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Abstract
The duration of specific periods within a plant’s life cycle are critical for plant growth and
performance. In theHighArctic, the start ofmany of these phenological periods is determined by
snowmelt date, whichmay change in a changing climate. It has been suggested that the end of these
periods during late-season are triggered by external cues, such as day length, light quality or
temperature, leading to the hypothesis that earlier or later snowmelt dates will lengthen or shorten the
duration of these periods, respectively, and thereby affect plant performance.We testedwhether
snowmelt date controls phenology and phenological period duration inHighArctic Svalbard using a
melt timing gradient fromnatural and experimentally altered snowdepths.We investigated the
response of early- and late-season phenophases fromboth vegetative and reproductive phenological
periods of eight common species.We found that all phenophases follow snowmelt patterns,
irrespective of timing of occurrence, vegetative or reproductive nature. Three of four phenological
period durations based on these phenophases were fixed formost species, defining the studied species
as periodic. Periodicity can thus be considered an evolutionary trait leading to disadvantages
comparedwith aperiodic species andwe conclude that themesic and heath vegetation types in
Svalbard are at risk of being outcompeted by invading, aperiodic species frommilder biomes.

Introduction

Phenological timing of key life-cycle events (pheno-
phases) in relation to climatic constraints is crucial for
individual plant growth and performance. Recent
climate change has led to considerable temporal shifts
of both the start and end of the growing-season and
has been accompanied by phenological responses
across tundra and other ecosystems (Parmesan and
Yohe 2003, Menzel et al 2006, Oberbauer et al 2013).
Climate change is especially pronounced in high-
latitude areas (IPCC 2013), and its effects on phenol-
ogy may have severe consequences for Arctic tundra

ecosystems, because at the limits of terrestrial plant
life, small changes in growing-season length constitute
a large proportion of the extremely short season. Here,
snowmelt determines growing-season start (Wipf and
Rixen 2010, Cooper et al 2011), and observed shifts
towards both earlier (Bulygina et al 2009, Brown
et al 2010, Wang et al 2015, Boike et al 2016) and later
snowmelt dates (Bhatt et al 2013, Bieniek et al 2015,
Bjorkman et al 2015) represent key challenges for
Arctic plant communities (Cooper 2014). In this
study, we investigate the influence of snowmelt date
on the phenology of eight common high-Arctic plant
species.
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Previous studies on the effects of snowmelt date
have paid most attention to the timing of phenophase
occurrence, often with a focus on early-season events
(Arft et al 1999, Wipf 2010, Wipf and Rixen 2010,
Bjorkman et al 2015, Livensperger et al 2016), while
studies on durations of phenological periods (here-
after called ‘phenoperiods’) are rare and mainly focus
on plant growth (Rumpf et al 2014, Livensperger
et al 2016). However, the duration of specific pheno-
periods are of particular importance for high-Arctic
plant performance. For instance, the duration of the
active growing period from green-up to senescence
can determine the amount of flowers produced during
the following season (Inouye et al 2002, Saavedra
et al 2003, Høye et al 2007, Semenchuk et al 2013), and
the seed maturation period from flower senescence to
seed dispersal can determine propagule viability
(Cooper et al 2011,Mallik et al 2011). In general, early-
season phenophases, such as green-up or flower emer-
gence, have been shown to closely follow snowmelt
dates (Arft et al 1999,Wipf 2010, Wipf and
Rixen 2010, Livensperger et al 2016), while late-season
phases seem to be triggered by environmental thresh-
olds of factors such as day length, light quality, temp-
erature, and soil moisture (McGraw et al 1983, Arft
et al 1999, Marchand et al 2004, Tsegay et al 2005, Fra-
cheboud et al 2009). In Arctic ecosystems this means
that the duration of many phenoperiods may be con-
strained by the timing of snowmelt, and shifts towards
earlier or later snowmelt could elongate or shorten
some of them.

