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Abstract
Fish have evolved diverse and robust locomotive strategies to swim efficiently in complex fluid
environments. However, we know little, if anything, about how these strategies can be achieved.
Although most studies suggest that fish rely on the lateral line system to sense local flow and
optimise body undulation, recent work has shown that fish are still able to gain benefits from the
local flow even with the lateral line impaired. In this paper, we hypothesise that fish can save energy
by extracting vortices shed from their neighbours using only simple proprioceptive sensing with
the caudal fin. We tested this hypothesis on both computational and robotic fish by synthesising a
central pattern generator (CPG) with feedback, proprioceptive sensing, and reinforcement
learning. The CPG controller adjusts the body undulation after receiving feedback from the
proprioceptive sensing signal, decoded via reinforcement learning. In our study, we consider
potential proprioceptive sensing inputs to consist of low-dimensional signals (e.g. perceived forces)
detected from the flow. With simulations on a computational robot and experiments on a robotic
fish swimming in unknown dynamic flows, we show that the simple proprioceptive sensing is
sufficient to optimise the body undulation to save energy, without any input from the lateral line.
Our results reveal a new sensory-motor mechanism in schooling fish and shed new light on the
strategy of control for robotic fish swimming in complex flows with high efficiency.

1. Introduction

Fish live in complex fluid environments, and have
evolved various sensory-motor strategies to improve
swimming efficiency [1]. For example, when swim-
ming in Kármán vortices, rainbow trout switch to the
Kármán gait to extract energy from the fluid envi-
ronment [2]. Schooling fish are able to dynamically
optimise body undulations to save energy and thus
improve swimming efficiency, regardless of their spa-
tial formations [3, 4]. Although we know school-
ing fish benefit from hydrodynamic interactions, the
mechanisms by which they achieve these gains are not
well understood.

Vision [5] and lateral line [6] are two main
sensory modalities used by fish to collect environ-
mental information and make movement decisions.
However, several studies have shown that fish can still

react to their nearby flows when the lateral line and/or
vision systems are impaired [4, 7]. Here, we hypothe-
sise that fish can also use proprioception to sense the
local flow dynamics, and thus to adjust kinematics to
save energy [8, 9]. The term proprioception was first
used by Sherrington [10], includes both self-motion-
sensing and muscle force sensing [11]. This sensory
system has been widely studied in tetrapods [12] and
even in the human body [11, 13]. Proprioceptive sens-
ing is also found in fish, and it has been shown that
fish can use this modality to sense flow information
as well [14–16].

In addition to a sensor, fish also require a loco-
motion controller to save energy when schooling. The
main locomotion controller in most animals is known
as a central pattern generator (CPG) [17–19], which
is a neural network that produces rhythmic signals
while receiving simple brain-level control. Although
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Figure 1. Schematic of the proprioceptive sensing feedback hypothesis. (a) and (b) The follower interacting with the same flow
fields can save energy (a) or cost more energy (b) due to different body undulations. In this case, the flow fields are determined by
front–back distance, D, left–right distance, G, and specific body phase, Φ (see definition in figure 2). (c) The proprioceptive
sensing signals are used as a feedback to the CPG.

sensory feedbacks are not necessary to generate rhyth-
mic signals, they play an important role in shaping the
CPG control [17, 18]. In this paper, we consider the
proprioceptive sensing as the sensory feedback for the
CPG controller [11].

Whether, and if so, how real fish may use propri-
oceptive sensing to optimise the CPG controller to
save energy when schooling remains an open ques-
tion. However, this hypothesis is difficult to test
experimentally with live fish, because impairment
of the proprioceptive system may also impair the
motor system. In this paper, we test this hypoth-
esis with both a computational model and exper-
iments with a bio-inspired robotic fish, swimming
in complex neighbour-induced flow vortices. The
upstream neighbour (leader) randomly changes its
kinematics to generate unsteady flows, which is
unknown to the focal individual. Both computa-
tional and robotic fish optimise their body undula-
tions based on the proprioceptive sensing, decoded
by reinforcement learning and further transferred to
the CPG controller. We explore and compare the
energy cost of fish swimming in dynamic flows with
and without (random body undulation) propriocep-
tive sensory feedback. Both simulations and exper-
iments show that fish can save energy via simple
proprioceptive sensing and the CPG controller with
feedback.

