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Abstract
In September–October2015,ElNiñoandpositive IndianOceanDipole conditions set the stage formassive
fires in Sumatra andKalimantan (IndonesianBorneo), leading topersistently hazardous levels of smoke
pollution acrossmuchofEquatorialAsia.Herewequantify the emission sources andhealth impacts of this
haze episode and compare the sources and impacts to an event of similarmagnitudeoccurringunder
similarmeteorological conditions in September–October 2006.Using the adjoint of theGEOS-Chem
chemical transportmodel,wefirst calculate the influenceof potentialfire emissions across thedomainon
smoke concentrations in three receptor areas downwind—Indonesia,Malaysia, andSingapore—during
the 2006 event. This stepmaps the sensitivity of each receptor tofire emissions in eachgrid cell upwind.We
then combine these sensitivitieswith 2006 and2015fire emission inventories from theGlobal Fire
Assimilation System (GFAS) to estimate the resultingpopulation-weighted smoke exposure.Thismethod,
which assumes similar smoke transport pathways in 2006 and2015, allowsnear real-time assessmentof
smokepollution exposure, and therefore the consequentmorbidity andprematuremortality, due to severe
haze.Our approachalsoprovides rapid assessmentof the relative contributionoffire emissions generated
in a specificprovince to smoke-relatedhealth impacts in the receptor areas.Weestimate that haze in 2015
resulted in 100 300 excess deaths across Indonesia,Malaysia andSingapore,more thandouble those of the
2006 event,withmuchof the increasedue tofires in Indonesia’s SouthSumatraProvince. Themodel
frameworkwe introduce in this study can rapidly identify those areaswhere landusemanagement to
reduce and/or avoidfireswould yield the greatest benefit to humanhealth, bothnationally and regionally.

1. Introduction

The thick smoke that blanketed Equatorial Asia during
September–October of 2015 was likely the worst haze

episode since 1997, when land use fires caused billions
of dollars in damage and thousands of premature
deaths (Johnston et al 2012, Marlier et al 2013). The
degraded peatlands that typically burn during such
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episodes contain significant combustible organic mat-
erial and so release large amounts of fine particulate
matter (PM2.5), the leading cause of global pollution-
related mortality (World Health Organization 2009,
Lelieveld et al 2015). As in previous episodes, the
prevailing winds in 2015 transported the smoke to
densely populated areas across Indonesia and the
Malay Peninsula, including Singapore and Kuala
Lumpur. In this work, we identify provinces where
land use policies and management strategies could
most effectively mitigate the downwind smoke expo-
sure and consequent costs to human health during
such haze events. We also compare the 2015 event to
another large smoke episode in 2006 in order to
determine how fire emission patterns driven by land
use and land cover changemay be evolving.

Across Indonesia, fires are frequently used to burn
agricultural residue, clear forest, or prepare land for
plantations and smallholder farms. Fires also occur
from vandalism and accidental ignitions (Dennis
et al 2005, Gaveau et al 2014a). Fire emission levels are
greatest from degraded peatlands, especially in dry
years (Marlier et al 2015a, 2015b). In 2006, burning in
industrial concessions to clear land for oil palm and
timber plantations accounted for ∼40% of total fire
emissions in Sumatra and∼25% inKalimantan (Indo-
nesian Borneo) (Marlier et al 2015c). As on oil palm
plantations, fire on timber plantations is used to clear
native vegetation quickly and cheaply in order to
establish commercial wood pulp species. Such species
include fast growing trees such as Acacia, whose turn-
over rate is about three times faster than oil palm (∼7
years compared to ∼25 years), potentially resulting in
more frequent post-harvest burning (Effendy and
Hardono 2001, Feintrenie et al 2010).