To date, many plant phenology studies in the Arc-
tic have concentrated on a few or single species and
have often either assumed or found that species shar-
ing common traits, such as growth form or relative
time of flower emergence, react similarly to snowmelt
date (Starr et al 2000, Inouye et al 2002, Saavedra
et al 2003, Høye et al 2007, Wipf 2010, Bjorkman
et al 2015, Rosa et al 2015). However, this assumption
is often based on limited data where, for example,
growth forms are often represented by only two spe-
cies. Further, meta-analyses have shown that this con-
nection does not necessarily hold when taking a
greater number of species into account (Menzel
et al 2006, Oberbauer et al 2013, but see Wipf and
Rixen 2010). This indicates that the phenology
response to snowmelt date may be species-specific

depending on the phenophase and species’ niche
within a given ecosystem.

Here, we test how the duration of two vegetative
and two reproductive phenoperiods of eight common
plant species respond to a variety of snow regimes by
recording six early and late-season phenophases in a
long-term snow fence experiment in High Arctic Sval-
bard. We present the most complete multi-year and
multi-species whole growing-season cycle phenologi-
cal data we are aware of, and test the following
hypotheses:

(1) Phenoperiod durations are shorter in late-melting
than in early-melting snow regimes, because:

a. Late-melting snow regimes delay the onset of
early-season phenophases, such as green-up
andflower emergence, and

b. Late-season phenophases, such as senescence
and seed dispersal, occur simultaneously
independent of snow regime.

(4)A shortened seed maturation period will lead to
decreased seed viability.

(5) Species’ responses will be species-specific, i.e.
response patterns cannot be assigned to traits or
growth forms.

(6) Inter-annual differences in snowmelt timing elicit
similar responses to our snow regimes (early
melting years are equivalent to early melting snow
regimes and vice versa).

Methods

Study site and experimental setup
Detailed site and experimental design descriptions can
be found in Cooper et al (2011) and Morgner et al
(2010). A short summary is given below.

To study the effects of snow regime on plant phe-
nology and seed viability, we used a snow depth
manipulation experiment with snow fences in a mesic
meadow and dry heath low-land tundra in Adventda-
len on the island of Spitsbergen, Svalbard. Situated in
the maritime High Arctic, the average ambient grow-
ing-season lasts from early June tomid-September.

Table 1.Average snowmelt timing inmean day of year across all snow regimes and years.Where
missing, datawere not collected for this study.

Year

Snow regime 2008 2009 2010 2011 2012 2015 Average

Shallow 132 149 150 144

Ambient 159 154 142 155 158 152 153

Medium 162 163 169 156 163

Deep 175 170 167 166 172 165 169

Average 167 162 151 158 162 158
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For this study, we used two natural and two
manipulated snow regimes, together forming a snow
depth and corresponding snowmelt timing gradient
(see table 1) from Shallow (slightly elevated landscape
features with snow depth of about 10 cm, melts out on
average 24 May) through Ambient (most common
snow depth over the study site, about 30 cm deep,
melts out on average 2 June) and Medium (manipu-
lated snow depth with snow fences, about 1 m deep,
melts out on average 12 June) to Deep (snow fences,
about 1.5 m deep, melts out on average 19 June). The
increased snow depth in Medium and Deep was
manipulated with 1.5 m high and 6 m long fences
which collect snow drifts on their lee side.Deep is situ-
ated in the deepest point of the snow drift, whileMed-
ium is situated a few meters further away from the
fences. Inter-annual snowmelt date variability is con-
siderable, see Semenchuk et al (2013) formore details.

Four blocks were selected within 2 km2 to repre-
sent the variation in soil moisture in the landscape.
Each block contains three plots within a few 100
meters in a designwhere all four snow regimes are pre-
sent in each plot. Sub-plots used for phenology obser-
vations (75 cm×75 cm) consisted of Ambient and
Deep plots (n=6 per plot and snow regime),Medium
plots (n=3), and Shallow plots (n=2), summing up
to a total of 181 sub-plots.

