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1.  Introduction

Aerodynamic force augmentation mechanisms 
of flapping wings have been successfully revealed 
over the last few decades [1, 2]. Several vortex-
dominated mechanisms, such as the delayed stall [3], 
Kramer effect [4], and wing-wake interaction [5] 
have been found, and numerous follow-up studies 
using numerical simulations and experiments have 
systematically confirmed the results [6–8]. Currently, 
a popular area of study is the aerodynamics of 
flapping wings in various configurations [9–11]. 
Many of these findings have become stepping 
stones to the development of various flapping wing 
aerodynamic models [12]. Although such models 
cannot reflect all aspects of the fluid physics, such 
as the surface friction or pressure disturbances 
caused by viscous and wake vortices near the field 
around the wings, their estimation performances 
with reasonable computing costs demonstrate 
their usefulness. These models have been broadly 

utilized for static/dynamic stability and flight control 
analyses of biological flyers as well as to determine 
the preliminary design parameters of flapping-wing 
micro air vehicles (FWMAVs) [13–18].

One typical example is the semi-empirical aerody-
namic model announced by Sane and Dickinson [12]. 
They used a uniform stroke velocity with individual 
angles of attack to build a translational aerodynamic 
force model, i.e. αCL( ) and αCD( ). This work favorably 
compensated for the additional force due to the lead-
ing-edge vortex (LEV) attachment [3], which could 
not be formulated by the conventional approach [19]. 
In addition, they employed the Kutta–Joukowski the-
ory and an analytic added mass model [20], expressed 
as functions of αCF( ˙ ) and αC ¨F( ), to predict forces which 
deviate from a quasi-steady state. By adding all of these 
factors, this model showed good agreement with the 
time-historical aerodynamic force acting on flapping 
wings, except for the instantaneous peak at the begin-
ning of each wing stroke. As is well known, this excep-
tion is caused by the wing-wake interaction, which is 
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Abstract
This paper proposes a semi-empirical quasi-steady aerodynamic model of a flapping wing in forward 
flight. A total of 147 individual cases, which consisted of advance ratios J of 0 (hovering), 0.125, 0.25, 
0.5, 0.75, 1 and  ∞, and angles of attack α of  −5 to 95° at intervals of 5°, were examined to extract 
the aerodynamic coefficients. The Polhamus leading-edge suction analogy and power functions 
were then employed to establish the aerodynamic model. In order to preserve the existing level of 
simplicity, KP and KV, the correction factors of the potential and vortex force models, were rebuilt as 
functions of J and α. The estimations were nearly identical to direct force/moment measurements 
which were obtained from both artificial and practical wingbeat motions of a hawkmoth. The model 
effectively compensated for the influences of J, particularly showing outstanding moment estimation 
capabilities. With this model, we found that using a lower value of α during the downstroke would 
be an effective strategy for generating adequate lift in forward flight. The rotational force and 
moment components had noticeable portions generating both thrust and counteract pitching 
moment during pronation. In the upstroke phase, the added mass component played a major role in 
generating thrust in forward flight. The proposed model would be useful for a better understanding 
of flight stability, control, and the dynamic characteristics of flapping wing flyers, and for designing 
flapping-wing micro air vehicles.
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now regarded as one of the types of unsteady phenom-
ena [21, 22].

An analytical approach was derived by Ansari et al 
[23]. They classified aerodynamic mechanisms into 
the three major components of non-circulatory lift 
(added mass), circulatory lift, and unsteady circulatory 
lift (wake behavior). Mathematical expressions such as 
the Wagner, Loewy, and Kussner models were employed 
to describe the vortical behaviors. In addition, the Pol-
hamus leading-edge suction analogy [24–26] was used 
to describe the contribution of the LEV (vortex lift). 
The aerodynamic lift using this model was in line with 
experimental results [5] within differences of ~9%. In 
2007, Berman and Wang [27] derived a more general-
ized aerodynamic model that was based on the model 
of Andersen et al [28]. They took the viscous model into 
account to compensate for the low Re configuration and 
used the model to find energy-minimized wing kin-
ematics. Taha et al [29] proposed the use of Duhamel’s 
principle in an analytical model in order to consider 
the LEV contribution and the non-conventional lift 
curves. Their model showed fewer differences in the 
direct Navier–Stokes equation (DNS) results [30] than 
earlier models. More recently, Han et al [31] suggested 
an accurate pitching moment model that is critical to 
flight dynamic analyses. They investigated the behavior 
of the centers of pressure (CP) on a robotic wing model, 
showing that the quarter chord assumption (CP at 1/4c) 
may result in an incorrect pitching moment prediction.