As in 1997 and again in 2006, the severe haze in
September–October 2015 was enabled by a combina-
tion of El Niño and positive Indian Ocean Dipole
(pIOD) conditions, both of which promote drought
and greatly enhance fire activity in the region, either
because fuel loads are drier allowing fires to escape and
burn out of control or because farmers take advantage
of the dry weather and clear more land than usual
(Field and Shen 2008, van der Werf et al 2008, van der
Werf et al 2010, Reid et al 2012). Though the under-
lying meteorological triggers are similar across these
extreme haze events, the spatial distributions of land
cover and fire emissions are evolving rapidly, driven
largely by expanding globalmarkets for oil palm, pulp-
wood and timber, and by increases in small-scale agri-
culture (Field et al 2009, Miettinen et al 2011,
Margono et al 2014, Gaveau et al 2014b, Marlier
et al 2015a). A comparison between the 2006 and 2015
events is critical for (1) quantifying the contributions
of specific fire source locations to smoke exposure in
downwind population centers during extreme haze
events, and (2) identifying possible trends in the mag-
nitudes of these differentiated contributions over the
last decade. We chose 2006 and not 1997 for this

comparison since modern satellite technology (e.g.,
themulti-wavelength instruments on board Terra and
Aqua that can capture burned area and AOD) was not
available until 1999 (King et al 2003). Diagnosis of the
fire emission locations that result in the greatest smoke
exposures downwind can guide the design of more
informed strategies to prevent or minimize recurrent
haze events.

In this study, we demonstrate the potential of a new
analytical framework to rapidly assess in near real-time
the emission sources and health impacts of an ongoing
smoke episode in Equatorial Asia. The framework, pre-
sented here all together for thefirst time, integrates infor-
mation on (1) fire emissions related to land cover and
land use (Marlier et al 2015a, 2015b, 2015c), (2)meteor-
ological drivers of smoke transport, (3) domestic and
transboundary source–receptor relationships, which
quantify the sensitivity of PM2.5 concentrations in recep-
tor areas to the specific locations of fire emissions (Kim
et al 2015, Marlier et al 2015a, 2015c), and (4) health
impact functions incorporating regionally specific data
on mortality rates, age structure, and population. Pre-
vious efforts to quantify health impacts from biomass
burning in Equatorial Asia have proven computationally
expensive (e.g., Johnston et al2012,Marlier et al2013). In
contrast, once the source–receptor relationships have
beenmapped, our novel framework can readily quantify
smoke exposure fromany given distribution offire emis-
sions without the need for additional computationally
expensive model simulations. In this way, stakeholders
can quickly identify the key emission areas contributing
to that exposure and estimate the resulting morbidity
and premature mortality in downwind populations,
even as an extreme smoke event unfolds.

2.Methods

Below we describe the fire emissions estimates and the
surface and satellite observations used in this analysis.
In the supplement, we describe the GEOS-Chem
adjoint used to calculate smoke exposures and the
health impact calculations.

2.1. Fire emissions
We use near-real time fire emission estimates for the
2015 haze event from the GFAS, a product that was
readily available for next-day processing at the time of
our analysis (GFAS, http://join.iek.fz-juelich.de/
macc/; Kaiser et al 2012). GFAS emissions are derived
at 0.5°×0.5° horizontal resolution from observa-
tions of fire radiative power (FRP) from the Moderate
Resolution Imaging Spectroradiometer (MODIS)
instruments on board the Terra and Aqua satellites.
The emissions are based on observed relationships
between FRP and combusted dry matter for eight land
cover types based on those used in the Global Fire
Emissions Database (GFED; van der Werf et al 2010),
supplementedwithmaps of organic soil andpeatlands.
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Here we define smoke as the sum of organic carbon
(OC) and black carbon (BC) aerosol, the primary
components of smoke-related PM2.5. Based on com-
parisons with satellite AOD, Kaiser et al (2012)
recommended scaling GFAS OC and BC emissions by
a global factor of 3.4. However, the Kaiser et al (2012)
underestimate in modeled AOD may be partly due to
model treatment of carbon aerosol in the atmosphere
rather than emissions (Andela et al 2013). Somewhat
arbitrarily, we instead scale the GFAS emissions up by
50%, which produces model results that better match
surface observations during 2015 (section 2.2). Scaling
up by 50% also yields PM2.5 emission totals for
Indonesia in 2006 that match those obtained from a
different emission inventory (Marlier et al 2015c). To
identify sources of fire emissions, we rely on estimates
of the spatial distributions of peatlands and industrial
concessions in 2010, the only year for which such data
are available (figure S1). We overlay these estimates
onto 1×1 km2 MODIS FRP detections to attribute
fire activity to these sources (table S1). This finer
spatial scale information is necessary given the multi-
ple types of land use and land cover within each
0.5°×0.5°GFAS grid cell.

