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Abstract
Recent decreases in Arctic sea ice and increases in Greenland ice sheet surface-melt may have
global impacts, but the interactions between these two processes are unknown. Using
microwave satellite data, we explore the spatial and temporal covariance of sea ice extent and
ice sheet surface-melt around Greenland from 1979 to 2007. Significant covariance is
discovered in several loci in the late summer, with the strongest covariance in western
Greenland, particularly in the southwest (Kangerlussuaq). In this region, wind direction
patterns and a statistical lag analysis of ice retreat/advance and surface-melt event timings
suggest that sea ice extent change is a potential driver of ice sheet melt. Here, late summer wind
directions facilitate onshore advection of ocean heat, and enhanced melting on the ice sheet
commonly occurs after reductions in offshore sea ice. Hence, this study identifies for the first
time the covariability patterns of sea ice and ice sheet melt and suggests that a retreating sea ice
margin may enhance melting over the ice sheet.
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1. Introduction

Greenland ice sheet surface-melt accelerated in the late-
20th/early-21st century (e.g. Abdalati and Steffen 2001, Mote
2007, Tedesco 2007), coinciding with a period of rapid sea
ice loss in surrounding seas and oceans (Stroeve et al 2007,
Comiso et al 2008, Parkinson and Cavalieri 2008). Both are
projected to continue in the 21st century (Meehl et al 2007).
Large ice mass losses from Greenland may increase global sea
levels up to 0.5 m (Pfeffer et al 2008) with tremendous global
socio-economic impacts (Stern 2007).

On the Greenland ice sheet, the recent surface-melt
anomalies are governed by rising surface temperatures and
lowered ice albedo (Abdalati and Steffen 1997, Tedesco 2008).
Here, we explore the possibility of a third factor influencing
melt extent, namely the presence or absence of offshore sea

ice. Sea ice presence is known to influence local and regional
surface climate (Alexander et al 2004, Rinke et al 2006,
Honda et al 1999), surface temperatures (Ogi and Wallace
2007, Lawrence et al 2008), precipitation patterns (Singarayer
et al 2006) and cyclone frequency (Deser et al 2000). In
principle, sea ice can be linked to ice sheet surface-melt
through a chain of high correlations between sea ice and ocean
temperatures (Comiso 2002), ocean and coastal temperatures
(Hanna and Cappelen 2003), and coastal temperatures and ice
sheet surface-melt (Abdalati and Steffen 2001, Mote 2007).
In fact, JRA-25 and NCEP/NCAR reanalysis fields suggest
that the recent emergence of surface-based Arctic warming
is in response to reduced sea ice extent (Serreze et al 2009).
Expanding open-water areas in summer absorbs solar energy,
increases the specific heat content of the upper ocean, and
further melts sea ice. This allows for enhanced heat transfer
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from the ocean to the atmosphere during autumn and winter,
causing strongest warming in these seasons.

Put simply, we hypothesize that reduced offshore sea
ice concentration, i.e. greater open-water fraction, warms the
ocean mixed layer and increases onshore advection of sensible
and turbulent heat fluxes, in turn raising air temperatures over
the ice sheet and the probability of surface-melt occurring.
We explore this hypothesis for the Greenland ice sheet
using simultaneous passive microwave satellite observations of
surrounding open-water extent and inland surface-melt extent
from 1979 to 2007.

2. Study area, data and methods

Our study area is the Greenland ice sheet and its surrounding
oceans and seas, divided into 16 land and 16 ocean regions
(figure 2). Between 62.5◦ N and 80◦ N we divided the study
area into 2.5◦ meridional bands separated east–west along
42◦ W, and with the ocean regions extending 20 grid cells
(∼500 km) outwards from the Greenland coast. One southern
and one northern region cover the remaining land and ocean
area below 62.5◦ N and above 80◦ N, respectively.

