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Abstract
Himalayanwater resources attract a rapidly growing number of hydroelectric power projects (HPP) to
satisfy Asia’s soaring energy demands. YetHPP operating or planned in steep, glacier-fedmountain
rivers face hazards of glacial lake outburstfloods (GLOFs) that can damage hydropower infrastructure,
alter water and sediment yields, and compromise livelihoods downstream.Detailed appraisals of such
GLOFhazards are limited to case studies, however, and amore comprehensive, systematic analysis
remains elusive. To this endwe estimate the regional exposure of 257HimalayanHPP toGLOFs,
using a flood-wave propagationmodel fed byMonteCarlo-derived outburst volumes of>2300 glacial
lakes.We interpret the spread of thusmodeled peak discharges as a predictive uncertainty that arises
mainly fromoutburst volumes and dam-breach rates that are difficult to assess before dams fail.With
66%of sampledHPP are on potential GLOF tracks, up to one third of theseHPP could experience
GLOFdischarges well above local design floods, as hydropower development continues to seek higher
sites closer to glacial lakes.We compute that this systematic push ofHPP into headwaters effectively
doubles the uncertainty aboutGLOFpeak discharge in these locations. Peak discharges farther
downstream, in contrast, are easier to predict becauseGLOFwaves attenuate rapidly. Considering this
systematic pattern of regional GLOF exposuremight aid the site selection of futureHimalayanHPP.
Ourmethod can augment, and help to regularly update, current hazard assessments, given that global
warming is likely changing the number and size ofHimalayanmeltwater lakes.

Introduction

Electric power demands ofHimalayan nations are on a
steep rise. India’s energy consumption has grown by
51% between 2000 and 2010, while China’s consump-
tion has more than doubled during that time. These
figures are likely to grow by another 75% by 2035 if
both countries sustain their rapid economic growth
(Dopazo et al 2014). Current strategies for satisfying
demands and downsizing the risk of power shortfalls
include the expansion of hydropower capacities. With
abundant monsoonal river discharge along steep
mountain rivers, the Himalayas (figure 1(a)) offer a
seemingly ideal setting for hydroelectric power pro-
jects (HPP). Less than 20% of the ∼500 GW

hydropower potential of the Himalayas are currently
tapped (Vaidya 2013), thus encouraging further devel-
opment that is also fueled by the World Bank’s
program agenda of reviving hydropower (World
Bank 2009), and the Kyoto Protocol’s Clean Develop-
mentMechanism (CDM). With 441 HPP as registered
or currently validated applicants for the CDM world-
wide, the Himalayas will have by far the largest HPP
growth rates in coming years (table 1) (Erlewein and
Nüsser 2011). As a result, the full implementation of
pending hydropower plans could make the Himalayas
the mountain belt with the world’s highest density of
dams (Grumbine and Pandit 2013).

Despite many projected benefits, the massive
development of Himalayan HPP and its anticipated
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impacts on ecosystems, streamflow, sediment trans-
port, and local communities have lowered the public
acceptance of hydropower (Grumbine and Pan-
dit 2013). Natural hazards are a particular concern for
this sprawl of hydropower, as the Himalayas are seis-
mically active, and prone to heavy monsoonal rainfall,
landslides, and floods (Sundriyal et al 2015). Glacial
lake outburst floods (GLOFs) in particular are a well-
publicized, though insufficiently quantified, hazard to
HPP (Sharma and Awal 2013, Vaidya 2013, Molden

et al 2014, Reynolds 2014). Large amounts of melt-
water fromHimalayan glaciers are impounded as lakes
behind moraine dams. Dozens of these natural debris
dams have failed catastrophically in the 20th century,
releasing destructive flash floods and debris flows. In
1985, a proglacial lake of Langmoche Glacier,
Khumbu Himal, Nepal, emptied rapidly, generating a
flood wave with a peak discharge Qp of ∼2000 m3 s−1,
and sluicing 3× 106 m3 of sediment that obliterated a
nearly completed HPP, along with nine years of

Figure 1.Distribution of 2231Himalayan glacial lakes and studied hydropower projects. (a)Overviewmap of the study area. Insets
(b), (c) showGLOF tracks fromglacial lakes in the Indian states ofUttarakhand (b), and Sikkim (c). Color scale ofGLOF tracks refers
tomedian estimate ofmodeled peak discharge (m3 s–1) averaged over 2 km channel segments.Where rivers accommodatemultiple
GLOF tracks, colors refer to the trackwith the highest peak discharge.

