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Abstract
Cellular metabolites play a crucial role in promoting and regulating cellular activities, but it has
been difficult to monitor these cellular metabolites in living cells and in real time. Over the past
decades, iterative development and improvements of fluorescent probes have been made, resulting
in the effective monitoring of metabolites. In this review, we highlight recent progress in the use of
fluorescent probes for tracking some key metabolites, such as adenosine triphosphate, cyclic
adenosine monophosphate, cyclic guanosine 5′-monophosphate, Nicotinamide adenine
dinucleotide (NADH), reactive oxygen species, sugar, carbon monoxide, and nitric oxide for both
whole cell and subcellular imaging.

1. Introduction

Metabolites are essential components in biological
systems, and as such, play a significant role in all
biological processes [1, 2]. For example, numerous
cellular metabolites, such as adenosine triphosphate
(ATP), NAD+/NADH, amino acids, and sugars have
been found to be essential in cell physiology and
signalling pathways [3]. Meanwhile, the abnormal
fluctuation of cell metabolites, such as redox state
and nitrogen could result in inflammation and dis-
eases in living organisms [4, 5]. Therefore, analysis of
these metabolites would provide deeper insight into
both physiological and pathophysiological processes.
Metabolomics studies metabolites, the substrates and
products of metabolism that drive important cellu-
lar functions, such as energy generation and storage,
signalling, and apoptosis [5–7]. It has been applied
for assessing changes of comparing cell line mutants,
drug discovery, toxicology, natural product discov-
ery, studying global effect of genetic manipulation,
cancer, and nutrition [8–10]. Despite the importance
of metabolomics, it is much less developed than gen-
omics or proteomics because it is muchmore difficult
to detect and quantify metabolites, which vary widely
in speciation and concentration, but have only subtle
structural differences. Lack of effective metabolomic

methods, particularly for in situ and real-time detec-
tion in vivo is a major barrier to our full under-
standing of physiological and pathophysiological
processes.

A common analytical method for most cellular
metabolites ismass spectrometry, which is often com-
binedwith liquid chromatography [11, 12].While the
mass spectrometry is extremely powerful in detect-
ing numerous metabolites simultaneously, it can-
not distinguish between isomers and enantiomers,
making it difficult to identify common metabolites
such as L-amino acids versus D-amino acids and
anomers of sugars [13]. It also can be difficult for
living cell analysis of metabolites because the loca-
tion and concentration of metabolites in living cells
can change quickly in response to different signals
[14, 15]. Therefore, there is a need to develop a com-
plementary method for rapid, sensitive, and selective
detection and quantification of metabolites in living
cells and in vivo.

Fluorometric assays are such a complement-
ary approach for analysing cell metabolites, which
is based on the presence of fluorescence tags or
probes [1, 16]. In general, the major advantages
of fluorescence analysis of cell metabolites include
high sensitivity, capabilities for performing time-
based studies of concentration, experiments that are
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non-destructive to the cell, and high-throughput
detection [17]. While some metabolites can be dir-
ectly analysed in individual cells by autofluorescence
via their intrinsic fluorescent compounds, only a very
limited number of the metabolites display autofluor-
escence [18]. To overcome this limitation, fluorescent
probes which combine a molecule that can bind these
small-molecule metabolites and a fluorophore can be
introduced in cells [1, 19–22].

After introducing the fluorescent probe into cells,
a fluorescence microscope can be used to visual-
ise cellular metabolites within their sub-cellular loc-
ation using different fluorescence imaging analysis
methods to achieve deeper understanding of biolo-
gical processes [23]. Over the past decades, numer-
ous fluorescent probes have been developed and they
can be categorized into two types: whole cell and sub-
cellular imaging. In this review, we highlight recent
advances in the past 10 years in fluorescent probes
for imaging metabolites in either whole cells or sub-
cellular locations, focusing mainly on representat-
ive examples of small molecule fluorophore probes,
nanomaterial based fluorescent probes, and light-
up (aptamer/dye) fluorescent probes. In particular,
we discuss the strengths and limitations as well as
some new trends in the development with illustrative
examples.

2. Whole cell imaging

Cellular metabolite fluctuations are a common fea-
ture of many diseases and therefore a promising tar-
get for diagnostics and therapeutical interventions.
Therefore, a large number of fluorescent probes have
been developed to image the cellular metabolites and
their applications for the whole cell imaging has been
the most extensively studied and widely used in bio-
logical studies. (Examples are listed in table 1, figure 1
and table 2.)

2.1. Fluorescent probe for cellular ATP detection
ATP is one of the most important cellular metabol-
ites because it is the primary energy currency in liv-
ing organisms and plays critical roles in many biolo-
gical processes. Many efforts to develop fluorescent
probes have been made over the last several decades
to visualize ATP in living cells. These probes have
been developed using both direct and indirect detec-
tion mechanisms from a variety of physical formats,
such as small organic indicators, nanomaterials, and
fluorogenic probes

MagnesiumGreen is one of the best small organic
indicators, developed by Leyssens et al in 1996, for
indirectly detecting ATP hydrolysis [97]. Most of the
intracellular ATP are complexed with Mg2+, while
ADP has lower affinity for magnesium ions than
ATP. Therefore, hydrolysis of MgATP can lead to an
increase in free Mg2+ concentration and subsequent
increase in Magnesium Green fluorescence. Shin et al

then appliedMagnesiumGreen to indirectly visualize
ATP in hair cells [24]. The fluorescence ofMagnesium
Green could be excited with illumination in visible
range, reducing the phototoxicity. However, Mag-
nesium Green is not a ratiometric probe, showing a
simple increase in fluorescence increase upon binding
Mg2+, which makes it a challenge to use in quantitat-
ive studies. To directly image cellular ATP, quinacrine,
another small molecule probe, stains peptide-bound
ATP found in high concentrations in intracellular
granules [98]. Researchers have been using quinac-
rine to image ATP release in endothelial and epi-
thelial cells [25–27]. In addition, Pak et al developed
an imidazolium-based, ratiometric fluorescent probe
for ATP with a pyrene excimer clamp [28, 29]. This
fluorescent probe will form a pyrene-adenine-pyrene
sandwich via π–π stacking when it binds with ATP.
Thus, the probeswere applied tomonitor the decrease
of ATP levels in HeLa cells upon addition of an ATP
synthase inhibitor (oligomycin).