2.2. Surface PMobservations
We compare the GEOS-Chem adjoint estimates for
smoke exposure in Singapore during 2015 against
observed PM2.5 concentrations for five stations in
Singapore operated by the National Environment
Agency (NEA; http://nea.gov.sg/). In order to isolate
enhancements in surface PM2.5 due only to smoke
aerosol, we first calculate the average observed PM2.5

during June (13.6 μg m−3), the earliest available mea-
surements before the onset of the haze event. We then

subtract the June average non-smoke concentration
from the full time series.

2.3. Satellite observations
We also compare the adjoint smoke exposures from
the 2006 and 2015 haze events to two satellite
products: ultraviolet aerosol index (AI) from the
Ozone Monitoring Instrument (OMI; Torres
et al 2002, Torres et al 2007) and aerosol optical depth
(AOD) at 550 nm from MODIS aboard the Terra
satellite (Levy et al 2010). We use the Level 3 quality-
assured products from both instruments, processed at
1° horizontal resolution. Both products are frequently
employed to characterize smoke aerosol in Southeast
Asia (Reid et al 2013, Chang et al 2015). By using two
different aerosol products, we overcome some of the
uncertainty associated with representing smoke opti-
cal properties in the retrievals (Zender et al 2012). We
also maximize the amount of usable satellite data
retrieved during the time periods of interest in an
environment that is challenging to observe from space
due to frequent cloudiness, lengthy coastlines, and
mountainous terrain (Reid et al 2013).

3. Results

3.1. Fire emissions
Figure 1 shows the 1995–2015 time series of the
NINO3.4 index and Dipole Mode Index (DMI), the
standard indices used to represent the phases of the El
Niño Southern Oscillation (ENSO) and the Indian
Ocean Dipole (IOD; www.stateoftheocean.osmc.
noaa.gov). Both El Niño and positive phases of the
IOD result in suppressed convection over Indonesia,
leading to drought and increased fire activity. Septem-
ber 2015 was the strongest El Niño on record since

Figure 1. Indices of large scale circulation patterns in Equatorial Asia. The blue line shows theNINO3.4 index for the ElNiño-
SouthernOscillation for January 1995–December 2015. The red line shows theDipoleMode Index (DMI) for the IndianOcean
Dipole (IOD). Dotted lines indicate the thresholds for El Niño (+1) or LaNina (−1) in theNINO3.4 series, and for strongly positive
(+1) or strongly negative (−1) IOD conditions in theDMI series. Data are from theNational Oceanic andAtmospheric
Administration (stateoftheocean.osmc.noaa.gov).
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1997 and much stronger than September 2006.
September 2006, however, saw a slightly stronger
positive IOD. Over the entire 20 year record, there are
only three instances when both theNINO3.4 andDMI
indices simultaneously exceed a value of +1: 1997,
2006, and 2015. Prior to 2015, the 1997 regional haze
event was the most severe on record. However, due to
a lack of available satellite data for 1997, we focus our
comparison on 2006, the second most extreme haze
event prior to 2015.

South Sumatra and Central Kalimantan both
burned strongly during the 2006 event, contributing
30% and 31% respectively of total Indonesian
OC+BC emissions released (figures 2 and 3). The
July–October 2015 Indonesian fire emissions were 2.1
Tg higher compared to the 2006 emissions over the
same months, an increase of 110% (figure 3). South
Sumatra contributed 62% (1.3 Tg) of the emission dif-
ference between 2015 and 2006, while Central Kali-
mantan contributed only 18% (0.4 Tg). Jambi
Province, which was responsible for less than 5% of
the haze during 2006, contributed the third highest
emissions of any individual province in 2015 and 12%
to the emission difference between 2015 and 2006.
Contributions fromWest Kalimantan decreased from
16% in 2006 to 6% in 2015.