Temporal and spatial patterns in Greenland surface-
melt were obtained from the dataset of Abdalati (2007).
This dataset is a binary classification of melt/no-melt
determined with the cross-polarized gradient ratio algorithm
(Abdalati and Steffen 1997) utilizing passive microwave
brightness temperatures measured by the scanning multi-
channel microwave radiometer (SMMR) and the special sensor
microwave/imager (SSM/I). Although active microwave data is
more sensitive to snow wetness (Nghiem et al 2001), passive
microwave sensors have been operational for much longer and
capture Greenland melt anomalies quite well (Abdalati and
Steffen 1997, Tedesco 2007). The dataset was processed to
provide daily and average monthly time-series between 1979
and 2007 by calculating the areal extent of surface-melt within
each land region and interpolating any days with missing data.
These data gaps primarily occurred before 1988, when the
passive microwave sensors collected data every other day.

Temporal and spatial patterns in open-water extent were
derived using the Goddard Space Flight Center (GSFC) ice
concentration dataset (Comiso 1999, updated 2008). Sea
ice concentration is determined with the bootstrap sea ice
algorithm (Comiso et al 1997) utilizing the same passive
microwave brightness temperatures from SMMR and SSM/I
used by Abdalati (2007). Summer sea ice concentrations
are typically underestimated by passive microwave sensors,
for example due to melt pond formation (e.g. Comiso and
Kwok 1996). This uncertainty was reduced by using a binary
classification of each ocean grid cell as either ice-covered
or ice-free (e.g. Serreze et al 2003). The sea ice ‘edge’
separating open-water from sea ice was defined as 15% sea ice
concentration, a widely used threshold value (e.g. Comiso et al
1997). The dataset was processed to provide daily and average
monthly time-series of open-water extent between 1979 and
2007 by calculating the area of grid cells with less than 15%
sea ice within each ocean region and interpolating any days
with missing data similar to the surface-melt dataset.

Data analysis had two objectives: (1) to determine
the monthly covariability between each region’s respective
time-series of offshore open-water extent and inland surface-
melt during the melting season from May to September,
and (2) to quantify the frequency of surface-melt events
following/preceding open-water events, using daily data and
various time lags.

The covariability was quantified with correlation coeffi-
cients obtained from linear regression. Regions with
significant correlations were identified by testing the null
hypothesis that the correlation was a result of random chance
using a confidence level of α = 0.05. However, because the
likelihood of finding significant relationships can be inflated
by the presence of autocorrelation and cross-correlation
(Lettenmaier et al 1994, Gujarti 2003), two additional
statistical tests were also performed. First, the influence
of autocorrelation was tested using the Durbin–Watson test
(e.g. Gujarti 2003). Second, months in which the number
of regions with significant correlations could be due to
cross-correlations were identified using the bootstrap test
of Burn and Elnur (2002). The bootstrap test established
the expected number of regions with significant correlations
arising due to chance, but with cross-correlations preserved, at
a given significance level α. If this number is less than the
number of regions with significant correlations in the actual
data, the actual data is field significant at a significance level
of α. Hence, months with field significant data are likely to be
unaffected by cross-correlation.

The lag study examined if the relative timings between
open-water and surface-melt events support the notion that
offshore ocean conditions can influence the ice sheet.
Assuming similar response time to external forcing, strong
external forcing should result in both surface-melt and open-
water events occurring on the same day (i.e., zero time
lag), whereas open-water extent forcing should favor melt
events after open-water events (i.e. positive time lag but not
a negative one). We define an ‘event’ (meaning an expansion
or contraction of surface-melt or open-water area) as the
occurrence of a sign change, exceeding one standard deviation,
in the time-series derivatives in SSM/I data between 1988 and
2007 (before 1988 the SSMR sensor provides only data every
other day). The melt event lags were determined in the period
between surface-melt onset and the time of maximum open-
water expansion. The frequency of melt events occurring at
time lags within ±8 days of open-water events was determined.
The result was tested against the null hypothesis that melt
events occur at random in relation to open-water events by
employing a permutation resample test (e.g. Hesterberg et al
2006). Significance level is established as the corresponding
percentile of the test data.