The main contributions of this article include:
(1) we propose a hypothesis that schooling fish can
save energy purely based on the proprioceptive sens-
ing. (2) To test this hypothesis, a simple framework is
developed, which combines CPG with feedback and
reinforcement learning. (3) Both numerical simula-
tions and robotic fish experiments are carried out,
demonstrating that both the simulated fish and the

robotic fish can explore low-cost undulation by using
only the proprioceptive sensing.

2. The proprioceptive sensing hypothesis

We hypothesise that fish can optimise body undu-
lation, which is controlled by a CPG, relying only
on proprioceptive sensing. To test this, we consider
a simplest case where two fish swim in a constant
incoming flow (or equivalently at a constant swim-
ming speed) and a fixed spatial arrangement, i.e.
fixed front–back and left–right distances, D and G,
as shown in figure 1(a). Similar to the natural envi-
ronment, neighbours induce complex fluid flows,
which are usually unpredictable to the focal individ-
ual. According to our previous study [4], with two
fish swimming in a stable formation, the follower can
adjust its body undulation relative to the leader to
achieve different levels of energy consumption (see
figures 1(a) and (b)). To achieve this, fish need to
first sense the flow environment and then control
their locomotion based on feedback from the flow
sensor (see figure 1(c) for the schematic). A ‘signal
conversion’ block receives the proprioceptive sens-
ing signal and decodes the signal to drive the CPG
controller. We propose reinforcement learning as the
signal conversion since the neurotransmission mech-
anism is unknown.

2.1. The body phase
Previous studies [4, 20] have shown that a follower
can save energy by adopting an optimal body undu-
lation relative to a leader, depending on their spatial
configurations (see figures 1(a) and (b)). Therefore,
fish is able to save energy purely by adjusting the body
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Figure 2. Schematics of the test procedure for proprioceptive sensing feedback. (a) and (b) show the definitions of body phase, Φ,
and the body phase shift, ψ, respectively at a certain time instant. (c) The signal conversion is achieved by reinforcement learning.

undulation, or specifically the body phase, Φ, accord-
ing to the lateral displacement of the tail tip. As the
tail tip flaps to its maximum positive lateral position
(shown schematically in figure 2(a)), the body phase,
Φ is π/2, and this varies from 0 ∼ 2π as the tail tip
oscillates in one period (figure 2(b)).

In this paper we have introduced a shift, ψ, to the
body phase in equation (2), by which we can actu-
ally modify the undulation. In order to further explain
this, we use a simplified undulating equation, with
varied and increasing amplitude from the nose to the
tail tip, to represent the fish locomotion.

z(s, t) = (c1s + c2s2)sin(2πks/L + ωt), (1)

where z(s, t) denotes the lateral displacement of each
discrete points on the fish, and s is the tangent com-
ponent of the natural coordinate along the central line
of the fish, which varies from 0, the nose, to L, the tail
tip, where L is the length of the fish. In the current
study, we set k = 0.24. In equation (1), c1 and c2 are
linear and quadratic components of the wave ampli-
tude, and ω is the angular frequency. Adding a body
phase shift ψ to equation (1), we get

z(s, t) = (c1s + c2s2)sin(2πks/L + ωt + ψ). (2)

The leader and the follower can take different phase
shifts ψ, resulting in a phase difference (PD) ψ1 − ψ2.

Figure 2(b) shows a modified undulation with a
phase shift of ψ = π/2 ahead of its original formula-
tion. Therefore, in these terms, the follower can switch
between the states shown in figures 2(a) and (b) with
ψ = π/2. To generate unsteady and random ambient
flows for the follower, we randomise the leader’s body
phase shift at regular intervals. In such a scenario, the
follower needs to adjust dynamically its body phase
shift to save energy. We should note that instead of
the individual body phase Φ of each fish, we con-
cern more with their difference, or equivalently the
difference in their body phase shift ψ.