Data
Phenology data used for this article were collected
from 2007 to 2012 and in 2015 in Ambient and Deep,
while Shallow and Medium were observed from 2010
to 2012 only. Additionally,Medium was also observed
in 2015.

Phenology in each plot was surveyed every 7 days
(once a week) for the 8 most common species of the
study site representing important circum-Arctic spe-
cies (Alopecurus magellanicus, Bistorta vivipara, Cas-
siope tetragona, Dryas octopetala, Luzula arcuata,
Pedicularis hirsuta, Salix polaris, Stellaria crassipes),
except in 2015 when it was observed twice a week. A
description of the 6 recorded phenophases can be
found in table 2.

To answer our hypothesis on phenoperiod dura-
tion, two phenophases were always summarized to
one period defined as the duration from the start to the
end of two consecutive phases (in number of days),
resulting in the four periods Startup (from snowmelt
to green-up), Active (green-up to senescence), Flower-
ing (flower emergence to flower senescence) and See-
dripening (flower senescence to seed dispersal)
(table 1).

To connect phenophase occurrence with temper-
ature, thawing degree day (TDD) thresholds to reach
each phenophase were calculated from air temper-
ature data from Longyearbyen airport, about 12 km
from the study site in the same valley (Norwegian
meteorological institute, www.eklima.no). Thawing

degree day was defined as the sum of average temper-
ature of each day from snowmelt until occurrence of a
phenophase and is a good measure to characterize a
period’s temperature, because it incorporates the daily
temperaturefluctuations.

To test viability of propagules, seeds and bulbils
were collected upon ripeness, i.e. as soon as they
reached the seed dispersal phase, in 2008–2011 in close
proximity to the phenology sub-plots. 150 propagules
of all but two species (Stellaria crassipes and Pedicularis
hirsuta which were not abundant enough to harvest
enough seeds) were germinated in three batches with
50 seeds each on moist filter paper under a 24 h light
regime at 18 °C for 12 weeks. For more details see
Cooper et al (2011).

Statistical analyses
We used linear mixed-effects models (LMEs) for all
phenology related data (i.e. day of year of occurrence,
duration of periods, and TDD demands) and general-
ized LMEs with a binomial link for the germination
data (i.e. proportions of germinated propagules), both
from the lme4 package (Bates et al 2015) in R (R Core
Team 2016). All models were fitted with random
effects reflecting the spatial arrangement of sub-plots
nested in plots nested in blocks.

To tackle the complexity of our data, we divided
the statistical analyses into three separate parts where
basically the combination of fixed and random effects
in the models vary, with response variable being either
phenophase timing (start and end of each phenoper-
iod), phenoperiod duration or propagule viability.
The combination of fixed effects were (a) ‘snow
regime’ alone, (b) ‘species’ by ‘snow regime’ interac-
tion, and (c) ‘year’ by ‘snow regime’ interaction. In all
cases, the omitted fixed effects terms were included in
the random effects. To simplify the dataset, the ‘spe-
cies’ by ‘snow regime’ interactionwas analyzed on data
from Ambient and Deep only. The ‘year’ by ‘snow

Table 2.Overview of phenophases and phenological periods (phe-
noperiods) used in this study. Phenoperiods are defined as periods
between twodistinct phenophases.

Periods Phenophase

Snowmelt Start of exposure to direct

daylight

Startup

Green-up Start of photosynthetic

period

Active

Senescence End of photosynthetic period

Flower

emergence

First flower visible

Flowering

Flower

senescence

First flower senesces

Seed-dispersal

Seed dispersal Seeds disperse
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regime’ interaction was repeated once with data from
Ambient and Deep only, and once with all four snow
regimes including years 2010–2012 only.

After fitting, the distribution of each model’s resi-
duals in each model parameter was observed visually
and no deviation from normality was detected. None
of the generalized LMEs were over-dispersed (using
RVAideMemoire package (Hervé 2016)).