Aptamers are short, single stranded DNA or RNA
oligonucleotides capable of specific, high-affinity
molecular binding. Aptamers are widely used in
studying small-molecule metabolites, which can be
engineered to detect metabolite such as ATP in the
nanomolar to millimolar ranges [99, 100]. However,
cell permeability and oligonucleotide degradation by
nucleases hinder their use in cell imaging [101, 102].
To solve this problem, nanoparticles have been used
to deliver and protect aptamers from degradation by
nuclease in cells. For example, Qiang et al employed
a carboxyfluorescein (FAM)-labelled DNA aptamer,
which binds to ATP, and polydopamine nanosphere
to create a biosensor for protecting the aptamer and
quenching its fluorescence [30]. The aptamer released
when adding ATP to system. Zheng et al constructed
an aptamer nano-flare, that can directly quantify ATP
in living cells [31, 103]. The aptamer nano-flares were
composed of a gold nanoparticle core, which is func-
tionalized with a dense monolayer of aptamers. How-
ever, these fluorescence probes employed an ‘always
on’ design, which lacks target-activatable nature, will
inevitably result in a high-background and low signal-
to-noise ratio [32, 33, 104]. To overcome the prob-
lem, Zheng et al designed a fluorescence resonance
energy transfer (FRET)-based DNA nanoprism with
a split aptamer design for ATP sensing in living cells
[32]. The nanoprism showed high cellular permeabil-
ity and successfully realised ‘FRET-off ’ to ‘FRET-on’
sensing of ATP in living cells [32]. Moreover, Zhao
et al developed an upconversion nanoparticle conjug-
ated with a photocleavable linker (PC linker) modi-
fied ATP aptamer sensors, which can detect ATP in
living cells in a conversion luminescence-activatable
manner [33].One disadvantage of this aptamer-based
fluorescence probe is that the aptamers are select-
ive for ATP over other nucleotides (GTP, CTP, and
UTP), but cannot distinguish between adenine deriv-
atives (ATP, ADP, and AMP) [105].
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Table 1. Examples of fluorescent probes (FP) for ATP visualization.

Type Name Detection mechanism Reference

Small molecule FP Magnesium green The detection of hydrolysis of MgATP; [24]
Quinacrine Fluorescent dye that binds peptide-

bound ATP found in intracellular
granules;

[25–27]

Pincer-like benzene-
bridged sensor

Form pyrene-adenine-pyrene sandwich
via π–π stacking when it binds with ATP;

[28, 29]

Nanomaterial based FP P1/PDANS Fluorophore labelled ATP aptamer
release from PDANS when binds with
ATP;

[30]

Aptamer Nano-Flares Gold nanoparticle core functionalized
with a dense monolayer of ATP
aptamers;

[31]

DNA TP nanoprobes ATP binds to split ATP aptamer on the
DNA triangular prism (TP) to induce the
fluorescent change;

[32]

Apt-Act/UCNPs Upconversion nanoparticle conjugated
with PC linker modified ATP aptamer
sensor;

[33]

Genetically encoded FP ATeam ATP binding of F1F0ATP synthase causes
an increase in FRET between a CFP and a
YFP;

[34]

QUEEN ATP binding causes a change in the
excitation spectrum of a cpEGFP;

[35]

MaLion series ATP binding of F1F0ATP synthase causes
an increase fluorescence of fluorescent
protein;

[36, 37]

PercevalHR ATP binding causes a change in the
excitation spectrum of circularly per-
muted yellow fluorescent protein
(cpVenus), and measuring cellular
ATP/ADP ratio;

[20, 38, 39]

Although both small organic indicators and
aptamer-based fluorescent probes have been widely
used in imaging studies, they still face a challenge
during sample preparation because of the need to
introduce exogenous reagent by cell penetration or
cell loading. On the contrary, the genetically encoded
indicators such as fluorescent protein-based are in
part or wholly encoded imaging reagents by a specific
gene sequence. The most recently developed fluores-
cent protein-based probes are capable of undergoing
FRET. These probes typically composed of a donor
fluorescent protein and an acceptor fluorescent pro-
tein that are separated by an analyte binding domain.
When binding with the analytes, this domain under-
goes a conformational change that changes the dis-
tance between two fluorescent proteins, resulting in
a change of FRET efficiency. Tsuboi et al reported
ATP-sensitive K+ (KATP) channels fused to a cyan and
yellow fluorescent protein FRET pair (ECFP–EYFP)
for imaging ATP concentration changes in HEK-
293 cells [106]. Imamura et al generated a series of
FRET-based probes for ATP named ‘ATeam’, in which
the ε subunit of the Bacillus subtilis F1F0ATP syn-
thase acts as the ATP sensing domain [34]. Yaginuma
et al reported a ratiometric single fluorescent protein
probe called ‘QUEEN’ (quantitative evaluator of cel-
lular energy) to quantify absolute ATP concentrations

[35]. Recently, intensiometric single fluorescent pro-
tein probes developed by Aria et al and Lobas et al
enabling the simultaneous visualization of cellular
ATP dynamics [36, 37].

Since the absolute ATP, ADP, and AMP can
fluctuate, the ratio of ATP/ADP ratio can be a
more reliable indicator of cellular energy status. The
ratiometric single fluorescent protein probe ‘Perceval’
developed by Berg et al and improved version ‘Per-
ceval HR’ has been used for measuring cellular
ATP/ADP ratio [20, 38]. Zala et al also used the
Perceval to measure ATP/ADP ratio in neurons and
found out that mitochondrial trafficking is depend-
ent on mitochondrial ATP but not glycolysis [39].

2.2. Fluorescent probes for intracellular second
messengers
Cyclic adenosinemonophosphate (cAMP) is a second
messenger of many G protein-coupled receptors
(GPCRs) and regulates cAMP-dependent kinase
(PKA) and the exchange protein activated by cAMP
(Epac) to participate in cellular metabolism. The
first cAMP fluorescent probe (FICRhR) for cellular
imaging was reported by Adams et al, which was a
FRET-based probe utilizing dissociation of purified
regulatory and catalytic subunits of PKA, sensing
the cellular cAMP by microinjection [49]. Later, the
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Figure 1. Examples of FP for ATP visualization. (A) Small molecule FP; (B) nanomaterial based FP; (C) genetically encoded FP.
Reprinted with permission from [29, 30, 34]. Reprinted with permission from [29]. Copyright (2009) American Chemical
Society. Reprinted with permission from [30]. Copyright (2015) American Chemical Society. Reproduced from [34]. CC BY 4.0.

FICRhR probe was applied to investigate the link
between cAMP and diverse biological activities and
tomonitor cAMP levels in the processes of stimulated
Aplysia neurons [50, 51]. Moreover, the FICRhR
probe was also introduced into single cells within
brain slice preparations by perfusable patch pipettes
[52]. However, the requirement for invasive loading
of PKA holoenzyme in this method limits its applica-
tions. To solve this limitation, researchers developed
genetically encoded versions of FICRhR, which could
be introduced into cell by a routine transfection.
Zaccolo et al developed FICRhR-like genetically
encoded probe, which was composed of enhanced
blue fluorescent protein-labelled type 2 regulatory
subunits of PKA and GFP-labelled catalytic subunits
[53]. Subsequently, many labs have also carried out
optimization studies on this probe [54–57]. DiPil-
ato et al constructed a fluorescent probe to mon-
itor cellular cAMP dynamics and Epac activation by
sandwiching the full-length Epac1 between cyan and
yellow mutants of GFP [58]. Over the years, multiple

labs developed and improved FRET-based fluores-
cent probe for cAMP with different characteristics
regarding sensitivity, kinetics, and dynamic ranges.