Although recent models give accurate force and 
moment estimations for flapping wings, they are still 
constrained by each condition of use, such as a wing 
planform, Reynolds number Re, aspect ratio AR, and 
advance ratio J. Among them, J should remain at zero 
in order to satisfy the hovering condition and to yield an 
acceptable estimation. The works by Lentink and Dick-
inson [32, 33] are typical examples of how J distorts the 
overall aerodynamic characteristics. They revealed that 
the fluidic stability of the LEV is governed by rotational 
force components, i.e. angular, centripetal and Corio-
lis accelerations, which are functions of the J and AR. 
Recent work by Han et al [34, 35] also found that AR 
and J led to remarkable changes in the LEV and conse-
quent lift augmentation. According to their findings, a 
higher value of J can reduce by ~50% the aerodynamic 
performances of flapping wing [35].

Dickson and Dickinson [36] recognized that the 
direct implementation of the quasi-steady model [12] 
is not appropriate for forward flight. They defined the 
velocity ratio µ between the wing tip and forward flight 
speed and used it to revise the aerodynamic coefficients, 
which are in the form of quadratic functions of µ. With 
regard to FWMAVs, however, this remains question-
able because their model focused on fruit flies, which 
have ultra-low Re values (~102). As numerous studies 
have indicated, the Re of flapping wings which exceeds 
~103 induces distinctive aerodynamic characteristics. 
An intense spanwise flow [37], dual and multiple LEVs 
[38, 39], and a coherent system associated with LEV 

breakdowns [40, 41] are typical examples in the case of 
high Re (>103). Relatively weak viscous diffusion [42] 
and the consequent negligible portion of the viscous 
shear [43] are other features of a high Re. The revolv-
ing wing experiment conducted as part of their work 
[44] would also result in wake structures different from 
those formed by flapping wings [36]. These outcomes 
clearly suggest that the effects of J and a related compen-
sation methodology for an aerodynamic model should 
be investigated such that accurate aerodynamic forces 
and moments can be determined.

In this study, we conduct direct force/moment 
measurements of a model wing moving forward at a rel-
atively high Re and propose an extended aerodynamic 
model that can account for the effect of J. To this end, 
a high-precision scaled-up robotic manipulator [45] 
which is simultaneously controlled with a servo-driven 
towing tank is developed. The angle of attack α along 
with J were the variables of the present aerodynamic 
model, where J covered the maximum flight speeds of 
most insects [46, 47]. The present model will be help-
ful as it offers a better understanding of flight stability, 
control, and dynamics [48] for both flying insects and 
FWMAVs. It may also eventually be employed in the 
design of a bio-inspired FWMAV.

2.  Materials and methods

Figure 1 describes the towing tank and depicts 
a scaled-up robotic model with three rotational 
degrees of freedom in the stroke angle φB, pitch angle 
θB, and deviation angle ψB at a single pivot, where 
the superscript B denotes the body-fixed frame. α 
is typically defined as the chord line angle from the 
direction of the inflow, and it served as one of the 
parameters in the present aerodynamic model (refer to 
appendix B for details). Instead of multiple bevel gears 
as employed in previous studies [5, 49, 50], we used a 
differential-type gearbox (BS-45T, Kyouiku Gear) as a 
power train. Because this gearbox has only one bevel 
gear at the end of each shaft, we could overcome the 
geometrical constraints of the robotic model and could 
achieve the shortest distance to the wing root from the 
pivot point, a more reasonable second moment of the 
wing area r2, and kinematic similarity to living insects 
[51] (see the enlarged schematic in figure 1(a)). The 
excessively low tolerance of 1/4° guaranteed by the 
manufacturer allows for the precise control of arbitrary 
wing kinematics, and timing pulleys (GT2, MISUMI) 
suitable for positioning were mounted at the input 
shafts.

Figures 1(b) and (c) are schematics showing the 
servo-driven towing tank, which can be filled with up 
to four metric tons of water. A rack and pinion com-
bination was equipped to drive the manipulator for-
ward along the longitudinal direction. The lack gear 
has a length of 2.75 m and was installed across each 
side of the water tank. All of these servo motors were 
connected to a PC at a maximum baud rate of 2 Mbps 
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for simultaneous control. High-resolution encoders 
(1/4096°) installed in the motors (MX-28T, Robotis) 
enable precise positioning. An in-house code written 
in LabVIEW™ generated discrete position data arrays 
and updated the angular positions every 5 ms. This was 
enough to result in continuous wing motion.