Table 1.Number of hydropower projects in theHimalayas applying for the CDM.Numbers in
brackets refer to the expected power (MW).We set the breakpoint between large and small pro-
jects at 10 MW.Data is based onCDMpipeline data from1December, 2015 (www.
cdmpipeline.org/).

At validation Registered

Country Large Small Large Small Total

Bhutan 2 (1740) 2 (1314) 4 (3054)
Chinaa 2 (38) 3 (19) 230 (10 853) 70 (548) 305 (11 457)
Indiab 28 (8376) 17 (85) 36 (4800) 48 (260) 129 (13 520)
Nepal 1 (600) 1 (600)
Pakistanc 1 (640) 1 (84) 2 (724)
Total 34 (11 393) 20 (103) 269 (17 051) 118 (808) 441 (29 355)

a Yunnan province only.
b Jammu andKashmir, Himachal Pradesh, Uttarakhand, Sikkim andArunachal Pradesh only.
c AzadKashmir only.
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negotiations, planning, and construction (Ives 1986).
Torrential rains rapidly raised the water level of the
moraine-dammed Chorabari Lake, Uttarakhand,
India, in June 2013. The dam breached and released
400 000 m3 of water into the already flooded Manda-
kini River, inundating the pilgrimage city of Kedar-
nath (Allen et al 2015), and severely damaging at least
twoHPP sites downstream (Sandrp 2013).

The recognition that GLOFs can substantially
exceed design floods of HPP at the risk of damage or
complete inoperability (Richardson and Rey-
nolds 2000) hinges on a handful of case studies, but the
regional picture of GLOF exposure remains ill-
defined.Most previous efforts to identify future GLOF
sources from lake inventories disregard downstream
impacts (Strozzi et al 2012, Fujita et al 2013). Hydro-
dynamic modeling of such impacts requires detailed
digital elevationmodels (DEMs), and substantial com-
puting power, so that simulations of potential out-
bursts are available for only a handful of lakes (Worni
et al 2013). We fill this research gap by combining a
new glacial lake inventory (figure 1) with both a dam-
breach (Walder and O’Connor 1997) and a flood-pro-
pagation model (Ponce et al 2003) to estimate poten-
tial flood magnitudes for a sample of operating,
planned, and currently constructed HPP in the Hima-
layas (figure 2(a)).

Data on the geometry of glacial lakes and the mor-
aine dams are hard to come by, thus making regional
predictions of peak discharges from GLOFs difficult.
The aim of our study is to invert this problem and use
the spread of simulated peak discharges at eachHPP as
a measure of uncertainty of GLOF exposure. We
quantify this uncertainty by exploring the parameter
space of the dam-breach model with a Monte Carlo
simulation (figures S1–4). We use the resulting dis-
tributions of peak discharge and volume for each lake
as the initial conditions for our flood-propagation

model, and explore how peak discharge attenuates
downstream, and varies at eachHPP site.

Materials andmethods

Wemapped the areas of 2359 moraine-dammed lakes
across the Himalayas from an unsupervised classifica-
tion of high-resolution satellite images acquired
between 2004 and 2015, and hosted by Google Earth
and ESRI base maps (figure 1(a)). Which lakes are
susceptible to draining catastrophically remains
debated, and the same goes for reliably identifying
moraine dams prone to imminent failure (Huggel
et al 2004, McKillop and Clague 2007, Wang
et al 2012). This prevents us from specifying site-
specific probabilities of dam break and lake outburst.
To reduce the degrees of freedom in our model, we
naively assume that all dams are equally susceptible to
failure, though being well aware that previous work
identified ∼2% of all Himalayan glacial lakes as
potentially hazardous (Ives et al 2010). The recent
destructive GLOF from the small and inconspicuous
Lake Chorabari upstream of the town of Kedarnath
(Allen et al 2015), however, clearly underscores that
regional assessments of outburst probability need
improving.