As an alternative to the FRET-based methods,
single-wavelength methods were developed, which
the cAMP binding domain was fused to only one
fluorophore. Tewson et al first developed a single-
wavelength intensiometric cAMP probes cADDis
[59], thenMoore et al optimized the probe that cAD-
Dis fused with a 5HT6 receptor and mCherry to tar-
get cilia and measure the cAMP ratiometrically [60].
Recently, Kellenberger et al first developed a RNA-
based fluorescent probe for cyclic di-AMP (cdiA, is
also a second messenger in Gram-positive bacteria,
someGram-negative bacteria, and Archaea) by fusing
of Spinach2 aptamer to ligand-binding domains of
cdiA riboswitches, visualizing intracellular cdiA levels
in live Listeria monocytogenes strains [61].

The other important second messenger is cyc-
lic guanosine 5′-monophosphate (cGMP), which
participates in many physiological processes in
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Table 2. Examples of fluorescent probes (FP) for other metabolites visualization.

Type Name Target Detection mechanism Reference

Small molecule FP EOS Glutamate Glutamate binds of AMPA
causes a fluorescence increase
of small molecule dye;

[40]

PTMs H2O2 Based on the oxidation of
boronate esters;

[16, 41]

PFBS Based on C–S bond cleavage of
perfluoro-benzyl sulfonates;

[42]

NBzF Based on oxidation-induced
C–C bond cleavage of benzils;

[43]

SO3 H-APL Based on C–N bond cleavage of
anilines;

[44]

DPPEA-HC Based on oxidation of
phosphorous

[45]

ANRP CO Anchored to cell membrane
and sense the CO by a metal
palladium-catalysed reaction;

[46]

DAF NO Based on the reaction with NO
to furnish fluorescent triazole
derivatives;

[47]

Nanomaterial based FP C3N4 Nanoribbons Citrate Quenched by Cu2+ and then
recovered by the addition of
citrate;

[48]

Genetically encoded FP FICRhR cAMP Based on the dissociation of
purified regulatory and catalytic
subunits of PKA;

[49–57]

ICUE1 Form Epac1-cyan-YFP sandwich
when it binds with cAMP;

[58]

cADDis cAMP binding of the regulatory
region causes a large conforma-
tional change in EPAC 2;

[59, 60]

cdiA cdiA riboswitches fused with
Spinach2 aptamer;

[61]

cGES cGMP cGMP binding domain from
PDEs;

[62, 63]

cGi cGMP binding domains from
PKG and from PDEs;

[64]

CGY cGMP binding of PKGs induced
fluorescent change;

[65]

c-di-GMP-I c-di-GMP c-di-GMP riboswitches fused
with Spinach aptamer

[66–68]

Bc RNA c-di-GMP riboswitches fused
with two FP genes;

[69]

DNB sensor c-di-GMP binding aptamer
fused into DNB, Broccoli as the ;

[70]

Frex NADH NADH binds to Rex subunit
causes the conformational
change of cpFP;

[71]

Peredox [NAD+]/[NADH] The competition between
NADH and NAD+ for bind-
ing to Rex subunit causes the
conformational change of two
FP;

[72, 73]

Rex YFP Different binding affinity
of NAD+ and NADH to
nucleotide-binding domains
of each Rex subunit;

[74]

SoNar Binding of NAD+ or NADH
to Rex subunit both induces
changes in protein conformation
and fluorescence;

[75, 76]

(Continued.)
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Table 2. (Continued.)

Type Name Target Detection mechanism Reference

GluSnFR/FLIPE Glutamate Glutamate binds to GltI causes
the conformational change of
two FP;

[77–82]

FLIPQ-TV Glutamine Glutamate binds to GlnH causes
the conformational change of
two FP;

[82]

FLIP family Sugar Sugar binds to PBPs causes an
increase in FRET between two
FP;

[83–89]

roGFP/roGFP2 ROS ROS binds to the
surface-exposed cysteine;

[90]

CY-RL5 Redox state Binds to redox linker 5 (RL5)
causes an increase in FRET
between two FP;

[91]

COSer CO CO binds to CO sensitive
heme protein causes the
conformational change of
cpYFP;

[92]

sGC NO Combining endogenously
expressed guanylate cyclase with
a FRET-based cGMP indicator;

[93]

OGsor 2OG Binds to 2OG-binding domain
GAF causes an increase in FRET
between two FP;

[94]

CIT Citrate Binds to citrate-binding domain
CitA causes an increase in FRET
between two FP;

[95]

Lactate sensor Lactate Binds to lactate-binding domain
of bacterial transcription factor
LldR causes an increase in FRET
between two FP;

[88]

Lapronic Lactate/pyruvate Different binding affinity of lact-
ate and pyruvate to the binding
domains of transcriptional factor
LutR subunit;

[96]

mammals. cGMP can be used to regulate effectors
such as cGMP-specific phosphodiesterases (PDEs),
cGMP-dependent protein kinases (PKGs) and cyc-
lic nucleotide-activation ion channels. Therefore,
the visualization of intracellular cGMP is critical for
understanding of cGMP signalling pathway. Several
different cGMP binding domains have been used
as sensing units in genetically fluorescent probes.
For example, the binding domain of Cygnus in
cGMP energy transfer sensors (cGES) was from PDEs
[62, 63] and cGMP indicators (cGi) [64] were from
PKGs and PDEs. These binding domains were used
to separate donor fluorescent protein and acceptor
fluorescent protein. Moreover, Sato et al, reported a
fluorescent probe named CGY-del1 for cGMP that
contained PKG fused to single fluorescent protein
[65]. Honda et al optimized the selectivity for cGMP
and eliminated the constitutive kinase activity of the
binding domain to reduce the disturb from the probe
[107, 108].

Breaker’s group first reported the Cyclic di-GMP
riboswitch (named c-di-GMP-I) [66] in eubacteria
and then discovered another c-di-GMP riboswitch

termed c-di-GMP-II in the Clostridium difficile [67].
Kellenberger et al designed two different probes for
live cell imaging of c-di-GMP and cyclic AMP-GMP
by fusing the Spinach aptamer to variants of a nat-
ural GEMM-I riboswitch (c-di-GMP-I), demonstrat-
ing the ability to change specificity of the RNA-based
probes by taking advantage of rational mutations to
the ligand binding domain instead of by inserting dis-
tinct aptamers [68]. Zhou et al discovered three new
c-di-GMP riboswitches (Bc3, Bc4, and Bc5 RNA),
which were fused between the two fluorescent pro-
tein genes amcyan and turbofp [69]. Recently,Wu et al
designed a ratiometric RNA probe that comprised of
dinitroaniline-binding aptamer (DNB)-based sens-
ing domain and Broccoli domain to quantify the
intracellular c-di-GMP concentration by DNB-to-
Broccoli fluorescence ratio [70].