The inverse Zimmerman wing planform [1], which 
consists of two quadratic curves close to the quarter 
chord, was employed. For sufficient rigidity, this wing 
model was made of a 3 mm thick transparent acrylic 
plate. Based on insect wings and on other fundamen-
tal studies indicating optimal AR values of ~3.0 [34],  

Figure 1.  Experimental setup. (a) Schematic of the three-rotational DOF robotic manipulator. (b) Side view of the servo-driven 
towing tank. (c) Front view.

Figure 2.  Temporal procedure for the force/moment measurement using the towing tank.

Bioinspir. Biomim. 12 (2017) 036004
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the AR and the spanwise length b were set as 3.0 and 
250 mm, respectively. A small six-axis loadcell (Nano17 
IP68, ATI Industrial Automation) with ranges of  ±25 N 
and  ±250 N mm was installed between the output 
shaft and the wing root with a margin of 0.2b; thus, the 
stroke axis was located 1.2b from the wingtip. As a result, 
the mean chord length c and the dimensionless second 
moment of the wing area r2̂ became 83.33 mm and 0.567, 
respectively, where the hat on r2 denotes normalization by 
R (see appendix A for details). A DAQ board (PCI-6143, 
NI) supporting simultaneous sampling and holding was 
employed to acquire raw signals on six channels.

Figure 2 explains how the aerodynamic force 
and moment for non-zero J cases were obtained. We 
employed the prescribed time-historical angular 
motions shown in figure 2(a). While ψB was fixed at 
zero for the horizontal stroke plane, φB and θB followed 

the motion profiles. At a fixed stroke amplitude φamp
B  of 

180°, the pitch amplitudes θamp
B  changed within 190° 

to  −10° at intervals of 10°. Hence, α in the stroke phase 
became  −5° to 95° (21 cases). The wingbeat frequency 
f was 1/16 s (0.0625 Hz) to maintain the proper range 
of Re. The sampling frequency was 200 Hz; thus, 3200 
samples in a unit wingbeat cycle were acquired.

φ
= =∞ ∞J

U

U

U

Rf2tip amp
� (1)

( ) ( )( )
ν

φ

ν
=

+
=

+∞U U c J Rf c
Re

1 2tip amp
�

(2)
As shown in equations (1) and (2), J and Re are 

functions of f. We selected the seven J cases of 0 (hover-
ing), 0.125, 0.25, 0.5, 0.75, 1.0, and  ∞  to cover all for-
ward flight speeds. Re was ~104, which corresponds to 
an adequate flight range of FWMAVs. A fixed value of f 
brought out slight variation of Re from 1.0 to 2.0  ×  104. 
This range of Re is considerably far from the critical Re 
(~103), as indicated in previous studies [37–44].

Figure 2 also presents the strategy used to avoid the 
influences of an underdeveloped wake and inertia force 

that arise due to the sudden departure of the wing. The 
sequence was briefly composed of three steps, i.e. oper-
ation, resting, and rewinding, with the latter including a 
second rest. During the operation step, the wing motion 
started from the rest in the middle of the upstroke. The 
motion was maintained during the wingbeat cycles 
T  =  2.5 in the cases of J  ⩽  0.25, whereas the operation 
when T  =  1.5 was enough to remove the effects when 
J  >  0.5 [35]. In the first resting step, the wing was tem-
porarily suspended when T  =  0.5 for the quiescent flow 
condition, and the tare weights for this attitude (middle 
of the downstroke) were collected. The model was then 
rewound to the initial location for repetition. The data 
acquired in this step was also used as the tare weights for 
this attitude (middle of the upstroke). Such sequence 
sets were repeated 20 times to confirm the repeatability 
of this apparatus. As shown in figure 2, the raw data sets 
were analogous to each other, which indirectly imply 
the suitability of this procedure.

3.  Feasibility of the quasi-steady 
assumption

Figure 3(a) explains the reference points, r2,F and 
r2,M, and the reference velocities of Uref and Uinst 
used to acquire the aerodynamic coefficients. First, 
we employed the conventional BET concept to 
find the reference points which are functions of the 
wing planform and the location of the stroke axis  
(see appendix A for details). Uref and Uinst were then 
derived by considering the relative wind speed at the 
middle of the stroke and the time-varying inflow speed, 
respectively, as shown in equations (3) and (4).

