and Bates 2000) with three nested levels of grouping;

SOCstockijk = β0 + Xijkβ1 + Zi, jkbi

+ Zij,kbij + Zijkbijk + εijk,

i = 1, ·4j = 1, ·6, k = 1, ·0,

bi ∼ N (0, φ1), bij ∼ N (0, φ2), bijk ∼ N (0, σ 2I),

(2)

where the intercept is represented by β0, the depth slope by
β1, and b1, bij and bijk are the random effects at site (i), cluster
within site (j) and plot within cluster within site (k) random
effects, while denotes the within group errors. The above
model was used to predict SOC stocks to 30 cm (SOC30) for
each soil profile (n = 640).

Finally, an ensemble modeling approach using the
‘randomForest’ library in R (Breiman 2001) was used to
predict SOC30 as a function of Landsat ETM+ reflectance for
each sampling plot. A random forest model represents a form
of bagging (Breiman 1996), where large sets of de-correlated
trees are built and the resulting predictions are averaged
(Prasad et al 2006). An ‘out-of-bag’ test sample is held out
and used to estimate model error and for the calculation of
variable importance. The resulting model was applied to a
set of Landsat imagery from the GLS 2005 archive for the
generation of maps of predicted SOC30. A data set consisting
of 67% of the plots in the data set was used to develop the
prediction model, while the remaining 33% was used for
validation.

3. Results and discussion

We estimate SOC stocks to 30 cm, as this is the most relevant
depth affected by land management practices, particularly in
agricultural systems. As shown in figure 2 (top panel), we can
reasonably assume a linear relationship between cumulative
SOC stock (kg m−2) and soil depth (multiple r2

= 0.94) for
each profile (section 3), and we therefore applied this model
to predict SOC30. The model may be used for estimating SOC
stocks to other depths within these profiles as well. Predicted
soil carbon stocks to 30 cm are summarized for each site in
the lower panel in figure 2. The estimated SOC30 stocks are
lowest in Kipsing, which also has a lower within site variance
than the other sites (lower panel, figure 2).

In the middle-left panel of figure 2 we extracted the
coefficients for the site-level random effects from the model
in section 3 to predict SOC stocks cumulatively with depth.
The plot shows average increases in SOC stocks by depth for
each site, illustrating the widely contrasting SOC dynamics
between these sites. The dry savanna Kipsing site has low
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Figure 2. Summary of modeling results for calculation of SOC stocks. The top panel shows measured versus predicted SOC stocks using
the LMM model in section 3, middle-left panel shows the average increase in SOC stocks by depth for each site, middle right panel shows
predicted versus measured SOC stocks to 30 cm based on Landsat ETM+ reflectance. The lower panel shows a violin and boxplot of SOC
stocks to 30 cm for each site.

SOC stocks overall, and the stocks increase moderately
with depth, most likely due to the high prevalence of
erosion (∼100%), which has removed most of the topsoil, as

discussed later. In the more humid Dambidolo site, there is a
stronger increase in SOC stocks with depth and higher stocks
overall, while Mega and Mbinga show similar dynamics
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Figure 3. Estimated SOC30 stocks by land cover types for the four sites included in the study. The left side of the graph shows humid sites
(top-left is Mbinga, bottom-left is Dambidolo), while the right shows dryland sites (top-right is Mega and bottom-right is Kipsing).

with depth, despite widely different climates. These estimates
provide insights into variations in SOC storage potential
between sites. On average, the estimates presented fall within
the ranges reported by earlier studies for different ecosystems.
For example, Post et al (1982) reported stocks of 5.4 kg m−2

in tropical woodland and savanna systems, and 9.9 kg m−2 in
dry tropical forest.

3.1. Soil organic carbon dynamics

Differences in rainfall between sites explain about 20% of
the variation in SOC30 stocks, therefore there must be other
factors that strongly determine SOC stocks in these areas. A
closer examination of the texture of the soils included in the
study shows that average sand content is higher in Mbinga
(21%) than in Mega (14%), and highest in Kipsing with
about 47%. The interaction between sand content and rainfall
explains 47% of the variations in SOC30 stocks between sites.
This is most likely part of the explanation for the similar
SOC30 stocks on average observed in Mega and Mbinga
(figure 2), despite the much higher rainfall in Mbinga. One

implication of this is that SOC stocks are strongly determined
by inherent soil properties such as soil texture, which are
not influenced much by management. Similar relationships
between sand content, MAP and soil carbon were reported by
Jobbágy and Jackson (2000), which are due to the much lower
protection of SOC against microbial degradation in sandy
soils than in soils that are clay rich.