2.3. Fluorescent probes for intracellular NAD pools
Nicotinamide adenine dinucleotide (NAD) is a cent-
ral cofactor involved in many enzymatic reactions,
especially as a major electron carrier in redox
reactions [109–111]. NAD exists in two forms, the
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oxidized form NAD+ and the reduced form NADH
[111]. NAD+ can be reduced to NADH in the pro-
cess of glycolysis and in the tricarboxylic acid (TCA)
cycle [112]. NADH can be re-oxidized back to NAD+

in the electron transfer chain [111]. Meanwhile,
NAD can also be phosphorylated to NADP via NAD
kinases [111]. The NAD+/NADH redox couple is
served as a regulator of cellular energy metabolism of
glycolysis and mitochondria oxidative phosphoryla-
tion [113, 114]. While NADP+, together with its
reduced form NADPH, maintain redox balance and
support the biosynthesis of fatty acids and nucleic
acids [114]. Therefore, similar to ATP, the NAD pool
plays an important role in cellular energy balance,
which is determined by the ratio of NAD+/NADH
andNADP+/NADPH.Nowadays, the well-developed
fluorescent probes for cellular NAD pool imaging are
genetically encoded fluorescent probes. Zhao et al
first inserted the circularly permuted fluorescent pro-
teins (cpFPs) into NADH sensing domain (Rex) sub-
unit to sense theNADH[71]. To date, there are several
genetically encoded fluorescent probes that can detect
NAD+/NADH ratios: Peredox [72, 73], Rex YFP [74],
and SoNar [75, 76]. Peredox and Frex family probes
were based on inserting a cpYPs into the Rex dimer
between its subunits, detecting the NAD+/NADH
ratios via Rex intersubunit interactions. While Rex
YFP and SoNar were based on integrating a circularly
permuted yellow fluorescent proteins (cpYFPs) into
the loop betweennucleotide-binding domains of each
Rex subunit.

2.4. Fluorescent probes for intracellular amino
acids
Glutamate plays a critical role in amino acid meta-
bolism, participating not only signal transduction,
but also regulating nitrogen circulation together
with glutamine and 2-oxoglutarate [115–117]. The
glutamate-sensing fluorescent reporter (GluSnFR)
[77–79] and fluorescent indicator protein (FLIP)
for glutamate [80–82] were the primary genetically
encoded fluorescent probes, which fused the glutam-
ate periplasmic binding protein (PBP) GltI (also
known as ybeJ) to enhanced cyan fluorescent pro-
tein and a yellow fluorescent protein Citrine [118] or
Venus [119]. Marvin et al also reported an intensity-
based GluSnFR (iGluSnFR), fusing the binding
protein GltI to cpFPs cGFP [120, 121]. Namiki
et al developed a small molecule fluorescent probe,
which consists of the mutated glutamate receptor
GluR2 subunit of an alpha-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptor and a
small molecule fluorescent dye, termed EOS [40].
Gruenwald et al studied another pivotal amino acid,
glutamine, measuring the glutamine concentration
in living cells by an array of FLIPQ-TV sensors with
different affinities [82]. Okada et al applied bac-
terial PBPs to construct FRET-based probes, taking

advantage of PBPs’ structure to expand the dynamic
range of the probes [122].

2.5. Fluorescent probes for intracellular sugar
Sugar metabolism is involved in many types of
metabolic reactions in living organisms. The PBPs
have been used as the substrate-binding element of
protein-based fluorescent probes by linking to fluor-
escent protein. These fluorescent probes are named
as FLIP family probes (which are also FRET-based
probes) due to the hinge-bend movement of probes
leading to FRET response. Frommer et al used PBPs
to design a series FLIP probes tomonitor the intracel-
lular distribution of many sugars including glucose,
galactose, maltose, ribose, arabinose, sucrose, lactate,
and trehalose [83–89]. Since the intracellular sugar
concentrations and distribution were directly related
to carbohydrate metabolism, these FLIP probes have
been broadly applied in many areas, such as the food,
pharmaceutical, and biofuel industries. Ballerstadt
et al reported a fluorescent affinity hollow fibre probe
for transdermal glucose monitoring, which consisted
of the dyed beads (Safranin O and Pararosanilin)
and Alexa488-Con A (Alexa fluor 488 labelled Con-
canavaline A) inside a hollow fiber dialysismembrane
[123]. Then Heo et al developed a probe based on
fluorescent hydrogel fibers for long-term monitoring
of glucose in vivo [124]. Although the use of protein-
based fluorescent probes in metabolite research and
bioprocess visualization has progressed, there is still
a need to develop new probes for other critical sugar
metabolites.

2.6. Fluorescent probes for intracellular redox state
Reactive oxygen species (ROS) refers to a series of
key oxygen (O2)metabolites, including hydrogen per-
oxide (H2O2), hydroxyl radical (•OH), hypochlor-
ous acid (HClO), superoxide anion (O2

•−), sing-
let oxygen (1O2), ozone (O3), and organic perox-
ides [125–132]. The changes of intracellular ROS will
influence the redox equilibrium, resulting in mac-
romolecular damage and is implicated in various
diseases such as atherosclerosis, diabetes, neurode-
generation, cancer, and aging [126]. Numerous fluor-
escent probes have been developed to image the intra-
cellular ROS or redox states. The genetically encoded
fluorescent probes for sensing ROS or redox states
were taking advantage of existing a sensing domain
fromnaturally occurring protein structures by linking
to fluorescent proteins. For example, redox-sensitive
GFP with two surface-exposed cysteines close to the
chromophore was used to monitor the molecule’s
own redox states [90, 133, 134]; redox-sensitive
polypeptide-flanked CFP/YFP leads to FRET signal
changes response to different redox states [91]; the
environmentally sensitive fluorescent protein (Venus)
was fused with responsive domain of the transcrip-
tional regulatory protein OhrR to visualize organic
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hydroperoxides, which constantly generate cellular
stress [135]. The other types of fluorescent probe
were based on small molecules. Taking H2O2 as an
example, the majority of H2O2 probes were based
on the oxidation of boronate esters [16, 41]. Other
H2O2 sensing reactions cover C–S bond cleavage of
perfluoro-benzyl sulfonates [42], oxidation-induced
C–C bond cleavage of benzils [43], C–N bond cleav-
age of anilines [44], and direct oxidation of phos-
phorous [45], selenium [136, 137] and tellurium
[138]. Most of the small molecule-based fluorescent
probes for redox states have been extensively reviewed
[16, 139–142]. Readers wishing to further advance
this field would be advised to read recent discussion
from Tampieri and Lu in order to address which ROS
are present in solution [143, 144].