95% Confidence intervals (CIs) of each models’
fixed effects factors and p-values for pairwise compar-
isons of all contrast combinations adjusted with the
Tukey method were calculated with the multcomp
(Hothorn et al 2008) and lsmeans (Lenth 2016) packa-
ges and presented in graphs as letters denoting sig-
nificant differences (p �0.05). For a better overview
of the phenology models with the ‘species’ by ‘snow
regime’ interaction in the fixed effects, effect sizes and
95%CIs of each contrast were calculated and each spe-
cies’ snow regime contrast presented in figures, to be
interpreted as the difference between Ambient and
Deep snow regimes, and a lack of overlap with zero
considered as statistically significant.

Results

Overall snow regime effects
Across all species and years, both the start and end of
each phenoperiod were affected by snow regime, with
deeper snow regimes leading to significantly later
occurrences of all phenophases (figures 1 and 2).
Phenophase occurrences in Deep were delayed
between 11 and 25 days compared to Shallow regard-
less of the start or the end of any phase. Such a marked

delay is well captured by the temporal resolution of
ourfield observations of 7 days.

Period durations followed the snow regime pat-
tern closely for the Startup period only (shorter dura-
tion with deeper snow), while durations of the other
periods showed only minor effects (figure 2). The dif-
ference between Shallow andDeep duration was 5 days
in one comparison (Active period) but otherwise never
larger than 2 days, except for the Startup duration
where it was 9 days.

Thawing degree days to reach the start of each per-
iod were generally higher in deeper snow regimes,
especially for the Active period (figure 2), although the
maximum difference between Shallow and Deep was
never more than 36 TDDs. To reach the end of the
Active and Seedripening periods (i.e. late-season phe-
nophases), TDDs did not differ across snow regimes,
except for a small effect of less than 16 TDDs in Shal-
low during the Active period, and less than 33 TDDs in
Deep during the Seedripening period. Deeper snow
regimes needed 30 more TDDs to reach the end of
Flowering.

Propagule viability followed snow regime patterns,
with significantly lower viability in deeper snow
regimes. Since data of all species were averaged, the
effect, however, was small and not significant across all
snow regimes (see supportingmaterial figure S3).

Snow regime effects on individual species
The effects of theDeep compared to the Ambient snow
regime on the start and end of most phenoperiods
were in the same direction across species (earlier in
Ambient), the only exception being the end of the
Seedripening period where Stellaria and Cassiope

Figure 1.Proportions of sub-plots in each phenological period (phenoperiod) in each snow regime averaged over all species and years.
Vertical lines denote averagemelt out dates of each snow regime.
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showed no significant difference between snow
regimes. The Startup period was shortened by deeper
snow for the majority of species. The effect on Active,
Flowering and Seedripening durations, however, varied
across species, with many species not reacting to snow
regime (figure 3). Shorter durations were found in
Active for Alopecurus and Stellaria, in Flowering for
Stellaria and in Seedripening forCassiope and Luzula.

Many species did not alter their TDD demand to
reach certain phases (figure 3). Bistorta, Cassiope and
Pedicularis did not alter their TDD demands in any of
the periods’ phases and no species’ TDD demand was
altered to reach the end of the Seedripening period.
Lower TDDs were recorded for both start and end of
Active period for Salix, and for Flowering period in
Luzula and Salix. For absolute values on each species’
timing andTDDdemands, see figure S1.

Three out of six species had a significantly lower
germination proportion (and as such lower viability)
of propagules in Deep than in Ambient, even though
the effect for Bistorta was ecologically negligible given
its high germination rate of over 87% (figure 4). The
shrubs, Cassiope and Dryas, had particularly reduced
germination at deep snow regimes.

Modulation of snow regime effects by years
Even though there was significant across-year varia-
tion of duration, timing and TDD demand for each
period, the overall snow regime effect remained intact
each year (figure 5). Similarly, the intra-annual varia-
tion of each variable was retained across all snow
regimes.