We used themapped lake areas as input to a nested
forward probabilistic model simulating values of out-
burst volume, dam-breach depth, and breach rate (see
supplementary information). These parameters enter
a physically based dam-breach model that predicts
peak discharge at the dam (Q0) after failure by over-
topping or piping (Walder and O’Connor 1997).
Determining outflow volume, breach depth, and
breach rate usually requires detailed field surveys to
constrain the lake bathymetry and dam properties;
clearly this is impossible given the setting and number
of lakes in our study. Instead, we explicitly quantify
these uncertainties by sampling from probability

Figure 2.Distribution ofHimalayan hydropower projects, glaciers, and glacial lakes. (a)Distribution ofHPP sampled in this study
along a small circlefitted to the axis of theHimalayan arc (inset (b)). (c)Percentage of glaciated area above 1900 m asl, and number of
glacial lakes.
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distributions that we derived from published data
(Huggel et al 2002, O’Connor and Beebee 2009,
Sakai 2012) using aMonte-Carlo simulation (Westoby
et al 2014b, 2015) (see supplementary information).
Our probabilistic model (figures S1–3, table S1) com-
putes for each lake 100 000 dam-breach simulations
with differing values of corresponding peak discharge
and outburst volume (Walder and O’Connor 1997).
We obtained independent support for about 30% of
our outburst volumes by cross-checking our simula-
tions with data by Fujita et al (2013), who estimated
potential flood volumes (PFV) of Himalayan glacial
lakes by taking the geometry of moraine dams into
account (see supplementary information). We repe-
ated the Monte-Carlo simulations with breach depth
and breach rate as free parameters, while keeping the
outflow volume equal to PFV (figures S7–8).

We refined a semi-analytical flood-wave propaga-
tionmodel (Ponce et al 2003) that analytically approx-
imates the kinematic wave equation for simulating
downstream wave attenuation, and estimates local
peak dischargeQpmainly as a function of downstream
distance, channel gradient, hydrograph volume, and
flood-wave length. We calibrated this model using
channel roughness (Manning’s n) with observed and
modeled GLOFs in the Mt Everest region (see supple-
mentary information). We modeled the steepest-des-
cent paths derived from a hydrologically corrected
90 m DEM using TopoToolbox 2 (Schwanghart and
Scherler 2014), and tracked how Qp attenuates down-
stream while capturing the propagating uncertainties
in the dam-breachmodel.

We intersected the modeled GLOF tracks
(figures 1(b) and (c)) with the locations of 95 opera-
tive, and 162 currently constructed or planned HPP
from published coordinates andmaps (Erlewein 2013,
Sandrp 2013), and cross-checks of high-resolution
satellite imagery. Most of the sampled HPP are in the
Indian Himalayan states of Himachal Pradesh, Uttar-
akhand, and Sikkim, and some in Nepal and Bhutan
(figures 1 and 2(a)). We collected data on spillway
design floods (the floodmagnitude that a structure can
safely pass) and meteorological flood-return periods
for 104 HPP from ‘grey literature’ such as feasibility
and project reports, environmental impact assess-
ments, and HPP company websites (see supplemen-
tary information).

Results and interpretation

Our inventory of 2359 Himalayan glacial lakes reveals
that lakes cover areas from a few hectares to up to
5.6 km2, and store an estimated 11.0 (+0.7/−0.6) km

3

(95% bootstrap confidence interval) of water between
3000 and 6000 m a.s.l. The spatial density of lakes
varies regionally; lakes cluster in eastern Nepal and
Bhutan, but are rare in the Karakorum despite
abundant glaciers (figures 2(b) and (c)). This pattern is

consistent with decadal glacier mass-balance changes
in the Himalayas (Kääb et al 2012); lakes are prolific in
the Nepal and Bhutan Himalayas, where contempor-
ary glacial melting rates are highest (Gardelle
et al 2011).