2.7. Fluorescent probes for intracellular other
significant metabolites
Carbon monoxide (CO) is generally regarded as a
toxicant or pollutant. Nevertheless, more and more
studies suggest that CO, like NO, functions as an
essential second messenger [145]. Wang et al repor-
ted a genetically encoded fluorescent probe COSer
for monitoring intracellular CO by fusing a dimeric
CO-sensitive heme protein to cpYFP [92]. Xu et al
reported a novel cell membrane-anchored fluores-
cent probe ANRP, which complexed ANR (a cell
membrane-anchored fluorophore designed by graft-
ing a positive charged ammonium group onto a long
and linear hydrophobic Nile Redmolecule.) with pal-
ladium, monitoring the release of CO from living
cells [46]. Sato et al have reported a novel cell-based
fluorescent probe to visualize picomolar levels of NO
release from living cells, made by combining endo-
genously expressed guanylate cyclase with a FRET-
based cGi [93]. In addition, the small molecule-based
fluorescent probes for NO were well-developed. The
most commonmethod involves the use of o-Diamino
aromatics under aerobic conditions, which firstly
reported by Nagano’s group [47]. In the presence
of O2, o-Diamino aromatics could react with NO
to furnish fluorescent triazole derivatives [146–148].
Other fluorescent probes are summarized in several
reviews [149, 150]. 2-Oxogluatarate (2OG) is another
metabolite that plays an important role in meta-
bolism and also serves as a signalling molecule in
various organisms. Zhang et al reported FRET-based
genetically encoded fluorescent probe for detect-
ing 2OG in real-time; results showed the probe’s
dynamic range appeared identical to the physiolo-
gical range observed in Escherichia coli [94]. Citrate is
also a criticalmetabolite in various biological systems,
such as mitochondrial energy generation, inflam-
matory response, blood coagulation, and cytosolic
biomacromolecular synthesis [48, 151]. Ewald et al
developed FRET-based genetically encoded fluores-
cent probe for citrate; they optimized peptide linkers
to achieve an optimal change ratio and modified

the citrate-binding pocket to obtain a probe with
the proper affinity for the application [95]. Hu et al
also reported another fluorescent probe, which was
based on carbon nitride nanoribbons for visual-
izing intracellular citrate anion [48]. Lactate also
plays metabolic and signalling roles in healthy tis-
sues. As the fluctuation of lactate level is associ-
ated with inflammation, hypoxia/ischemia, neurode-
generation, and cancer, visualizing intracellular lact-
ate levels has diagnostic and therapeutic applications
[88]. San Matín et al reported a genetically encoded
FRET lactate probe that discriminates lactate flux
in different cells; results showed T98G glioma cells
have 3–5-fold higher rate of lactate production than
normal cells [88]. Recently, Galaz et al developed a
genetically encoded FRET probe Lapronic for ima-
ging lactate/pyruvate ratio in living cells’ cytosolic
and mitochondria matrix, allowing the assessment
of glycolytic/oxidative metabolism with a straightfor-
ward fluorescent readout [96].

3. Subcellular imaging

Sub-cellular organelles are specialized subunit within
cells, which are usually enclosed by their own lipid
bilayer. The main eukaryotic organelles include
nucleus, mitochondria, lysosome, endoplasmic
reticulum (ER), and Golgi apparatus. All of these
organelles play a critical and indispensable role in
cellular processes [152, 153]. The dynamic fluc-
tuations of intracellular metabolites in subcellu-
lar microenvironments determine cellular metabol-
ism, homeostasis, signal conduction, and immunity;
abnormal levels of the sub-cellular metabolites can
cause disorders, which are associated with various
major diseases [154–156]. Monitoring intracellu-
lar metabolites in subcellular structures is therefore
important for bioanalysis and related drug discovery.
Organelle fluorescent probes mainly contain three
domains: localizing group, fluorophores, and recog-
nition domain [154, 157, 158]. Fluorescent probes
with diverse localizing groups can be localized in spe-
cific organelles by utilizing different physiochemical
properties of diverse organelles [159]. After reaching
the subcellular location of interest, they can sub-
sequently target or react with diverse metabolites
by recognition domain and further make detectable
signal changes via different response mechanisms.
Herein, we summarized the fluorescent probes for
monitoring the fluctuation of metabolites with sub-
cellular accuracy.

3.1. Fluorescent probes for imaging mitochondrial
metabolites
Mitochondria, the double-membrane constructed
organelles and the primary compartments for intra-
cellular respiration in most eukaryotes, regulate
energy generation, calcium circulation, protein syn-
thesis, cell proliferation, division, and death pathways
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[160]. Abnormal metabolite levels in mitochondria
may lead to mitochondrial dysfunction, which is
related to neurodegenerative disease, malignant can-
cers, and cardiac diseases. Thus, fluorescent probes
that specifically accumulate in mitochondria play
critical roles in monitoring the mitochondrial func-
tions and investigating various mitochondrial disease
[161–166]. During mitochondrial respiration, pro-
ton pumps in the mitochondrial inner membrane
transport protons into the mitochondrial mem-
brane space, resulting in a highly negative mito-
chondrial transmembrane potential (MMP, approx.
−180 mV) [167, 168]. Therefore, most fluores-
cent probes for mitochondria attract the negat-
ive potential of the mitochondrial membrane by
cations. The fluorescent probes with intrinsic or post-
functionalized cationic aromatic structures can be
applied to image mitochondria. Delocalized lipo-
philic cations (DLCs) have been shown to possess the
ability to localize mitochondria [169–171]. Typical
DLCs ligands include triphenylphosphonium (TPP),
quinoline derivatives, and positive charged pyrid-
ine; rhodamine and cyanine are the common fluoro-
phores for the design of probes formitochondria ima-
ging (figure 2) [156, 172–178]. Except forMMPbased
fluorescent probes, mitochondria transport proteins
have also been developed for targeting. The localiz-
ing ligands, such as peptides and pyruvate, possess the
affinities for specific mitochondrial protein, which
have been used for designing the probes for imaging
mitochondria [160, 179–181].

ATP is primarily produced in mitochondria and
the fluctuation of ATP will lead to, or is caused by,
mitochondria dysfunction. Thus, it is essential to
monitor the ATP in and around the mitochondria.
Until now, several methods have been developed.
The genetically encoded fluorescent probes for ima-
ging mitochondrial ATP are based on fusing a
mitochondrial localizing sequence to a fluorescent
protein gene. Imamura et al fused a duplex of the
mitochondrial localizing signal of cytochrome c oxi-
dase subunit VIII to the N terminus of ATeams
indicator, which made the indicator localized to the
mitochondria properly [34]. Then, Depaoli et al
applied this mitochondria-localizing ATeams indic-
ator to investigate the dynamic of mitochondrial ATP
pools in response to acute glucose removal, glucose
substitution, as well as mitochondrial toxins [185].
Over the past decades, only few small molecule-
based fluorescent probes developed for localizing
mitochondrial ATP and based on MMP. Srivastava
et al first developed a photoinduced electron transfer
basedmolecular scaffolds/fluorescent probes that can
monitor mitochondrial ATP [186]. Wang et al then
developed amultisite-binding, switchable fluorescent
probes ATP-Red 1 to monitor mitochondrial ATP
levels [187]. Tan et al reported a fluorescent probe
named Mito-Rh to real time monitor mitochon-
drial ATP, which was constructed by an ATP-sensitive

fluorophore rhodamine, ATP reaction site diethyl-
enetriamine and mitochondria-localizing site TPP
[182]. Recently, Ren et al reported a novel ratiometric
fluorescent probe Rh6G–ACFPN for quantitatively
detecting the mitochondrial ATP levels [188]. Several
nanoparticles have been developed to delivery fluor-
escent probes to mitochondria. Deng et al developed
zeolitic imidazole frameworks to encapsulate the
ATP sensitive fluorophore Rhodamine B, monitoring
mitochondrial ATP fluctuation during cellular gly-
colysis and apoptosis [189]. Liu et al developed yel-
low emissive single-layered graphene quantum dots
with dual recognition sites including π-conjugated
single sheet to sense ATP and positively charged site
to localize inmitochondria [183]. Recently, our group
applied positively charged nanoparticles called DQA-
somes to deliver a PC ATP aptamer sensor to mito-
chondria for spatiotemporally controlled monitor-
ing of mitochondrial ATP fluctuation [184]. This
approach kept the fluorescent probe inactive before
reaching the mitochondria and can be activated by
light to detect ATP.