3. Results

Position of the mean sea ice edge sweeps progressively
northward, in concert with expanding ice sheet surface-melt
area, from May to July (figure 1). In southwest Greenland,
open-water expansion into the Davis Strait is mirrored by
inwards surface-melt expansion into the ice sheet. In August
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Figure 1. Average monthly melt extent (red) and sea ice/open-water-extent (white/blue) in Greenland and surrounding ocean and seas
between 1979 and 2007. The spatial monthly averages are defined as all grid cells with more than an average of 10% melting/sea
ice/open-water days in the month.

Figure 2. The spatial distribution of correlation coefficients between average monthly ice sheet melt extent and offshore open-water extent
(i.e. area of ocean grid cells with sea ice concentration less than 15%) within each of the 16 regions. The outlines of the regions and the
coastlines of Greenland and Ellesmere Island are shown for reference. Regions with significant correlations are demarked with a ‘*’, and
regions with significant autocorrelation are demarked with a ‘–’. The largest number of significant correlations occurs in August, with the
strongest correlation in the Kangerlussuaq area (demarked with a ‘K’). None of the time-series in the regions with significant correlations had
significant autocorrelation.

and September, the sea ice edge continues to migrate northward
while the inland surface-melt area contracts, leaving only a
thin coastal, fragmented band of surface-melt by September.
In contrast to the relatively uniform zonal inwards expansion
and contraction of surface-melt throughout the summer, the
pattern of sea ice retreat differs for the east and west coasts
of Greenland. While the eastern sea ice stays proximal to the
coast while retreating northwards, the western coastal areas are
the first to become ice-free as the sea ice edge moves northwest
into Davis Strait and Baffin Bay (figure 1).

Monthly melt extent varies independently of open-water
extent except in seven of the sixteen regions during the month
of August (figure 2). Only then does the bootstrap test show
that the fraction of regions with significant trends (p < 0.05)

is field significant at a confidence level of α = 0.05, suggesting
that significant correlations in all other months are due to
cross-correlation. Similarly, the Durbin–Watson test suggests
significant autocorrelation in several time-series pairs, but none
in the August time-series pairs. Thus, both tests indicate that
the high correlations cannot be due to cross- or autocorrelation
in the month of August. High correlations could be a result
of errors in the passive microwave dataset used to determine

both open-water and melt extent, but this error is considered
negligible given the low correlation in most regions.

In August, most regions on the west coast of Greenland
display significant positive correlations between the two
variables, but the highest correlation is in the Kangerlussuaq
region (r = 0.71) (demarked with a ‘K’ in figure 2). For
this region three different observations suggest a link between
open-water fraction and ice sheet melt. First, ocean–land
interactions are facilitated by the presence of westerly winds
during the melting season suggesting favorable meteorological
conditions for the advection of ocean air masses onto the ice
sheet open-water (figure 3(a)). In all months, northeasterly
katabatic winds flowing down the ice sheet interior dominate
(45◦ from North), but in the melting season a second mode
with westerly winds (270◦ from North) suggests a period of
ocean–ice sheet interactions. Second, assuming that both sea
ice and melt extent respond with a similar time lag to external
forcing, the significant frequency of melt events occurring
0–2 days after open-water events (figure 3(b)) suggests that
the arrival of open-water offshore is able to contribute to the
arrival of surface-melt on the ice sheet. Third, given the strong
relation between air temperature and surface mass balance
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a) b)

d)c)

Figure 3. The relationship between open-water fraction and melt extent examined for the Kangerlussuaq region, the region with the highest
correlation: (a) the distribution of sub-daily observed wind directions at the Kangerlussuaq meteorological station for each month between
1980 and 2008, (b) the frequency of melt events lagging open-water events derived from daily data, and the 99th percentile of the randomized
data corresponding to the 99% confidence level, (c) time-series of average monthly melt extent and in situ air temperature from the
Kangerlussuaq meteorological station, (d) time-series of average monthly melt and open-water extent. The Kangerlussuaq meteorological
station is situated on land between the ocean and the ice sheet (67.017 N, −50.70 E) (data available at: National Climatic Data Center,
http://www.ncdc.noaa.gov/oa/ncdc.html).