The data used in this study had a wide range of
land cover types, ranging from open grasslands, bushlands
and woodlands to croplands and forest, although forested
ecosystems have a small sample size in this data set. The
only site with some forest was Mbinga, where estimated
SOC30 in forested areas was 7 kg m−2 on average. Croplands
were found mainly in the humid Dambidolo and Mbinga
sites, and estimated SOC stocks varied strongly within
these areas. The cultivated areas also had highly variable
histories of conversion from native vegetation to cultivation.
In Dambidolo, for example, most of the currently cultivated
areas were converted from grasslands in the last 25 yr. In the
drier ecosystems, grasslands had the highest estimated SOC30,
while shrublands and woodlands had lowest SOC30 stocks
overall (figure 3).
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Figure 4. Maps of predicted SOC stocks to 30 cm based on Landsat ETM+ reflectance for (a) = Dambidolo, (b) = Mbinga,
(c) = Kipsing and (d) = Mega. Black dots are sampling plots.

While the effects of agricultural management practices
on SOC stocks have been widely studied, the effects of soil
erosion on SOC storage within land management practices are
generally not well understood (Ogle et al 2005). The findings
of the current study show that soil erosion affects SOC stocks
strongly in all sites and across different land cover types.
Hence, land management practices that lead to the control
and reduction of soil erosion will be important mitigation
strategies in these landscapes. Model estimates suggest that
SOC stocks are lower by 0.9 kg m−2 (p < 0.01) on average
in eroded versus non-eroded areas. This effect is stronger in
woodland and grassland systems in Mbinga, where SOC30
stocks are lower by between 2 and 3 kg m−2 in eroded areas
(summarized in figure 3).

In the drier ecosystems, the majority of the shrublands
and woodlands had a high prevalence of soil erosion, possibly
due to overgrazing leading to low herbaceous cover in these
sites. Also, semi-arid ecosystems generally have aggressive
rainfall events that can be highly erosive. The results suggest
that the impact of grazing was high in both Mega and Kipsing.
Impact scores were high for grazing in more than 90%
of the plots surveyed in these sites. Although preliminary,
these findings suggest that maintaining woody cover in these
systems is not enough to reduce soil erosion and effective

climate change mitigation strategies hence need to focus on
the maintenance of a continuous herbaceous cover in order
to reduce soil erosion and increase the potential for carbon
storage in these ecosystems.

3.2. Mapping SOC stocks for assessing mitigation potential

Soil organic carbon stocks to 30 cm were predicted using
Landsat ETM+ ground calibrated reflectance (middle-right
panel in figure 2), with results indicating that the random
forest models used have a reasonable level of prediction
performance, with a multiple R-squared of 0.67 and 0.65
for calibration and validation data sets, respectively. These
models are expected to become more robust in future
assessments as a wider range of sites are included, including
humid tropical forests.

The maps generated from these models at 30 m resolution
(figure 4), clearly show the between-site differences in SOC30
stocks and also the high level of variability within each
individual site (figure 4). These maps provide estimates of
SOC stocks that are spatially resolved enough for assessing
the complexity of SOC storage in these landscapes and for
the identification of hotspots where management interventions
may be targeted. When combined with assessments of the
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spatial distribution of erosion prevalence, spatially explicit
recommendations can be made about areas where mitigation
potential is high. Further efforts to develop the models
used for generating the maps presented here are focusing
on including sites also from the humid tropics, as well as
near-real time predictions of SOC stocks for monitoring
purposes.

4. Conclusions

We have demonstrated the use of cumulative soil mass
for estimating SOC stocks across landscapes, as part of
systematic land and soil health surveys. The method applied
is simple and allows for repeatable and robust measurements
of soil carbon stocks in different soil types and under different
land cover and land-use systems. Further, we have shown the
potential for mapping of SOC stocks to 30 cm using Landsat
ETM+ reflectance across four study sites in East Africa that
cover a wide range in climate and soil conditions.

The results of the study show that climate alone describes
only part of the variations in SOC stocks between sites and
that inherent soil properties such as sand content are often
more important than climate effects alone in determining SOC
dynamics. The developed maps are at a spatial resolution
that allows for the assessment of SOC dynamics across
complex landscapes, and for spatially explicit decisions to be
made about important areas for mitigation activities. In the
particular sites included in this study, soil erosion is a major
factor leading to losses in SOC stocks, often overriding the
effects of land cover or land use. Hence, the management of
soil erosion has major potential as a mitigation strategy. In the
dryland sites, managing woody cover is not enough to reduce
erosion prevalence and hence stabilize or increase SOC, or
reduce its loss, and mitigation strategies also need to focus on
improving the condition of the herbaceous cover. This calls for
the implementation of improved grazing and better livestock
management in these ecosystems.
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Vågen T-G, Shepherd K D, Walsh M G, Winowiecki L A, Tamene
Desta L and Tondoh J E 2010 AfSIS Technical
Specifications—Soil Health Surveillance (Nairobi: CIAT (the
AfSIS Project))
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