2.2. Reinforcement learning for conversion of
proprioceptive sensing signal
Since the muscle spindles have been shown to func-
tion in a number of animals as receptors that can

be used to sense forces while moving [11, 13], here
we mainly consider the force or force-related signals
as the proprioceptive signal from the caudal fin. For
example, in figures 1(a) and (b), the caudal fin per-
ceives different forces along the tail depending on the
direction of its movement due to different hydrody-
namic interactions.

A mechanism of information transfer is required
to send the sensory signal as feedback to the CPG con-
troller. In animals, this occurs via neural network, for
example, a fish may transfer the bending of its fin to
a specific neural signal as a stimulus for body move-
ment. Since we do not know the neurotransmission
mechanism between proprioceptive sensing and loco-
motion control, here we apply a simple reinforcement
learning algorithm to transfer the measured propri-
oceptive signal to a neural, or control, signal. Rein-
forcement learning enables agents to find the optimal
action by trial-and-error interactions with the envi-
ronment, and has been widely applied in the field of
robotics [21, 22].

We applied a Q-learning algorithm [22, 23] to
decode the proprioceptive signal to the body phase
shift ψ. Figure 2(c) shows a schematic of reinforce-
ment learning. The follower has its body phase shift
ψ as the ‘action’, hydrodynamic interactions as the
‘state’, and energy cost as the ‘reward’. The robotic fish
learns through trial-and-error interactions with the
flow environment, with the goal of maximising energy
savings. A Q-table is designed to assess this value as a
function of state and action, and is updated according
to

Q(s, a) = Q(s, a) + Qα

[
Qr + Qγ maxa′ Q(s′, a′)

− Q(s, a)] , (3)

where s is the state vector, a is the action vector; Q(s, a)
is the evaluated value of the performing action a in
the state s; Qr is the immediate reward of the current
action; Qα is the learning rate and Qγ is the discount
factor. s′ denotes the next state, maxa′Q(s′, a′) predicts
the optimal future reward based on the optimal action
(a′) for the next state. Therefore, the Q value evaluates
the actions in each state in a global view.
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Actions: we consider the discrete body phase shift
ψ as an action, with previous studies have shown
to be effective towards achieving the goal of min-
imising energetic costs [4]. Reward: we measure the
power cost of the computational and robotic fish as
the immediate reward of the current action and state.
Because of the noise in computational fluid dynamics
(CFD) and experiments, one may get different reward
values at the same action and state but at different
time. State: the state is given by estimation of the
nearby flow environment via proprioceptive sensing,
based on various forces in the simulations and the
power costs measured in the experiments. ε-greedy
policy: we used a simple ε-greedy policy for the explo-
ration of potential body phases in dynamic fluid envi-
ronments. The robot adopts an action with a 1-ε
probability that gives a maximum long-term reward.
Otherwise, the robot chooses an action uniformly
from the collection of actions at random. 0 < ε < 1
balances exploration and exploitation, with larger ε

values indicating more exploration.

2.3. CPG with feedback
Inspired by the biological system, where the CPG
may determine the initial body phase and update
this according to the proprioceptive sensory feed-
back [13], we developed a CPG controller based on
the framework described in our previous study [24],
modified with a feedback loop that adjusts the body
phase shift ψ of the robotic fish. The oscillation of
each joint can be described by the following model:

ṙi (t) = α (Ri − ri) (4)

ẋi (t) = β (Xi − xi) (5)

ψ̇k (t) = γ (Ψk − ψk) (6)

φ̈i (t) =
N∑

j=1,j�=i

μ
[
μ
(
φj (t) − φi (t) − ϕij

)

− 2
(
φ̇i (t) − 2πω

)]
(7)