φ= = −φ φ= = ∞U U Rr Uref 0 2 0
^ ˙� (3)

φ φ= − ∞U t Rr t U tcosinst 2( ) ^ ˙( ) ( )� (4)

Figure 3(b) shows Uinst in a unit wingbeat cycle. The 
wing when hovering (J  =  0) had a constant Uinst due 
to the constant φ̇ motion profile in the stroke phase. 

Figure 3.  Definitions of the reference quantities and related motions. (a) A schematic of the wing in operation. (b) Instantaneous 
stroke velocity.

Bioinspir. Biomim. 12 (2017) 036004
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Uinst gradually changes as the J increases, and become 
close to zero in the middle of upstroke when J  =  0.5. 
Such a small value of Uinst resulted in nearly stagnant 
movement of the wing and an unreasonable outcome 
of the aerodynamic coefficients due to the divide-by-
zero error. When J  =  1.0, the reference point was moved 
forward even during the upstroke owing to the rapid 
forward speed. This also brought about an opposite 
angle of attack. As a result, we took the results until 
J  ⩾  −0.25 (during the upstroke when J  =  0.25) into 
account to build the model.

Figures 4(a) and (b) display the time-historical aer-
odynamic coefficients when J  =  0.5 as part of the test of 
the validity of the quasi-steady assumption. Here, the 
bar on each coefficient indicates that it is a Uref-based 
coefficient, as shown in equations (5) and (6).

ρ
=C

F

U S
F

net
1

2 ref
2� (5)

ρ
=C

F

U S
F

net
1

2 inst
2� (6)

CF and CM monotonically increased and gradually 
took on a sinusoidal shape as α increased. However, 
CF and CM showed nearly constant force and moment 
production levels during the entire stroke. These pro-
duction outcomes indicate that the time-historical 
changes of CF and CM stemmed solely from the rela-
tive freestream velocity φ∞U cos , with the unsteadiness 
negligible in most cases. These findings were consistent 

for all cases of α, indicating the appropriateness of the 
quasi-steady assumption at least in this higher range 
of Re at ~104. A linear decrement along the timeline in 
instances with higher values of α may arise due to the 
changing-LEV-axial-velocity, as Sun [48] pointed out. 

A large amplitude of φ = °180amp
B  aggravated this effect, 

because the wingtip in these moments was heading to 
the forward direction, and the freestream came from 
the wingtip. However, such an effect only appears to 
play a minor role in most cases. Because insects typically 
use a deep inclined stroke plane for propulsion, and the 
potential to face the wingtip toward the freestream does 
not arise. As shown in figure 4(b), it is still negligible 
near the middle of the stroke. We compiled the results in 
the shaded region around Δt/T  =  ±0.05 in the middle 
of the stroke to build the aerodynamic model.

Figures 5(a)–(c) denote the collected values of 
CL(α), CD(α), and CM(α) for nine cases of J. As expected, 
all CL values show sinusoidal lift curves [5] except for the 
results at J  =  ∞, which shows the typical aerodynamic 
characteristics of a low AR flat-plate wing [52]. The peak 
near α  =  45° in the case of J  =  0 (the thick gray line) 
is also in accord with the findings in other literatures 
[31]. One notable feature in CL is the peak location when 
trending toward a low α with an increase in J. It drifted 
widely from α ~ 55° at J  =  −0.25 (the thick blue dashed 
line) to α ~ 25° at J  =  ∞ (the thin black line). Han et al 
[35] inferred that α may play a substantial role in gov-
erning the LEV, equal to the extent of J. They compared 
to the results of Bross et al [53], finding that the LEV on 

Figure 4.  Time-historical values of CF and CM when J  =  0.25. (a) URef based CF and CM. (b) UInst based CF and CM.

Bioinspir. Biomim. 12 (2017) 036004
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a wing with a lower value of α would be rather stable at 
higher values of J. Their inference is clearly in line with 
such wide drift outcomes of the CL peaks.

Another finding was the substantial lift decrement 
as J increased. This led to a steady reduction of CL. CD 
was also reduced with an increase in J, which reflected 
the degraded vortical force caused by the unstable LEV 
in higher values of J [35].

The effects of J on the characteristics of CM should be 
highlighted. Strong pitching-down moment in negative  

J cases, as observed at high values of α, gradually weakening 
with an increase in J. When J  =  ∞, a sudden drop in CM 
which arose near the stall angle provided indirect evidence 
of flow separation and stall-like vortex structures [52].