To make sure cellular energy supply, diverse
electron-transport chain (ETC) reactions for ATP
synthesis are performed in mitochondria. The elec-
trons leaked from ETC can react with oxygen
molecules to generate O2

•− and transformed into
H2O2, ONOO−, •OH, 1O2 et al under the cata-
lysis of diverse enzyme [173–175, 190, 191]. These
metabolites can not only maintain the mitochon-
dria redox homeostasis, but also regulate the cellu-
lar function. Various of fluorescent probes for mito-
chondria imaging have been developed for visualizing
ROS levels during the cell processes. For genetic-
ally encoded fluorescent probes, the mitochondria-
localizing sequences are fused to ROS sensitive fluor-
escent protein sequences so that the expressed protein
probes can respond to mitochondrial ROS. Hyper
is a classic family of genetically encoded probes for
H2O2, which consists of circularly permuted YFP
(cpYFP) inserted into the regulatory domain of the
prokaryotic H2O2-sensing protein OxyR. Researchers
developed hyper probes by fusing the mitochondria-
localizing sequences so that the probes can loc-
alize to the mitochondria matrix [192, 193] and
mitochondria intermembrane space [194] of HEK
and other cells. Wang et al employed adenovirus-
mediated gene transferred to express ROS sensit-
ive cpYFP in the mitochondrial matrix of cultured
adult cardiac myocytes using the cytochrome C oxi-
dase subunit IV (COX IV) localizing sequence (mt-
cpYFP) [195]. TPP modified small molecule fluores-
cent probes have been widely applied in mitochon-
dria specific metabolites imaging. For example, MF-
DBZH [190] and HKSOX-1 probes [196] for sens-
ing O2

•−; PMN-TPP [197], RMClO-2 [198] and
RSTPP [199] probes for sensingHOCl;MNAHprobe
[200] for sensing 1O2. Other cationic groups are
widely used in the design of probes for imaging
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Figure 2. Integration of common groups and their application examples for mitochondrial metabolite probes design: (A) TPP
cation. Reprinted with permission from [182]; (B) indolium cation. Reprinted with permission from [178]; (C) rhodamine
cation. Reprinted with permission from [175]; (D) pyridinium cation. Reprinted with permission from [176]; (E) mitochondrial
localization sequence. Reprinted with permission from [34] and selection nanomaterials for visualizing mitochondrial
metabolites: (F) s-GQDs. Reprinted from [183]; (G) DQAsome. Reprinted with permission from [184]. Reprinted with
permission from [182]. Copyright (2017) American Chemical Society. Reprinted from [178], Copyright (2016), with permission
from Elsevier. Reprinted with permission from [175]. Copyright (2017) American Chemical Society. Reprinted from [176],
Copyright (2018), with permission from Elsevier. Reproduced from [34]. CC BY 4.0. Reproduced from [183] with permission of
The Royal Society of Chemistry. Reproduced from [184] with permission of The Royal Society of Chemistry.

mitochondria, such as cyan [201–203] and rhodam-
ine [175, 198, 199, 204–206], which are also served as
the fluorophore for the probe. In addition, peptides
have also been developed for the design of fluorescent

probes for imaging mitochondria [207]. TPP group
has also been used in fluorescent nanoparticle probes.
For example, Gong et al reported a mitochondrial
oxidative stress amplifier to image GSH, MitoCAT-g,
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which consists of carbon-dot-supported atomically
dispersed gold (CAT) with further surface modifica-
tions of TPP and cinnamaldehyde [208].

NADH is the important hydrogen carrier dur-
ing TCA cycle (TCA cycle), and can release more
energy to cells. Mitochondria-localizing sequences
have also been used in genetically encoded fluorescent
probes formitochondrial NADH imaging. The genet-
ically encoded NADH sensors, such as Frex, Peredox,
RexYFP, and SoNar, are already genetically intro-
duce to mitochondria by fusing the mitochondria-
localizing sequences [74, 209–211].

Owing to the crucial biological function of mito-
chondria, fluorescent probes for imaging mitochon-
drial metabolites have been widely developed and
employed.Nevertheless,most of the localizing ligands
are lipophilic cationic structures, which may reduce
the MMP. Furthermore, the fluorescent probes can
easily leak out or become untargeted due to the
MMP lost during various stimulations and cannot
work precisely in these situations. Although genet-
ically encoded fluorescent probes are able to anchor
to mitochondria covalently with high selectivity and
avoid the fluorescent probe leakage or poor target-
ing, we cannot guarantee the gene transfection effi-
ciency, and the repeated washing steps may cause the
change ofmitochondrial microenvironment. In addi-
tion, the process of gene transfectionmakes the genet-
ically encoded fluorescent probes difficult to apply
in in vivo imaging. As we know, there are thousands
of biomolecules in mitochondria, such as mitochon-
drial DNA, RNA, enzymes, ions, lipids, and amino
acids. So, in situ imaging and measurement of spe-
cific mitochondrial metabolites at ultralow concen-
trations using fluorescent probes remains a challenge.
A lot of reported fluorescent probes only work when
cells are stimulated by various chemical agents or
abundant of exogenous analytes are added. There
are still relatively few probes can detect basal con-
centrations, which limits the further explorations of
physiological and biological functions of these meta-
bolites. Ratiometric fluorescent probes are promising
for eliminating these interferences, but only limited
ratiometric fluorescent probes formitochondria ima-
ging have been developed until now.

3.2. Fluorescent probes for imaging nuclear
metabolites
The nucleus is the crucial organelle that serves as the
container of themajority ofDNA in cells,maintaining
the integrity of genes and regulating the gene expres-
sion to control the cell activity [212, 213]. The nucleus
is enveloped by a double-layered membrane contain-
ing hundreds of nuclear pores and ribosomes. Some
small molecules and ions can permeate via the nuc-
lear membrane freely. Meanwhile, the large biomac-
romolecules, such as RNA and ribosomes, can transit
through the nuclear pores by energy related pathway.
Owing to the large amount of DNA in nucleus, small

cationic fluorescent probes with two or more cationic
centres and hydrophobic planar aromatic structure
can be used to target to the minor grooves in negat-
ively charged DNA double-strands to accomplish the
nuclear localizing, such as commercialized Hoechst
dye or DAPI [212, 214]. Dickinson et al reported
another nucleus-localizing ligand modified probe,
arylboronate based fluorescent probe, for imaging the
nuclear H2O2 [215]. Moreover, modifying the fluor-
escent probes with nuclear localization signal (NLS)
peptides enables the probes to bind to importins and
further delivering into nucleus through nuclear pores
(figure 3(A)) [213]. For example,Wen et al developed
a peptide conjugated small molecule probes based
on 1,8-naphthalimide and boric acid ester for ima-
ging nuclear H2O2 [216]. Meanwhile, protein tag-
ging is also a promising strategy for the development
of fluorescent probes for imaging nucleus. The pro-
tein tagging ligands used for imaging nucleus include
SNAP-tag [217, 218], HaloTag [219], coumarin [220]
and HaloRT ligand. Imamura et al reported FRET-
based genetically encoded fluorescent probe fused
with the SV40 large T-antigen sequence to imaging
the nuclear ATP [34]. However, nanomaterials are
rarely used in the imaging of nuclear metabolites
due to size limitation for nanomaterials to localize in
nucleus [221].