(e.g. De Woul and Hock 2005), melt extent is likely a good
measure of ice sheet surface mass balance, as indicated by
the strong linear relation between melt extent and in situ air
temperature (figure 3(c)). The potential sea ice influence
on melt is strongest before 1999, thereafter the open-water
fraction reaches its near maximum every year (figure 3(d)).

4. Discussion

Open-water and ice sheet surface-melt covariability is
significant in seven of sixteen regions in the month of August,
with most of these regions located on the west coast. Relative
to northern and southern Greenland, the western and eastern
parts of Greenland have a higher probability of occurrence of
seasonal sea ice (Kinnard et al 2008) at the time of year when
the ice sheet surface is most susceptible to melting. Thus,
the western and eastern parts are more likely to experience
simultaneous variability in both sea ice and surface-melt,
facilitating a higher correlation between the two variables.
Relative to Greenland’s east coast, the west coast interactions
between the ocean and the land are helped by: (1) gentle
topographic slopes (Bamber et al 2001) and (2) the nature of

sea ice retreat. In contrast to the east coast, the west coast
ice retreats westward into the Davis Strait leaving a growing
near-shore open-water area, allowing for more solar heating
in expanding open-water areas and ocean warming in close
proximity to the ice sheet (figure 1).

The strongest covariability between open-water and melt
extent occurs in the Kangerlussuaq region in August, the
latter part of the melting season. Prevalence of a positive
time lag between melt and open-water suggests that open-
water enhances ice sheet melt in this area (figure 3(b)).
Other factors also explain why this relationship is strongest
in the late melting season. First, the late melting season
generally has warmer ocean temperatures (World Ocean Atlas
World Oceanographic Database 1998). Second, the arrival
of westerly winds (figure 3(a)) allows advection of ocean
heat onto the ice sheet potentially enhancing ice sheet melt.
Third, while a strong relationship between late summer air
temperature and surface-melt may not hold universally, it does
so in the Kangerlussuaq region (figure 3(c)). Fourth, ice
sheet albedo typically decreases during the melting season
(Stroeve et al 2001), making the ice sheet more susceptible
to late season melting. Finally, declining ocean heat flux
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(Perovich and Elder 2002), and the possibility of ocean to
atmosphere heat transfer (Steele et al 2008) may increase the
relative importance of heat advected from the ocean in the late
summer/fall.

This study suggests that the sea ice retreat can enhance
surface-melting on the Greenland ice sheet, especially in
southwestern Greenland during late summer. Future work
should assess the importance of sea ice in controlling solar
heating of ocean surface water, local weather patterns and the
validity of the assumption of identical response time of open-
water and melt area to changes in external forcings. Regardless
of how the mechanism of open-water influence on ice sheet
melt takes place, if model predictions of a northwards sea
ice edge retreat in the 21st century are correct (Meehl et al
2007), the ice sheet region influenced by sea ice variability
might reasonably be expected to correspondingly migrate
northwards. North of the Kangerlussuaq area is the Jakobshavn
ice-stream, which accounts for ∼10% of current Greenland
mass losses (Rignot and Kanagaratnam 2006). Although
surface-melt is an insignificant driver of the Jakobshavn
ice-stream’s present-day discharge variability (Joughin et al
2008), future increased sensitivity in combination with
enhanced surface-melt may further increase the discharge from
Jakobshavn ice-stream.
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