The seasonal pattern of phenophase occurrence
and most period durations were generally retained
throughout all phenophases and snow regimes (i.e.

some years were always earlier or later than others
throughout all phenophases), even though the pattern
became less clear with later phases (figure 5 and S2).
For instance, 2008 and 2012 were rather late years,
while 2010 and 2011 were often the earlier years. This
was often also the case with TDD demands, although
in individual years the pattern was reversed in later
phases (i.e. years which needed more TDDs in early
phases needed fewer TDDs in late phases). For
instance in 2012, TDDdemandswere among the high-
est to reachmany phenophases, while they were lowest
to reach the end of the Seedripening period.

The timing and TDD demand patterns did not fit
together very well, i.e. a late year did not necessarily
have a higher or lower TDD demand and vice versa.
For instance, while 2008 was in many cases among the
late years, it was not among the years with the highest
TDD demand to reach a particular phenophase. For
further details on this and exceptions from the general
patterns, we refer the reader tofigures 5 and S2.

Seed viability was generally lower in deeper snow
regimes, however, inter-annual variability was larger
than the snow regime effect (figure 6).

Discussion

Species-specific responses
We present the responses to snow melt timing
combined and for each species. Comparisons between
figure 2 and 3, and also between figure 4 and S3 clearly
show improved understanding comes from exploring
the individual species responses, rather than only
averaging of the response of all eight species. A later
snowmelt resulted in shorter period durations for two

Figure 2.Estimates and 95% confidence intervals (CI) of duration, start and end of each phenological period (phenoperiod) in each
snow regime averaged over all species and years in day of year (left) and thawing degree days (right) from linearmixed-effectsmodels
(seemethods section for details). Letters denote statistically significant differences across each set of duration, start or end, with the
same lettermeaning that the group contrasts are not significant (Tukey contrasts, p-value threshold 0.05). Please note that duration,
start and endweremodeled independently for each period.
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Figure 3.Effect sizes of contrasts ofDeep in relation toAmbient snow regime and 95%confidence intervals (CI) of duration, start and
end of each phenological period (phenoperiod) for each species averaged over all years (Species*Snow regime interaction) in days (left)
and thawing degree days (right) from linearmixed-effectsmodels (seemethods section for details). Positive values indicate longer
duration or later occurrence or higher TDD thresholds in theDeep snow regime. If CIs overlap zero (dotted line), the effect size is
considered statistically non-significant. Effect sizes were estimated for each Species by Snow regime combination andCIs adjusted for
multiple hypothesis testing for a total of 120 contrasts. For overview, we here only present thewithin-species contrasts. Please note
that duration, start and endweremodeled independently for each period. Also note that the start of the Startup period is basically
representing the contrast of snowmelt date betweenDeep andAmbient and is, hence, the same for each species.
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species in Active (Alopecurus and Stellaria), one in
Flowering (Stellaria) and one in Seedripening (Luzula),
but none throughout all periods. Likewise only half of
the study species (Cassiope,Dryas andBistorta) showed
reduced propagule germinationwith later snowmelt.

Periodicity
It has been shown at other high-latitude sites that the
timing of early-season phenophases is triggered by
snow-melt date (Bjorkman et al 2015, Livensperger
et al 2016), and this study confirms these findings.
However, we also show that late-season phases occur
after a given amount of time after snow melt,
irrespective of time of year. Thus, the species at our
study site are so-called periodic, a term rarely used in
the literature (Sørensen and Gleerup 1941, Starr
et al 2000, Wookey et al 2009). Periodicity is a concept
suggesting that the time to reach late-season pheno-
phases (i.e. the duration of phenoperiods) is geneti-
cally fixed rather than cued by environmental factors
such as day length, temperature or soil moisture
thresholds signaling that environmental conditions
become unfavorable (Sørensen and Gleerup 1941,
Starr et al 2000, Wookey et al 2009). We speculate that
a potential mechanism driving periodicity could be an
internal clock or program, the pace of which depends
on a variety of climate and weather factors such as
temperature (here represented by thawing degree days,
TDDs) ormoisture (Oberbauer et al 2013), rather than
an external cue (see below). This implies that in a
future warmer growing-season climate, the phenology
of periodic species might be advanced and period