Several reports have shown that the modifica-
tion of NLS peptides to molecules or nanomateri-
als can be sufficient to drive to the fluorescent probe
to the nucleus specifically, and using this method,
nucleus-localizing cancer therapy has been broadly
studied. However, many fluorescent probes need long
incubation time for positioning to nucleus due to
the low targeting efficiency. Meanwhile, it is diffi-
cult to directly conjugate the probes with nucleus-
localizing molecular scaffolds or NLS peptides, prob-
ably due to theminor structural alterations which can
reduce the affinity of localizing ligands [154, 158].
Protein tagging appears to be an ideal way for pos-
itioning the probes to almost any organelles includ-
ing the nucleus. But the synthesis process is dif-
ficult and complex, and the loss of solubility of
probes after binding to the substances may hamper
the application of protein tagging probes or genet-
ically encoded fluorescent probes. In addition, non-
specific or un-tagged fluorescent probes need to be
washed out repeatedly before imaging to lower the
background fluorescence, which can change the nuc-
leus microenvironment of cells. Therefore, the devel-
opment of novel ultrasensitive fluorescent probes for
imaging nuclear metabolites should be given more
attention.

3.3. Fluorescent probes for imaging lysosomal
metabolites
The lysosome is the main digestive compartment
in cells, where many macromolecules are delivered
for degradation [159]. The main characteristics of
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Figure 3. Integration of typical groups and their application examples for (A) nucleus; (B)–(D) lysosome; (E) ER; (F)–(H) Golgi
apparatus localized fluorescent probes. Reprinted with permission from [213, 222–228]. Reproduced from [213] with permission
of The Royal Society of Chemistry. Reprinted with permission from [222]. Copyright (2015) American Chemical Society.
Reprinted from [223], Copyright (2016), with permission from Elsevier. Reproduced from [224] with permission of The Royal
Society of Chemistry. Reprinted from [225], Copyright (2017), with permission from Elsevier. Reproduced from [226] with
permission of The Royal Society of Chemistry. Reproduced from [227] with permission of The Royal Society of Chemistry.
Reprinted from [228], Copyright (2020), with permission from Elsevier.

lysosomes are acidic microenvironment (pH ∼ 5.0)
and an abundance of hydrolases [158]. Most
importantly, lysosomes are responsible for foreign
substance scavenging, digestion, and autophagy
[229–231]. As the importance of lysosomes have been

understood, more and more fluorescent probes for
imaging lysosomal metabolites have been developed.

Similarly, the genetically encoded fluorescent
probes localized in lysosome by fusing the lysosome
localizing sequences. For example, McCue et al
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reported a genetically encoded fluorescent probes
fused with lysosomal resident membrane protein
LAMP1 to image lysosomal Ca2+ [232]. Other types
of fluorescent probes are usually modified with lipo-
philic amines for driving probes into lysosomes.
The protonated amines in lysosomes are mem-
brane permeable so that the lysosomes can entrap
the probes selectively (figure 3(B)) [222, 233]. The
lysosome-localizing ligands morpholine has been
broadly applied in the development of lysosome-
localizing small molecule fluorescent probe for ima-
ging the lysosomal ATP, H2O2, HOCl, NO, and
HNO (figure 3(C)) [223, 234–240]. The other pop-
ular localizing ligand N,N-dimethylethylenediamine
has been used for imaging lysosomal NO and H2S
[241, 242]. Recently, Jun et al reported a ratiomet-
ric two-photon fluorescent probe Lyso-ATP for ima-
ging lysosomal ATP by changing the core into rhod-
amine 6G and introducing a BODIPY at the end of
the tetraamine chain, which showed the lysosome
fusion process [243]. Nanomaterials have also been
developed for imaging the lysosomal metabolites. For
example, Jin et al constructed a nanoflare composed
of AuNP, i-motif and ATP aptamer to image lyso-
somal ATP (figure 3(D)) [224]. The fluorescent car-
bon dot developed by Geng et alwas also used in ima-
ging the lysosomal ATP [244].

Although, in recent years, the development of
fluorescent probes for imaging lysosomal metabol-
ites has beenmade significant progress. There are still
remaining certain limitations. For instance, the loc-
alizing principle of most reported fluorescent probes
are based on trapping lipophilic amines and cannot
be used to differentiate between endosomes, auto-
phagosomes, autolysosomes and other acidic organ-
elles. Furthermore, these localizing ligands are toxic
to living cells because they can cause the alkaliza-
tion of lysosome microenvironment, making them
unsuitable for long-term tracing. While the genetic-
ally encoded fluorescent probes need to bewashed out
to lower the background fluorescent before imaging,
which may also influence the lysosome microenvir-
onment. Meanwhile, the fluorescent of some probes
can be quenched owing to the acidic lysosomal
microenvironment. The emission wavelengths of
most of the reported probes are located in the vis-
ible region, which hinder the application in deep
tissue imaging due to the poor penetration capab-
ility. These shortcomings greatly limit the develop-
ment and application of lysosome-localizing fluores-
cent probes. Therefore, it is still a challenge to develop
the fluorescent probes for imaging lysosomal meta-
bolites with strong anti-interference capability, out-
standing selectivity, and high sensitivity.

3.4. Fluorescent probes for imaging themetabolites
in ER
The ER can be divided into rough ER and smooth
ER based on whether they contain ribosomes. The

rough ER is responsible for protein synthesis, while
the smooth ER is mainly in charge of lipid and carbo-
hydrate metabolism and calcium signalling. During
these biological processes, the metabolites like ATP,
ADP, ROS, NO, HNO, and H2S are essential for ER
functions. Once the homeostasis of metabolites in ER
is out of control, it can cause several types of disorder
in ER. Therefore, the development of ER-localizing
fluorescent probes and tracing of the fluctuation of
metabolites become a new strategy to study the meta-
bolism process in ER.

The ER-localizing sequences have been fused
to genetically encoded fluorescent probes. Vishnu
et al reported ER-localizing ATeam ERAT4.01 to
record the ER ATP changes in real-time, revealing
that the ATP levels within the ER were signific-
antly lower than in the mitochondria and that Ca2+

release from the ER induced ATP increase within ER
lumen [245]. Then this ER-localizing probe had also
been applied in imaging ATP depletion of ATP/ADP
exchanger in ER membrane [246]. The most popu-
lar ER-localizing ligand for small molecule fluores-
cent probes is p-toluene sulphonamide, such as ER-
BZT for O2

•− (figure 3(E)) [225], ER-ClO for HOCl
[247], ER-Nap-NO forNO [248], andNa-H2S-ER for
H2S [249].