3.2. Smoke exposure during haze events
To estimate smoke exposure at each receptor area
during the two haze events, we multiply the GFAS
emissions for July–October 2006 and July–October
2015 by the adjoint sensitivities simulated for July–
October 2006 (figure S3). Although the most intense
haze occurred during September–October in both
years (65% of total annual fire emissions in 2006, 80%
in 2015), we extend our time horizon to include the
entire burning season from July–October (83%of total
annual fire emissions in 2006, 93% in 2015). As
described above, we assume that the 2006 smoke
transport patterns are similar to those in 2015. Smoke
transport for all three receptors shows a strong
sensitivity to the prevailing southeasterly winds gov-
erned by the location of the Intertropical Convergence
Zone (ITCZ) during September–October (Chang
et al 2005). To test our results using meteorology from
other years we also calculate smoke exposures in
Singapore due to the 2015 fire emissions with adjoint
sensitivities for 2005 and 2007–2009 (figure S4).
Seasonal mean exposures are similar across the
2005–2008 sensitivities, while 2009 is ∼25% greater
than the 2006 average.

Figure 4 shows a combined time series of daily
NEA PM2.5 concentrations at Singapore for1 July–31
October 2015. Smoke concentrations returned to nor-
mal levels in late October with the onset of monsoonal
rains (Cochrane 2015). The NEA data reveal an aver-
age observed smoke exposure of 30 μg m−3 in Singa-
pore for July–October 2015. Our approach yields an

average July–October 2015 smoke exposure at Singa-
pore of 27 μg m−3, consistent with the NEA surface
observations. Estimated population-weighted smoke
exposures in Indonesia and Malaysia during 2015 are
19 μg m−3 and 14 μg m−3, respectively. Mean July–
October non-smoke PM2.5 concentrations in these
areas are ∼10–15 μg m−3 (section 2.2; GEOS-Chem
forward model simulation, not shown), yielding total
annual average PM2.5 exposures below 50 μg m−3 and
within the range of linearity (supplement section 2).

During 2006, we find that July–October exposures
are lower by at least a factor of 2 at all three receptors
compared to 2015, with values of 10 μg m−3 in Singa-
pore, 8 μg m−3 in Indonesia, and 6 μg m−3 in Malay-
sia. Figure 5 compares OMI AI and MODIS AOD for
September–October 2006 to those quantities in Sep-
tember–October 2015. Also shown for 2015 is a com-
parison of MODIS AOD to AOD measurements at
several sites in the Aerosol Robotic Network (AERO-
NET; Holben et al 1998); no data are available at these
sites for September–October 2006. Both satellite
instruments reveal an approximate doubling in aero-
sol levels in 2015 compared to 2006 acrossmuch of the
domain, consistent with the adjoint exposure results
and confirming the utility of our approach.

3.3. Emission sources
During 2006, South Sumatra and Central Kalimantan
contributed roughly equally to regional emissions
(30%–31%), but across all three receptor areas, South
Sumatra accounted formore than three times asmuch
smoke exposure than did Central Kalimantan
(figure 3). Also in 2006, West Kalimantan contributed
only 16% to regional emissions, but was responsible
for the second highest exposure levels in Malaysia,
after South Sumatra. In 2015, the percent contribu-
tions to smoke exposure from South Sumatra
increased by 10%–15% in the absolute sense across all
receptors, compared to South Sumatra’s contribution
to smoke exposures across the same areas in 2006.
Exposure contributions from Jambi doubled in 2015
compared to 2006, while contributions from the other
regions decreased. The trends in smoke exposure from
South Sumatra and Jambi in 2015 suggest significant
changes in land use occurred in these regions during
the intervening years as discussed below.