durations accelerated rather than stretched, indepen-
dent of snowmelt date, because physiological pro-
cesses such as cell division and growth might proceed
faster. This is similar to the suggestion made by
Bjorkman et al (2015), who found that background
warming could offset later snowmelt date, perhaps by
accelerating the seed maturation and other periods.
Few studies directly or indirectly report periodicity of
high-latitude species (Starr et al 2000, Oberbauer
et al 2013) and here we show that all studied species
show periodicity in either vegetative and reproductive
periods or both.

Periodicity might represent internal constraints
limiting the studied species’ responses to snow
regimes and growing-season durations, where the age
of a certain organ (e.g. flowers or leaves) determines its
senescence (Oberbauer et al 1998, Starr et al 2000).
This is contradictory to other studies where the occur-
rence of late-season phenophases was found to be con-
trolled by thresholds of external environmental cues
such as day length, light quality, temperature, or soil
moisture (McGraw et al 1983, Arft et al 1999, Marc-
hand et al 2004, Tsegay et al 2005, Fracheboud
et al 2009). This indicates that periodicity might be an
adaptation to our study site’s generally short and cold
growing-seasons or to other factors connected to its
high latitude (e.g. lack of day length cues during late-
season or highly variable inter annual conditions but
comparatively predictable long-term conditions)
compared to many other study areas. This is sup-
ported by a meta-analysis showing differential pheno-
logical responses of tundra plants from colder

Figure 4.Estimates and 95% confidence intervals (CI) of propagule germination for each species averaged over all years (Species*Snow
regime interaction) from linearmixed-effectsmodels (seemethods section for details). Letters denote statistically significant
differences across snow regimes and species with the same lettermeaning that the group contrasts are not significant (Tukey contrasts,
p-value threshold 0.05).
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Figure 5.Estimates and 95% confidence intervals (CI) of duration, start and end of each phenological period in each snow regime and
year averaged over all species (Year*Snow regime interaction) in days (left) and thawing degree days (right) from linearmixed-effects
models (seeMethods section for details). Letters denote statistically significant differences across each set of duration, start or end,
with the same lettermeaning that the group contrasts are not significant (Tukey contrasts, p-value threshold 0.05). Please note that
duration, start and endweremodeled independently for each period.
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compared to warmer sites (Prevéy et al submitted),
suggesting that regional adaptations to growing-sea-
son temperatures or other long term conditions could
control phenology.

Impacts of period durations
If Active period duration was the only predictor of
plant productivity (Myneni et al 1997, Wang
et al 2004), our results suggest that two of the studied
species (Alopecurus and Stellaria) are likely to react to
deeper snow regimes with reduced growth. However,
this is not the case (see Rumpf et al 2014 for a study on
growth), which strongly suggests that other factors
such as soilmoisture and/or nutrient availability, both
of which are increased inDeep (Semenchuk et al 2015),
are likely to play amore important role in plant growth
and productivity than Active period duration alone.
The lack of dependence of plant size on growing-
season length is also in line with other studies (Jonas
et al 2008, Livensperger et al 2016), but has yet to be
incorporated inmodels based on remotely sensed data
(Park et al 2016).