Estimating regional GLOF exposure
We find that 177 HPP are located along potential
GLOF tracks; the remainder does not have glacial lakes
in their headwaters. Half of all operating HPP are
<140 km below one or several lakes, whereas planned
or currently constructed HPP are much closer
(<90 km) to fewer lakes on average (figure 3). This
pattern documents how hydropower development
pushes into higher elevations, closer to potential
GLOF sources. Estimated peak discharges at potential
breach sites vary by two orders of magnitude for a
given lake area (figure S4), and mainly reflect uncer-
tainties about lake bathymetry, breach depth, and
breach rate (figures 4(a), S5). For smaller lake areas,
lake depth and lake volume produce most of the
spread in Q0; for larger lake areas, breach depth and
rate contribute most of this uncertainty (figure S5).
GLOF waves attenuate rapidly downstream, whereas
meteorological flood peaks grow with increasing
drainage area (Cenderelli and Wohl 2001, Koike and
Takenaka 2012) (figure 4(b)). Thus we define ‘impact
reaches’ dc, along which modeled GLOF peak dis-
charge exceeds the estimated 100 year meteorological
flood (figure 4(c)). Such impact reaches occupy the
upper ∼20 (+35/−13) km (90% bootstrap confidence
interval) below half of all lakes mapped (figure 4(c)).
Only the farthest-reaching GLOFs may surpass the
estimated 100 year floods for up to 85 (+45/−65) km
downstream. Particularly Sikkim stands out as a region
combining abundant glacial lakes, long potential
GLOF tracks, and pronounced hydropower develop-
ment (figure 4(d)). Several regions in Eastern Nepal
and Bhutan also host lakes that could give rise to far-
reachingGLOFs.

Published design flood estimates for HPP, in con-
trast, derive from either unit-hydrograph or extreme-
value statistics of gauging records of nearby hydro-
logical stations. Most feasibility reports use empirical
relationships between peak discharge and drainage
area for a given return period, or simply extrapolate
data of HPP on the same river. Our simulated GLOF
peak discharges surpass the design floods of 56 HPP
(90% bootstrap confidence interval; figure 5), and
show potential limits of relying solely on meteor-
ologicalflood peaks for establishing design floods.

Twice the uncertainty closer to glacial lakes
The distance from glacial lakes is another decisive
factor in HPP exposure, and modulates the spread in
simulated GLOF peak discharges at a given site. This
spread becomes narrower downstream irrespective of
the initial value at the breached dam (Ponce et al 2003).
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For HPP sufficiently far away from glacial lakes, the
uncertainty regarding Qp thus decreases. To identify
the river reaches with the highest uncertainties, we
determined the distance at which the 90% bootstrap
confidence interval of our modeled Qp narrows to

<5% of that at the dam site. In more than half of all
cases this distance is 80 km (+100/−60) km
(figure 6(a)). Steep headwater channels stretching a
few tens of kilometers below glacial lakes rarely
dampen peak discharges (Ponce et al 2003), and are

Figure 3.Distributions of the quantity of lakes upstreamof operating (a) and planned/currently constructed (b)Himalayan
hydropower projects.

Figure 4.Distribution ofGLOF impact reaches. GLOF impact reach dc refers to those channel segments where simulatedGLOFpeak
discharges exceed localmeteorological 1-in-a-100 year flood peaks below a given glacial lake. Uncertainties about dc derive from
distributions of simulated peak discharge at the breach sites (a), andflood-attenuationmodeling (b). (a)Exemplary distribution of
peak dischargeQ0 simulated at the breach site of a sample lake; percentiles are used as input to theflood-propagationmodel. (b)
Sketch of differing downstream trends inGLOF andmeteorological flood peaks. (c) Simulated distribution of dc.More than half of all
potential GLOFs exceed 100-yearmeteorological floods at<20 kmdownstream from the lakes; only 1%of the lakes could
theoretically releaseGLOFswith impact reaches of 85 km (+45/–65 km; 90%bootstrap confidence interval). (d)Distribution ofGLOF
impact reaches along theHimalayan arc (seefigure 2(b)).
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thus prone tomore variable GLOF peaks.We compute
that HPP planned or currently constructed in head-
waters may have to deal with an uncertainty about Qp

that is more than twice than that in downstream
reacheswith already operativeHPP (figure 6(b)).