Emission source regions for both the 2006 and
2015 haze events differ from those contributing to a
severe haze event in June 2013 that severely affected
Singapore and the Malay Peninsula (Gaveau
et al 2014a). The 2013 haze has been traced to agri-
cultural burning in Riau, a province in northern
Sumatra covered extensively by peatlands and oil palm
concessions (figure S1; Gaveau et al 2014a). In con-
trast, we find that Riau did not contribute significantly
to smoke exposure at any receptor during either the
2006 or 2015 haze events. This difference is partly due
to the longer burning season in Riau than further

4

Environ. Res. Lett. 11 (2016) 094023



south in Indonesia, with increased burning earlier in
the year (Reid et al 2013). Also, the prevailing winds
over Riau shift from westerly in June to southeasterly
during September–October as the ITCZmoves south-
ward across Equatorial Asia, transporting what smoke
there is later in the season toward the northwest rather
than towards the populatedMalay Peninsula.

To estimate the contributions of different types of
land use and land cover to fire activity, we used satellite
FRP observations at high-resolution (1 km×1 km)
for July–October 2006 and 2015 (table S1). While FRP
totals are not directly comparable to emissions, they
are available in near real-time and can reveal the spa-
tial distribution of fire activity and land use types affec-
ted by fires, as demonstrated by Marlier et al (2015c).
For example, although oil palm concessions have pre-
viously been implicated as amajor driver of peat burn-
ing in Indonesia (Koh et al 2011), we find that burning
in oil palm concessions in 2006 accounted for only
11% of total FRP in Sumatra and 32% in Kalimantan.
In 2015, these contributions declined to just 5% and

20%, respectively. In Sumatra, FRP in timber conces-
sions increased from 27% in 2006 to 55% in 2015,
while in Kalimantan the timber contribution was
<10% in both years. In contrast, the percentage of
total FRP occurring in peatlands increased in both
Sumatra (44%–72%) and Kalimantan (32%–43%)
from 2006 to 2015. Reasons for the apparent increase
in fire activity in peatlands are not clear. Draining of
peatlands to prepare for agricultural use in the inter-
vening years may have made the peat more vulnerable
to fires (Carlson et al 2012, Turetsky et al 2015). Fur-
ther analysis of the 2015 event with updated land use
maps is needed to fully understand these patterns at a
spatial scale that is useful for stakeholders.

3.4.Health impact estimates
The US Environmental Protection Agency primary
standard for unhealthy levels of annual average PM2.5 is
12 μgm−3. According to the World Bank, much of
Equatorial Asia is close to this standard in non-haze years
—e.g., annual mean values reported for 2011 are

Figure 2. September–October total emissions of organic and black carbon (OC+BC) fromGFAS during 2006 and 2015. The top panel
shows 2006, themiddle panel shows 2015, and the bottompanel shows the difference (2015–2006). Province boundaries are shown in
the bottompanel by colored lines, corresponding to Jambi in coral, South Sumatra andBangka–Belitung in green,West Kalimantan
in blue, andCentral Kalimantan in purple.
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13–14 μgm−3 for Indonesia, Malaysia, and Singapore
(http://data.worldbank.org/indicator/EN.ATM.PM25.
MC.M3). Based on smoke exposures for 2006
(section 3.2), we estimate the following excess deaths for
that year, with 95% confidence intervals calculated as in
Driscoll et al (2015): 34 600 (9000–60 100) in Indonesia,
2300 (600–4000) in Malaysia, and 700 (200–1200) in
Singapore. For 2015, we estimate these excess deaths to
be: 91 600 (24 000–159 200) in Indonesia, 6500
(1700–11 300) in Malaysia, and 2200 (600–3800) in
Singapore. (See supplement section 2 for description of

the health impact calculations and comparison to
previous estimates for the 1997 event.) Our results
suggest that regional smoke-related mortality was 2.7
times higher in 2015 than in 2006, an increase whose
causeswe summarize in thediscussion and conclusions.