The duration of the Flowering period, representing
flower longevity, was also unaffected by snow regime
for all but one species. This is similar to findings from
other studies (Wipf 2010, Rosa et al 2015, Gillespie
et al 2016), and Høye et al (2013) demonstrated that
flowering duration is more closely linked to temper-
ature, with shorter flowering-seasons occurring with
increasing temperatures. The implications of our find-
ings for the reproduction of insect pollinated plants
will depend on the response of the key insect species
and other weather variables. As with the flowers of
many species, the emergence of Arctic pollinators is
closely linked to the timing of snowmelt (Høye and

Forchhammer 2008), and a delayed emergence with
late snowmelt may maintain the synchrony between
flower and insect emergence (Gillespie et al 2016).
However, it is not clear how the flight period length of
Arctic insects will respondwhen the growing-season is
effectively shortened by late snowmelt because the
cues for the end of adult activity are not well known for
many Arctic species (Iler et al 2013). Wind-pollinated
plants may be unaffected by snowmelt delays,
although shorter seasons in a warmer climate may
limit opportunities for fertilization.

Propagule viability could not be explained by the
duration of the Seedripening period for two out of
four species (Dryas had lower viability in spite of a
periodic Seedripening period, while Luzula showed
no effect to an aperiodic, shortened Seedripening
period). Neither could the duration of the Active or
Flowering periods explain viability, so the species
appear to have different sensitivities to phenophase
duration. The effects of reduced growing-season
length on germination has only previous been stu-
died for a few High Arctic species, but Dryas, Cas-
siope and Bistorta all responded with lower viability
(Cooper et al 2011, Mallik et al 2011). In fact, average
germination (i.e. mean of of all species combined,
shown in figure 6), correlated with the TDD needed
to reach the end of the Active period (of the year stu-
died, see figure S2)with an r2= 0.5 (data not shown),
and was most likely driven by the response of the
thermally most sensitive species,Dryas and Cassiope.
Dryas experienced generally low TDDs in Active and
Flowering periods in the late melting treatment, and
is likely to be particularly sensitive to a reduced
growing season temperature. Other Arctic studies
have shown that warming increases the viability of

Figure 6.Estimates and 95% confidence intervals (CI) of propagule germination in each snow regime and year averaged over all
species (Year*Snow regime interaction) from linearmixed-effectsmodels (seemethods section for details). Left plot includes all snow
regimes (Shallow andMediumwere only observed in two years), right plot includes all years. Letters denote statistically significant
differences across year and snow regimewith the same lettermeaning that the group contrasts are not significant (Tukey contrasts, p-
value threshold 0.05).
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Arctic tundra species, especially Dryas and Bistorta
(Wookey et al 1995, Arft et al 1999, Müller et al
2011). Our other study species, Alopecurus, Luzula
and Salix seem to have well developed mechanisms
to cope with varying growing-season starts by keep-
ing seed viability constant or even high despite a late
start.

Intra-annual variability andmethodological
limitations
Our snow regime gradient shows that in a climate with
shifting snowmelt timing, an earlier or later start of
phenoperiods caused by changes in snow melt date
could lead to a corresponding earlier or later ending,
respectively. This is represented within our intra-
annual comparison, where earlier melting years show
earlier occurrences of most phenophases. However, if
TDD thresholds triggered phenophase occurrence (as
it seems to do across snow regimes), then this thresh-
old should be the same each year independent of
snowmelt date or absolute temperature. This is not the
case here, and we suggest three potential explanations
of bothmechanistic andmethodological nature.

First, the lack of coherence between year and TDD
threshold suggests that phenophase occurrence is a
combination of both temperature and season length.
If in one year the TDD demand is low even though the
timing is late, this suggests thatmore time to reach that
phenophase can offset colder periods. Conversely, if in
another year TDD demand is high while timing is
early, this suggests that development can be acceler-
ated during warmer periods. Therefore, the suggested
periodicity may not be rigid enough to lead to exact
phenoperiod durations or TDD demands each year,
given the other constraints of this study as outlined
below.