θi (t) = xi (t) + ri (t) sin (φi(t) + ψk) , (8)

where ri, xi, and φi respectively denote the ampli-
tude, offset, and phase, respectively, of the ith oscil-
lator, and Ri, Xi, ϕij, and ω are the locomotion
control parameters, representing the amplitude, off-
set, phase difference between two joints and fre-
quency, respectively. θi is the output angle for each
joint of the robot. ψk represents the body phase shift
of the kth robot. Ψk is the desired body phase shift
of the kth robot, as decoded from sensory feedback,
such as the lateral line, vision or proprioceptive sen-
sors. α, β and γ are structural parameters, which
indicate how fast the system converges to the pre-
set values. In equations (4)–(8), i denotes the differ-
ent joints, while k denotes the different robotic fish.
We have to point out that the fish’s locomotion is
actually realised by using the CPG controller through

these equations, instead of equation (2). However, in
some sense, we can say that the CPG controller is a
discretised realisation of equation (2) [25].

Equations (4) and (5) describe the dynamic
convergence of the amplitude and offset, when
the control of the amplitude and offset change.
The dynamic convergence of the feedback signal
is the desired body phase shift, Ψk. Equation (6)
illustrates how the body phase dynamically con-
verges to the desired body phase value, which is
decoded based on the proprioceptive sensory feed-
back. Equation (7) describes the dynamic phase
control of the frequencies and phase differences
between each of the two joints. Equation (8) denotes
the output of the angle of each joint to form
the undulation pattern according to the parameter
setting.

We first verified the effectiveness of the feedback
CPG controller with a test simulation by numeri-
cally solving equations (4)–(8), described as follows:
two fish (fish 1 and fish 2) swim at a fixed dis-
tance apart, starting with a body phase difference of 0
(ψ1 − ψ2 = 0), as shown in figure 3. After 4 s, the
body phase of fish 1 was shifted with π phase lead,
converging to the desired body phase shift within
one period (figure 3). As expected, the resulting body
phase difference between the two was ψ = π, and
the test simulation verified that the body phase shift
occurred smoothly, which protects the robotic fish
motors from overload.

3. Results

3.1. CFD simulations
We first conducted 2D CFD simulations to test our
hypothesis. For simplicity, we modelled the fish body
as a one-dimensional filament with three joints,
spaced with the same ratio as in the robotic fish. The
Reynolds number is around 2000. Locomotion was
also controlled by the CPG controller (see table 1 for
the parameters). Since we do not know which force
the fish would take as the proprioceptive sensing sig-
nals, we tested different force components of the per-
ceived resultant force vector. They are lateral force
(fx), longitudinal force (fy), resultant force (fx, fy) and
frictional force (fc) (see figure 4).

We developed a custom code based on the
finite-volume method to numerically solve the time-
dependent, incompressible form of the Navier–Stokes
equation [26]. The differential form of the momen-
tum equation for a viscous, incompressible fluid is

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p + μ∇2u + f,

∇ · u = 0, (9)

where ρ, u, p are the density, velocity and pressure
of the fluid, respectively. An extra forcing term f is
included to represent the fish body immersed in the
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Figure 3. Example of body phase control. Two fish (fish 1 and fish 2) swim together with various body phase differences PDs
(PD = Ψ1 −Ψ2 body phase of fish 1 Ψ1 minus body phase of fish 2 Ψ2). For the first 4 s, two fish swim with the same body phase
(PD = 0); fish 1 shifted its body phase at t = 4 s with body phase lead of π. With our control algorithm, the two robotic fish
switched their body PD from 0 to π smoothly.

Table 1. Parameters for CPG controller.

Parameter Value Unit

R1 12 degree
R2 22 degree
R3 26 degree
X1 0 degree
X2 0 degree
X3 0 degree
ϕ12 1.396 rad
ϕ13 2.094 rad
ω 0.85 rad s−1

fluid flow, calculated using the so-called immersed
boundary method [27], by the integration of the
Lagrangian forcing density F(s, t) on the fish weighted
by a Dirac delta function, as

f(x, t) =

∫
F(s, t)δ(x − X(s, t))ds, (10)

where x is fixed Cartesian coordinate, t is the time and
s labels a fixed material point in Lagrangian form. The
Dirac delta function in its discrete form is expressed
as