4.Discussion and conclusions

A combination of El Niño and pIOD conditions in
July–October 2015 led to dry conditions that exacer-
bated agricultural and land clearing fires in southern

Figure 3.Contributions by province to average regional population-weighted smoke exposures (left) and total Indonesianfire
emissions ofOC+BC (right) during July–October 2006 and 2015. The island province of Bangka–Belitung is includedwith South
Sumatra. Province boundaries are shown in figure 2 and supplement figure S2.

Figure 4.Time series of observed daily smoke PM2.5 concentrations in Singapore from theNational Environment Agency (NEA;
www.nea.org) for 1 July–31October 2015.Gray dots representmean 24 h concentrations averaged acrossfive stations: Central, North,
South,West, and East Singapore. Unfilled black circles atmid-month representmonthlymean observed smoke PM2.5 fromNEA
averaged across allfive stations. Non-smoke PM2.5 has been removed from the time series by subtracting the average observed PM2.5

concentrations during June, before the onset of the haze event. Triangles showmonthlymean smoke exposure at Singapore estimated
by this work for July–October 2015 using unscaledGFAS emissions (blue), GFAS emissions scaled by the recommended factor of 3.4
(red) andGFAS emissions scaled by 50% (green).
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Sumatra and Kalimantan. The resulting dense haze
persisted across much of Equatorial Asia for weeks,
imposing adverse public health impacts on popula-
tions in Indonesia, Singapore, andMalaysia. Using the
adjoint of the GEOS-Chem global chemistry model
together with health response functions, we estimate
∼60 μg m−3 of population-weighted smoke PM2.5

exposure and 100 300 premature deaths across Indo-
nesia, Malaysia, and Singapore due to extreme haze in
2015. These values are more than double the
25 μg m−3 of smoke PM2.5 and 37 600 premature
deaths that we estimate for a similar haze event in the
region in 2006. The approximate doubling of regional
smoke exposure in 2015 compared to 2006 is con-
sistent with observations of haze from both OMI AI
andMODISAODduring the two events.

Smoke exposures in downwind population centers
in both 2006 and 2015 stemmed mainly from burning
in South Sumatra, an area that contributed more than
30% of the regional emissions and more than 50% of
the regional smoke exposure during both events. We
also find that Jambi Province, which did not burn sig-
nificantly during 2006, contributed about∼20%of the
increased smoke exposure between 2006 and 2015.
High resolution FRP data suggests that fire activity on
Sumatra in 2015 was dominated by burning on timber
concessions (55%) and peatlands (72%). An updated
analysis of the sectors and land types contributing to
smoke exposure would build on Marlier et al (2015c)
and test our hypothesis.

There are several limitations to the model frame-
work we present. First, peatland emissions are difficult

Figure 5.Average satellite aerosol observations for September–October during the 2006 and 2015 haze events. Observations during
the 2006 event are shown in the top two panels; the 2015 event is shown in themiddle panels. Values of Aerosol Index (AI) from the
OzoneMonitoring Instrument (OMI) are shown at left; aerosol optical depths (AOD) at 550 nm from theModerate Resolution
Imaging Spectroradiometer (MODIS) on the Terra satellite are on the right. Gray pixels indicatemissing data. Colored circles in the
MODISAOD2015 panel indicatemean September–October AERONETobservations. These data are level 1.5, which include cloud
filtering but not thefinal calibrations of the quality-assured level 2.0 product. For consistencywith the TerraMODISmorning
overpass time, the AERONETdata has been averaged during 9am–12pm local time. The bottom two panels compare the 2015 values
to those in 2006 for the two satellite products, calculated as the ratio of 2015/2006. For clarity, ratios in those gridboxes with low
aerosol content in both products (AOD<0.5 andAI<1.0) are not shown.
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to quantify and thus lead to a wide range of emission
estimates across fire inventories. Peat fires can smolder
in the subsurface for weeks to months after ignition,
often at temperatures too low to be detected accurately
from space (Tansey et al 2008). The contribution of
this low temperature burning to total smoke emissions
in peatlands is uncertain. The amount of peat fuel con-
sumed during each fire event is also uncertain and cur-
rently not explicitly represented in fire emission
inventories (Konecny et al 2016). Second, the conces-
sion maps we use in our attributions correspond to
2010 rather than 2015, and a subset of the concessions
recorded in 2010 may have been converted to other
land use types prior to 2015. Also, since our analysis
was conducted on a 0.5°×0.67° grid, there is some
uncertainty in our attributions of emissions and expo-
sure contributions to specific provinces. Third, our
method produces population-weighted average
smoke exposures, which neglect the spatial variability
in exposures within a receptor region. Populations liv-
ing close to fires may experience annual average PM2.5