Discussion

Limits to assessing regional GLOF exposure
We present a new and robust method for locating the
minimum GLOF exposure of hydropower sites in the
Himalayas. We refrain from determining which of the
thousands of glacial lakes will drain catastrophically,
because the physical setting of a lake rarely reveals
unmistakable clues about GLOF probabilities (Wang
et al 2012). The stability of moraine dams is controlled
by glacier thinning and retreat, meltwater production,
freeboard, and the recurrence of outburst triggers such
as earthquakes, avalanches or landslides into the lake,
glacier calving, or heavy rain (Watanabe et al 2009,
Benn et al 2012). Whether any of these factors reliably
indicates whether a lake is hazardous or not, remains
largely contentious (Fujita et al 2009, Watanabe
et al 2009).

Therefore, we partly invert this problem by quan-
tifying where in the drainage network the predicted
GLOF peak discharges vary the most, and where the
uncertainty about GLOF exposure is highest. Our
simulations emphasize howQ0 varies up to two orders
of magnitudes at a given lake without detailed infor-
mation on lake volume, depth, and dam properties.
Our sensitivity analysis reveals the main sources of
these uncertainties, and that, for larger lakes

(>0.1 km2), data on possible breach rates and depths
are more important for improving estimates of Q0. In
this context, estimating lake volumes from remote
sensing data is still compromised by changing ice
cover and water colors (Huggel et al 2002), while
increasingly more detailed digital topographic data
such as WorldDEM (Riegler et al 2015) allow captur-
ing more accurately the geometry of moraine dams.
Our simulations can hence be easily be updated, once
more refined information about lake-outburst prob-
abilities will become available. In any case, we stress
that our regional analysis can augment, though in no
case replace, detailed at-a-station estimates of GLOF
impacts. Some HPPs have tens to up to >100 glacial
lakes in their headwaters (figure 3), such that investi-
gating each of these in the field is unrealistic. Even
where lakes are selected for detailed fieldwork, site-
specific estimates of Qp are costly and compromised
by scant data on past GLOFs, and predictions about
future glacier dynamics and climate change (Huggel
et al 2004,McKillop andClague 2007).

Our hydrodynamic flood-wave propagation
model attempts to go beyond empirical envelope
curves for outburst floods (Bergman et al 2014) (figure
S6) by including first-order controls such as outflow
volume, channel-bed gradient, and width, while
avoiding the computational burden of 2D or 3Dmod-
els (Carling et al 2010,Westoby et al 2014a). Our regio-
nal focus necessitates ignoring or simplifying local
effects such as hydraulic ponding or the obstruction of
channels by debris or flank failures (Huggel et al 2004).
More complexmodels account for such processes, but
are highly sensitive to poorly constrained roughness
parameters (Bajracharya et al 2007a), and demand

Figure 5.Reported design floods versus simulatedGLOFpeak discharge at selectedHimalayan hydropower sites. Bars show the 90%
range of simulated peak discharge from all potential GLOF tracks at a givenHPP. Bars extending above the 1:1 line identifyHPPwith
spillway designfloods lower than the simulated range ofGLOF peak discharge.
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detailed channel geometric data (Pitman et al 2013)
that are rare for the Himalayas. Sediment concentra-
tion further alters the physical impact onHPP through
bed-load transport or debris flows (Osti and Ega-
shira 2009), and will need to see integration in future
models. Detailed surveys of river bed changes by
GLOFs show that erosion and reworking of coarse
debris by GLOFs can be most pronounced 10–20 km
downstream of the breach site (Cenderelli and
Wohl 2001). However, large quantities of material can
be additionally mobilized and transported further
downstream by flow bulking (Breien et al 2008), the
erosion of terraces, and undercutting and failure of
valley slopes and river banks (Mool 1994), thus leading
to pronounced sediment concentrations further
downstream. Moreover, channel adjustment to out-
burst flows can last years to decades (Morche and
Schmidt 2012) and compromise downstream located
HPPs in the long run.