δh(X) = h−2ζ(
X

h
)ζ(

Y

h
), (11)

where h is the length of the computational cell, X and
Y indicate the position of the computational cell, and
ζ function is defined as

ζ(q) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3 − 2 |q|+
√

1 + 4 |q| − 4q2

8
if |q| � 1;

5 − 2 |q| −
√

−7 + 12 |q| − 4q2

8
if 1 < |q| < 2;

0 if |q| � 2.
(12)

For a fish with prescribed motion, the Lagrangian
forcing density F, imposed by the fluid on the fish and
can be computed as

F = α

∫ t

0
(U ib − U) dt′ + β (U ib − U) , (13)

where U ib is the interpolated fluid velocity on the
fish, U is the velocity of the fish, and α and β are
negative constants. More details of the numerical
implementation can be found in our previous study
[28, 29].

By integrating F along the fish, we can obtain the
perceived resultant force vector (fx, fy), with its lateral
and longitudinal components written respectively as

fx(t) =

∫
Fx(s, t)ds and fy(t) =

∫
Fy(s, t)ds.

(14)
The frictional force can be calculated by

fc(t) =

∫
F(s, t) · ds, (15)

and the power cost is estimated by

P =

∫
−F(s, t) · U ds. (16)

Two fish were simulated swimming in a stable
staggered formation (D = G = 0.31 L) with the
incoming flow at a speed of 0.62 L s−1. To carry out
a mesh independence study for the numerical model,
we first set the body phase shifts to zero. In the x-
axis (along the fish body) and y-axis (perpendicu-
lar to the fish body), the mesh cells were uniformly
distributed. We studied the longitudinal forces fx on
different mesh resolutions, with �x and �y vary-
ing from L/20 to L/200. We found that the medium

5
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Figure 4. Verifying the hypothesis via CFD. (a) Schematics of the force components as perceived proprioceptive sensing signals.
(b) Flow fields generated by two simulated fish swimming in stable formation. (c) The power cost of the follower over 1000
simulated episodes, with and without proprioceptive sensing (here with the friction as the sensing signals, while those with other
force components are shown in figure 5). The relative energy saving, normalised by the average power cost of randomised
strategies, is shown by the vertical axis labels at the right side of (c). (d)–(g) For one (final) episode: phases of leader and follower
(d), (e), and PD (f), (g), with (d), (f) and without (e), (g) proprioceptive sensing feedback.

mesh with�x = �y = L/80 was sufficient to achieve
satisfactory results. The total number of mesh cells
was 76 800, and the time step size was �t = 0.001.
By compromising between efficiency and accuracy, we
used this medium mesh for our following numerical
simulations.

For the controlled fish, the leader was given ten
discrete values for its body phase (ΨLeader), ranging
from 0 to 2π at an interval of 0.2π, with each phase
held for 5 s (proprioceptive sensing is based on the last
one period 1.176 s). The simulated flow environments
were designed with a random sequence of these dis-
crete values. The simulated leader fish generated the
dynamic fluid for the follower with follower with 100
random body phase shifts ΨLeader (theoretically, this
can be an arbitrary number).

In our test simulations, the follower was allowed to
optimise its body phase shift (ΨFollower) to maximally
save power cost over each episode (averaged over one
period of body undulation), based on reinforcement
learning according to the algorithm above, with sim-
ulated sensory input from one of four potential pro-
prioceptive forces. For each of the four forces, we ran

a total of 1000 simulated episodes (defined as the
follower swimming through all 100 of the dynamic
fluid states from the leader’s phase shifts) with
Qα = 0.01 and Qγ = 0.4. Another set of 1000
episodes, in which the follower adopted random
body phase shifts, were simulated as a control, for
comparison.

For all four potential forces tested, after around
200 episodes, the simulated follower reached a sta-
ble state of significant power reduction, as shown
in figure 4(c). Detailed body phases of the leader
and follower, and phase differences with and with-
out proprioceptive sensing in the last episode are
shown in figures 4(d)–(g). With proprioceptive
sensing, the follower converged to a typical phase
difference, indicating the targeting of constructive
hydrodynamic interactions based solely on propri-
oceptive sensing feedback. For clarity, simulation
results using just one of the potential forces (fric-
tion) as the proprioceptive sensing signal are shown
in figures 4(c)–(g). However, we found that all four
potential perceived forces were similarly effective for
proprioceptive sensing feedback, as shown in figure 5.