exposures above the 50 μg m−3 linearity threshold in
the concentration response function we used. We also
focus only on adult mortality due to lack of knowledge
on the effects of air pollution on child mortality, even
though impacts on children are likely significant.
Additionally, the concentration response function
used here is based on studies done in high-income
countries with different baseline health characteristics
and air pollution sources. To date, there is little evi-
dence quantifying the relationship between PM2.5

composition and toxicity, and so we do not consider
this factor (Levy et al 2012). Our approach also does
not explicitly eliminate the potential influence of con-
founding health effects from conditions related to El
Niño-pIOD meteorology that are independent from
fire pollution, such as heat waves or excess airborne
dust from the drier conditions. Ideally wewould valid-
ate our results with a multi-year epidemiological
study, but such an evaluation is beyond the scope of
our analysis. Finally, our approach relies on the
assumption that the prevailing transport patterns
between 2015 and 2006 are likely similar given the
background meteorological conditions (sections 3.1–
3.2). Predictive real-time tools to forecast haze in
Southeast Asia exist and have recently been improved
upon (Hertwig et al 2015), but these methods require
substantial computational investment and do not
readily provide the geographical source attribution
information inherent in our adjoint approach.

These limitations in our approach are largely offset
by the benefits of (1) identifying in near real-time the
key fire locations contributing significantly to down-
wind smoke exposure during haze events in Equatorial
Asia, and (2) rapidly producing estimates of the asso-
ciated health impacts when the policymakers and civil
society groups are seeking ways to effectively address
seasonal burning in Equatorial Asia. In particular, our
approach provides an early-response diagnosis of

those provinces where effective fire and land use man-
agement would yield the greatest benefits to human
health, even as the haze event is still unfolding. (See
supplement section 6 for discussion of challenges
facing existing fire management strategies in Indone-
sia.) Applying the framework presented in this work
requires only spatially explicit estimates of carbon
aerosol emissions from fires, the archived GEOS-
Chem adjoint sensitivities (available upon request),
and a health impact model. The exposure calculations
are effectively a one-stepmultiplication combining the
sensitivities with the fire emissions, taking only sec-
onds to perform and requiring minimal computa-
tional resources. In the immediate aftermath of large
haze events, when the incentive for constructive deci-
sion-making among stakeholders is greatest, our fra-
mework supplies detailed information on the air
quality consequences of agricultural fires, a common
land use practice in Equatorial Asia.

Our modeling approach quantifies the public health
impacts of smoke pollution, including haze crossing
international borders. The capacity of our framework to
quickly identify the provinces where fire emissions are
most severely affecting downwind populations and to
quantify the resulting PM2.5-related health impacts can
help government agencies prioritize forested and peat-
land areas for protection and restoration. Furthermore,
our integrated modeling approach can help policy-
makers reduce health impacts from haze and strengthen
long-term efforts like Reducing Emissions from Defor-
estation and Forest Degradation (REDD+) to decrease
greenhouse gas emissions, maximizing the climate co-
benefits of preventing the release of carbon from trees,
peat, and other soil. Finally, the framework’s ability to
causally link specific fire events to public health impacts
in domestic and transboundary locations could support
implementation of laws that hold responsible those indi-
viduals and entities involved in illegal burning of land
and forests in this region.
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