Challenges forHimalayan hydropower
HPP involve large investments, design lifetimes of∼80
years (IEA/NEA 2010) and long-term amortization.
Planners of HPP have become increasingly aware of
climate-change scenarios (Kääb et al 2012), including
GLOF hazards (Molden 2015), which are likely to
change as glaciers retreat and new meltwater lakes
form (Bajracharya et al 2007b) below ice and rock
slopes potentially weakened by degrading permafrost.
Our results show that, even without these and other
potential impacts of climate change, simulated GLOF
peaks cover a broad range already, especially close to
their sources. This variability will add to that tied to
climate change, underlining the need for reliably (re-)
assessing design floods in ungauged Himalayan catch-
ments. The common practice of calculating extreme

flood magnitudes from a portfolio of unit-
hydrographmethods, empirical equations, or regiona-
lized flood frequency largely overlooks GLOFs as a
flood mechanism, and calls for regular updates of
design-flood estimates. Large spillways and diversion
structures are costly; yet inadequate design and
subsequent overflows by GLOFsmay incur substantial
human and material losses (Yenigun and Erkek 2007).
Further scrutinizing GLOF hazards and economic
viability of HPP could be the way forward to warrant-
ing environmental security and manage risks
effectively.

Those Himalayan rivers with the highest varia-
bility in predicted GLOF discharges may well include
the ones to experience the largest growth rates in
hydropower in coming years. Strategies for climate
change mitigation and adaptation at the subnational
level are currently prepared by Indian Himalayan
states (i.e. State Action Plans on Climate Change), and
identify GLOFs as a major climate change-related
threat to hydropower development (Government of
Uttarakhand 2014). At the same time, however, har-
nessing hydropower to higher elevations is clearly the
favored effort of meeting increasing power demand
and advancing low-carbon economies. Disregarding
the current upstream increase of uncertainties about
GLOF discharges for HPP to be located in headwaters
may undermine some of the coordination between cli-
mate-change mitigation, adaption, and energy plans.
Themore than doubled uncertainty resulting from the
upstream push of Himalayan hydropower (figure 6) is
a minimum consideration. Other uncertainties will
add, such as those related to Himalayan climate
change and glacier dynamics (Kääb et al 2012), to the
task of making hydropower infrastructure more adap-
table and sustainable.

Figure 6.Downstream trend of uncertainties inGLOF simulations. (a)Uncertainty about local peak dischargeQp expressed as the
90% range of simulated values normalized to peak dischargeQ0 at the breach site. This uncertainty decreases downstream at different
rates. For 90%of all lakes, the range of normalizedQp reduces by 2% to 90%along the first 20 kmdownstreamof the lakes; such
uncertainties decay to 〈5%〉 80 kmdownstream. (b)Distribution of distances ofHPP sites from glacial lakes. Currently planned or
constructedHPP projects are in river sectionswith higher uncertainty (a) as compared to operational HPP.

7

Environ. Res. Lett. 11 (2016) 074005



Conclusions

Drawing mainly on geometric data of 2359 glacial
lakes in the Himalayas, we estimated the distribution
of GLOF peak discharges and their downstream
attenuation in a probabilistic framework. The many
unknowns concerning these glacial lakes, and the
stability of their dams in particular, has left researchers
with few hard clues as to which lakes are likely to fail
catastrophically next. Motivated by this knowledge
gap, we use the spread of our modeled peak discharges
as a bulk metric of uncertainty of regional GLOF
exposure rather than a collection of local flood peaks.
A sample of 259 HPP indicates a distinct push of
development into headwaters where our GLOF simu-
lations return a bandwidth of predictions more than
twice as broad as for existing HPP sites further down-
stream, irrespective of any additional impacts of
climate change. Thismove into higher uncertainty can
be countered by obtaining more detailed data on lake
area, depth, and volume for smaller (<0.1 km2) lakes,
and data on potential breach rate and depth for larger
lakes. Even at the present level of uncertainty regarding
GLOF exposure, our method offers some insights that
may aid selecting locations of futureHPP.
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