6
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Figure 5. Testing different force components as the proprioceptive sensing signals for locomotion control. (a) Estimated power
costs for different force signals, comparing to random body phase shifts. Here, the resultant force means the force magnitude.
(b) Differences measured by ANOVA (analysis of variance) for the five different cases.

3.2. Experiments with robotic fish
Next, we tested the hypothesis with two robotic fish,
a leader and a follower, swimming in fixed forma-
tion in a flow tank (figures 6(a) and (b)). The robotic
fish is 45 cm in length and 800 g in mass; the aspect
ratio of the tail is 2.4 [30]. As in the simulation,
the leader controlled the flow environment by ran-
domly shifting its body phase (control ΨLeader), and
the follower tried to reduce its energy consumption by
shifting its body phase (only update ΨFollower). Exper-
iments were carried out in a flow tank 40 cm wide
and 45 cm deep, with free stream turbulence less than
0.5%, at the College of Engineering, Peking Univer-
sity [31]. Two robotic fish were fixed in the mid-
dle layer of the water to reduce the effects of the
boundaries (figure 6(b)). The CPG control param-
eters (see table 1) were chosen based on our previ-
ous studies with robotic fish and CFD simulations
[4, 24, 25]. The flow speed u = 0.278 m s−1, corre-
sponding to the Reynolds number around 105, was set
according to the free-swimming speed of the robotic
fish with the same CPG parameters. The robotic fish
were positioned at the same left–right distance G and
front–back distance D (G = D = 0.14 m), which we
previously determined to be an effective formation for
interacting [4].

The power consumption was evaluated with a DC
(direct current) stabilised power supply (DP 832) and
a current acquisition module (National Instruments,
NI 9227) set to a rate of 5000 sample/s to reduce the
effects of noise. The power for the robotic fish was
set to 6.2 ± 0.1 V. The power cost (in watts) is the
product of the voltage and current. Since the power
cost of the follower is directly linked to the perceived
force of the body, we consider the power cost as a
proxy estimate for the perceived proprioceptive sig-
nal. To reduce the deviation of the power detection,
we use the average power cost over one period instead
of instantaneous values.

At first, we generated 100 random body phase
shifts Ψ to produce different discrete reverse
Kármán vortices fluid environments, as in the sim-
ulations, and defined one episode as the follower

swimming through all of these. The follower swam in
a stable formation to optimise its body phase shift, ψ,
to save maximum energy. The follower detected and
averaged the energy consumption of every undula-
tion period. The average value (immediate reward
Qr) and current action (a = Ψ) were then transferred
to the Q-learning algorithm as the reward and to
estimate the state. In total, we ran the experiment for
300 episodes with Qα = 0.1 and Qgamma = 0.2. As a
control for comparison, we also ran experiments in
which the follower swam with random body phase
undulations.

As shown in figure 6(c), after around 50 episodes,
the power cost of the follower employing the learned
proprioceptive sensing began to reduce, converging
to a stable state after around 100 episodes. Com-
paring power consumption in this stable state (over
the last 100 episodes), the robotic fish with proprio-
ceptive sensing, using Q-learning, used significantly
less power in watts (mean = 2.7621, SD = 0.0040)
than the random phase shifting control (mean =

2.8013, SD = 0.0045), t (200) = 65.69, p < 0.001.
The respective phases of the two fish during the last
episode are shown in figures 6(d) and (e). Comparing
the phase differences with and without feedback con-
trol (figures 6(f) and (g)) shows the follower with pro-
prioceptive sensing converged to a typical phase dif-
ference, thus achieving power cost savings. This result
indicates that the follower was able to maintain the
constructive hydrodynamic interaction using simple
proprioceptive sensing.