Over the past decades, a series of fluorescent
probes have been developed for imaging specific
metabolites selectively in ER. However, the target-
ing principle of these fluorescent probes still remains
unknown, which hamper the development of ER-
localizing fluorescent tools and the understanding
of physiological and biological functions of differ-
ent metabolites. Although the conjugation of ER-
localizing dyes seems feasible, a slight change of
molecular charge and bulk may influence the target-
ing capability. Meanwhile, the protein tagging meth-
ods can also be used to drive the fluorescent probes to
ER, but the synthetic difficulty and complexity make
this probe need to be further improvement. In addi-
tion, the emission wavelength of most of the probes
are also localized in visible region, which hinder the
in vivo application. Until now, probes for imaging
and quantification of in situmetabolites in ER are still
rare, so the development of this kind of probe could
speed up the understanding of biological functions
of ER.

3.5. Fluorescent probes for imaging themetabolites
in Golgi apparatus
The Golgi apparatus is another crucial intracellular
organelle for themodification, storage and transport-
ation of carbohydrates, lipid and proteins. Modified
and labelled cargoes in Golgi apparatus will be trans-
ferred to the final destinations, such as lysosomes and
cytoplasmic membrane, and further exert the biolo-
gical functions [158, 159, 226]. Notably, the stress-
signalling overload in Golgi apparatus can result a
series of disorders and further lead diverse diseases.
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However, the probes for imaging the metabolites in
Golgi apparatus have not been well developed.

The developed Golgi apparatus-localizing genet-
ically encoded fluorescent probes, by fusing amino
acids 1–60 of the human galactosyl transferase trun-
cated at position 60 in its luminal domain to N ter-
minus of sensing domain, have been used to image
Zn2+ in Golgi apparatus [250]. However, it has not
been applied to the imaging of other metabolites in
Golgi apparatus. Owing to a large quantity of cysteine
residue recognition receptors in Golgi apparatus, the
localizing ligand of some small molecule fluorescent
probes are containing L-cysteine, such as CCA for
O2

•− (figure 3(F)) [226] and SF-1 for HOCl [251].
Recently, Zhu’s group reported two small molecule
fluorescent probes for sensing H2S in Golgi appar-
atus, one is containing a phenylsulfonamide moiety
as a localizing group and a 1,8-Naphthalimide moi-
ety as a sensing group (figure 3(G)) [227], the other
one has a trifluoromethylmoiety as a localizing group
and quinoline as a sensing group (figure 3(H)) [252].
They also applied the trifluoromethyl moiety and
thiobenzoate moiety to image the cysteine in Golgi
apparatus [228].

Due to the lack of effective localizing ligand, fluor-
escent probes for imaging the Golgi apparatus have
not received much attention. Although L-Cysteine
has been reported to be a promising localizing ligand,
we still need to do the further investigation of univer-
sality. With the development of the enzyme-activated
probes, they will have the potential to apply in the
Golgi apparatus-localizing fluorescent probes.

4. Summary and prospective

Metabolites serve critical roles in biology and any
imbalance or fluctuation of these metabolites may
result in diseases such as cancer, diabetes, obesity
and neurodegeneration [2, 253]. The detecting and
imaging cellular metabolites can help us to under-
stand their roles in cellular metabolisms under both
physiological and pathological conditions, thereby
providing a powerful basis for diagnosis and treat-
ment of these diseases. The development of fluores-
cent probes has made a remarkable contribution to
biology, making it possible to observe the biochem-
ical process directly inside living cells and sub-cellular
organelles [254, 255]. Therefore, fluorescent probes
for imaging subcellular metabolites have attracted
much attention. Based on various localizing ligands,
recognition groups, and fluorophores, many sub-
cellular localized probes have been developed and
applied in different areas, such as monitoring inflam-
mation, diabetes, depression, and cancers. The devel-
opment of these fluorescent probes has also greatly
promoted our understanding of molecular mechan-
isms of different biological processes. In this review,
we summarize the fluorescent probes for imaging
metabolites in whole cells and subcellular systems.

Localization, detection, and response principles are
also discussed. Even though many fluorescent probes
have been developed and applied, there are still sev-
eral challenges in their application.

Although researchers have made extensive efforts
in the development of fluorescent probes for imaging
metabolites with subcellular accuracy during past
decades, the development of fluorescent probes for
whole cell imaging are significantly more than that of
fluorescent probes for subcellular imaging. The main
reasons for this limitation are the lack of efficient sub-
cellular localizing ligands and potential toxic effects.
For example, the most widely used mitochondria-
localized ligand TPP can decrease MMP due to the
cationic feature, and the TPP-modified fluorescent
probes can leak out when the MMP is lost; the
lysosome-localized ligand morpholine can cause the
alkalization effect. Otherwise, the strategies that can
efficiently localize sensors in other organelles, such
as ER, Golgi apparatus, or the nucleus, are still rare,
which severely limits the understanding of biological
processes in these sub-cellular organelles. In addition,
this limitation also affects the development of genet-
ically encoded fluorescent probes for imaging the sub-
cellular metabolites. Therefore, it is very important
to develop the reliable localizing strategies and novel
non-toxic localizing ligands for imaging the metabol-
ites in subcellular organelles.

Furthermore, many of the cellular metabolites
discussed here are present in ultralow concentration,
sensitive to the environment, and have a short life-
time.Most reported probes failed in tracing themeta-
bolites due to the poor sensitivity and/or specificity.
Therefore, novel fluorescent probes for imaging the
subcellular metabolites with lower detection limit
and higher specificity are required. The promising
solutions for these limitations are to explore higher-
throughput probe screening systems, novel detec-
tionmechanisms, and accurate theoretical calculation
methods. In addition, the fluorescent probes for ima-
ging the subcellular metabolites with signal ampli-
fication may also contribute to improving detection
sensitivity in future.

The signal-noise ratio is an important parameter
in fluorescent imaging, because there are autofluores-
cent biomolecules in living cells, and they are emissive
when exposure to the laser irradiation, that will inter-
fere with the imaging resolution. Moreover, the emis-
sion wavelength of most reported fluorescent probes
is in the visible region, hindering the application in
background free in vivo imaging. Therefore, it is crit-
ical to develop fluorescent probes with high quantum
yields, long lifetime, outstanding photostability and
deep-tissue penetration capability. The fluorescent
probes that can promote two or more photon excit-
ations in near infrared emissions are promising for
designing the novel probes.

Many different diseases are closely related
to abnormal concentration or fluctuation of
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metabolites. In addition, the communication
between metabolites from different sub-cellular
organelles is also a promising area for investigators to
explore the understanding of metabolism.

Over the past decades, considerable progress has
been made to the development of fluorescent probes
to image metabolites in whole cell and subcellular.
The progress ismainly in the area of the improving the
imaging resolution, specificity, sensitivity and better
explanation formolecularmechanisms in diverse bio-
logical processes. However, several challenges remain
as described in the above paragraphs. Given the tre-
mendous progress that has been made so far, we are
confident that researchers in the field will be able
to meet these challenges to develop more fluores-
cent probes with higher performance to enhance our
understanding of metabolisms that play significant
roles on all biological processes.
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