Second, other factors than those considered in this
study, such as soil moisture or nutrient status, or other
weather related parameters which may vary across
years, such as amounts of photosynthetically active
radiation (PAR), may control the timing of pheno-
phases, leading to the observed intra-annual varia-
bility of TDD thresholds. For example, if the studied
species react to soil moisture thresholds (Jonas
et al 2008), a generally drier year might lead to
advanced phenology. This is complicated by the fact
that rain events could modulate soil moisture (and
PAR by cloud formation) during different parts of the
year and affect different phenophases. In this study,
the deeper snow regimes are slightly moister
(Semenchuk et al 2015) and the potential soil moisture
threshold to trigger late-season phenophases might be
reached later in the season. Further, if soilmoisture is a
co-factor for late-season phenophase timing, then
other factors might control phenology in sites wetter
than our mesic and heath tundra (Marchand
et al 2004). Winter warming events followed by icing
can expose and freeze preformed buds and reduce

flowering (Semenchuk et al 2013). Deeper snow pro-
tects sensitive buds and plant parts from damage. This
may also affect flower formation and subsequent seed
viability. Further research on these potential mechan-
isms is recommended.

Finally, the between-year variability observed
could be a methodological artefact in the form of sys-
tematic observer error (Gottfried et al 2012, Morri-
son 2016). Each year, data has been acquired by
different field personnel (usually two to three people)
with a different field leader every other year. While a
calibration at the beginning of each field day was a cen-
tral part of data acquisition, it has been shown that
cover estimates by eye in particular can be biased and
individually different (Morrison 2016). This could
lead to a bias between years where, for example, the
team or individual teammembers of one year system-
atically over-estimate cover and hence note the occur-
rence of a phenophase (50% cover per plot) earlier
than teams of other years would have.

Snow regime effects are consistent in all years and
most species, making our conclusions on phenophase
timing and period durations robust and valid. How-
ever, our absolute phenophase timing estimates may
be late-biased because we assumed the phenophase
ocurred the day it was recorded, while in reality it
occurred at an unknown point in time between the last
observation date and the date of recording (Bjorkman
et al 2015). Since this constraint is consistently applied
throughout the study, it does not interfere with our
results on snow regime effects, but warrants caution
when interpreting phenophase occurrences and com-
paring themwith other studies.

The results derived from the methodology used in
this study complement findings from landscape scale
remote sensing studies and highlight the need for scal-
ing plot level responses to landscape scale responses
(Karlsen et al 2014, Anderson et al 2016, Boike
et al 2016). This has already been shown to have a
potential value as the onset of the growing season
based on field observations has been successfully
quantified based on NDVI threshold methods (Karl-
sen et al 2014, Anderson et al 2016). In fact, large-scale
remote sensing studies from other biomes are also
starting to report that the timing of autumn senes-
cence is affected by the timing of spring phenology
(Keenen and Richardson 2015), and our study verifies
thesefindings on plot-scale level.

Conclusions

The presence of periodicity in our study species might
render the plant community vulnerable to future
changes in snowmelt patterns. First, period durations
of periodic species might not be able to adapt to
changing growing-season durations, while those of
aperiodic species are more likely to. Second, while
changing snowmelt patterns might change phenology
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timing, its effects may be modulated by increasing
growing-season temperatures accelerating and, hence,
shortening some periods (Bjorkman et al 2015). This
may apply specifically for periodic species and give
them a further disadvantage compared to aperiodic
species. A recent study suggests that late-season
warming trends are stronger than those of early-season
(Boike et al 2016). This could lead to a proportionally
higher post-senescence respiratory loss of periodic
species compared to aperiodic ones.

We conclude that periodic species are likely to be
limited in their ability to adapt to changing snowmelt
dates and may be disadvantaged compared to some of
the invading species on Svalbard such as Rumex long-
ifolius,Ranunculus acris,Ranunculus repens, Epilobium
montanum, and the grass species Deschampsia cespi-
tosa and Poa pratensis (Roalsø et al 2012). If such spe-
cies demonstrate aperiodic characteristics, they can
fully exploit changing or variable snow regime pat-
terns (Wookey et al 2009). We suggest that besides fac-
tors such as temperature or nutrient limitations,
periodicity might be a key plant trait predicting com-
petitiveness of a species in response to climate change
in tundra ecosystems.
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