4. Discussion and conclusion

In this paper, we tested the hypothesis that fish can
save energy by using proprioceptive sensing while
swimming in complex fluid environments. Using
CFD simulations and experiments with robotic fish
in a flow tank, we found that both simulated and
robotic fish were able to optimise body undulations
relative to a leader fish to save energy. In both cases,
this was accomplished via our model of proprio-
ceptive sensing. We implemented a CPG controller
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Figure 6. Robotic fish experiments to verify the hypothesis. (a) The robotic fish model used in the experiments. (b) The setup for
the test. (c) Power costs of the follower swimming with and without proprioceptive sensing in 300 episodes. The relative energy
saving, normalised by the average power cost of randomised strategies, is shown by the vertical axis labels at the right side of (c).
(d)–(g) Phases of leader and follower ((d), (e)), and PD ((f), (g)) in the last episode: with ((d), (f)) and without ((e), (g))
proprioceptive sensing feedback.

with feedback to control body undulation according
to proprioceptive sensing, and applied a Q-learning
algorithm to decode the proprioceptive signals for
feedback into the CPG. Our results show that follower
fish were capable of sensing and taking advantage of
local hydrodynamic forces generated by leader fish,
solely using the mechanism of proprioceptive sensory
feedback. This indicates that real fish may also be able
to sense local flow by this modality, without inputs
from the lateral line or vision.

We measured the power consumption of the
robotic fish directly, considering this a proxy esti-
mate for the energetic costs of swimming. Com-
paring the energy consumption of a robotic fish
swimming in unpredictable dynamic fluid environ-
ments with and without proprioceptive sensory feed-
back, we found that the robot was able to save energy,
relying solely on proprioception. Our results are con-
sistent with previous studies showing that the fish
fin itself may be capable of detecting the flow envi-
ronment [14, 15, 32]. The lateral line is useful for
detecting flow near the head of a fish [33], while the
muscle spindle is useful for sensing the flow environ-
ment near the body and tail. There are many possi-
bilities regarding what may constitute the perceived
proprioceptive signals, such as forces perceived by the
fish body, or the power cost of body undulation. Iden-
tifying exactly which of these are important for vari-
ous fish species, and under what conditions, remains
an important task for future work. Our results, show-
ing the likelihood of proprioceptive sensing in fish
should provide a basis for such investigations, with
our CFD framework enabling theoretical exploration
of these potential forces.

In both the numerical simulations and the robotic
fish experiments, we found that the converged body
phase differences are around π, the anti-phase, which
is consistent with the optimal phase difference (result-
ing in maximum energy saving for the follower)

found previously between the two robotic fish swim-
ming at a similar configuration [4]. Therefore, the
energy saving can be attributed to the same physical
mechanism, vortex-phase matching, in the way that
the follower tunes its tail undulation according to the
reverse Kárman vortices in the wake of the leader.
We also note that the energy saving in 2D numeri-
cal simulations is larger than that of the 3D exper-
iments, due to the simplification of our numerical
model [4].

The CPG controller implemented here not only
controls the phase differences between each two joints
for every individual, but can also manipulate the
body phase differences between multiple individu-
als. This should prove useful for further studies with
multiple robots incorporating spatial formation and
body phase control, since real fish do modify both
of these when swimming in groups [4, 34]. In an
applied context, this work could also inform future
energy-saving designs for autonomous underwater
vehicles.

Our study offers a feasible explanation for the
long-standing question of how fish with impaired
visual and lateral line sensing are still able to interact
with nearby flows [4, 7]. The setup employed here,
with two robotic fish swimming in a flow tank, in
a fixed formation and with one-dimensional action
(the body phase shift Ψ) is an idealised model. In real-
ity, fish do not only adjust the phase of body undu-
lations to interact with the flow nearby, and only
tuning the body phase may result in limited energy
savings. Future studies should consider more pos-
sible actions for fish swimming in turbulence with
proprioceptive sensory feedback, such as frequency
and amplitude, and explore other potential learning
algorithms. Yet, our findings reveal how even a sim-
ple reinforcement learning algorithm can be powerful
for optimising locomotion control in complex fluid
environments.
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