//
ρ ρ

= =C C
M

U Sc

F

U S

M

F c

1Z X Z

X
M F

,wing

1

2 inst
2

,wing

1

2 inst
2�

(7)
Figure 5(d) describes the normalized locations of 

the centers of pressure CP along the chordwise direction 
(refer to equation (7) for the mathematical description). 

Figure 5.  CL(α), CD(α), and CM(α), and the normalized locations of CP in nine J cases as compiled for the aerodynamic models.  
(a) CL(α). (b) CD(α). (c) CM(α). (d) Normalized locations of CP.

Figure 6.  CL, CD, and CM with the regression curves as fit by the Polhamus analogy. (a) CL(α). (b) CD(α). (c) CM(α).

Bioinspir. Biomim. 12 (2017) 036004
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As Han et al [31] noted, CP when J  =  0 gradually moved 
to 1/2c, after which there was no noticeable difference in 
the negative J cases. As J increased, however, CP moved 
to the trailing edge at an earlier α, and CP at J  =  ∞ was 
finally fixed at 1/2c except for the pre-stall region. With 
regard to the LEV, which reinforces the adverse pressure 
near the leading edge, these curves suitably explain the 
behavior, which is attenuated with an increase in J [35].

4.  Devising the aerodynamic force and 
moment coefficients

Figure 6 shows the regression curves at J  =  −0.25, 
J  =  0.125, and J  =  1.0 as samples to validate the fitness 
of the curve-fit models. As shown in equations (8)–(10),  
we borrowed the Polhamus leading-edge suction 
analogy [24, 25] in order to ensure simplicity and to 
cover the effects of J, which distorts the curves from a 
first-order sinusoid. In this analogy, two independent 
coefficients of KP and KV represent the potential and 
vortex forces, respectively. The CM model was modified 
so that it matched the aerodynamic net forces and the 
location of CP; thus, the cosα values were removed 
from the second term. MATLAB® was employed to 
determine the values of KP and KV in finite J cases. All of 
the R-squares extracted from the curves of CL, CD and 
CM were higher than 0.992, 0.988, and 0.974, indicating 
the appropriateness of the regression curves.

( ) ( ) ( ) ( )

( ) ( ) ( )

α α α

α α

=

+

C J K J

K J

, sin cos

sin cos

L P,L
2

V,L
2

�
(8)

α α α

α

=

+

C J K J

K J

, sin cos

sin

D P,D
2

V,D
3

( ) ( ) ( ) ( )

( ) ( )
�

(9)

α α α

α

=

+

C J K J

K J

, sin cos

sin

M P,M
2

V,M
2

( ) ( ) ( ) ( )

( ) ( )
�

(10)

Equations (12) and (13) are the final forms of the 
correction factors KP and KV for the aerodynamic force 
and moment models, respectively. Table 1 also presents 
the sets of coefficients for these KP and KV values. We 
employed power functions to build these factors, as in 
Lee et al [54]. Using these forms gave us the advantage of 
being able to adjust both the singular points and converg-
ing values for each correction factor. In order to assign the 
singular points of the factors, for example, we added spe-
cific values to the actual J. These values were determined 
by the ideal case, in which the absolute stroke velocity on 
the reference point becomes zero. Given this supposition, 
the aerodynamic forces and moment acting on the sur-
face may be zero. Relying on the definition of J according 
to equation (1), these values for the forces and moment 

were finally calculated as r2̂ and rM̂, respectively.

( ^ )= + +K a J r db
P,F or V,F 2� (12)

( ^ )= + +K a J r db
P,M or V,M M� (13)

Figure 7 shows KP, KV, and the regression curves. 
One interesting feature is that all curves converged as J 
increased. This clearly indicates both a decrement of the 
aerodynamic performance [48] as well as the appropri-
ateness of this compensation methodology. The values 
of KV depending on J, accounting for the portion of KP 
in the low J cases, quantitatively demonstrated the deg-
radation of the vorticity of the LEV and the consequent 
weak vortex lift during forward flight [35, 45].

In order to consider the rotational force and 
moment components, we used an approach identical to 
that in the literature [12, 31]. Equation (14) was utilized 
to extract the rotational force coefficient CR, where �x0 is 
the non-dimensionalized location of the pitching axis.

π= − �C x0.75R 0( )� (14)

The contribution of the added mass on a flap-
ping wing is usually predicted by the inviscid theory 
[20]. However, this approach is only adequate when 
the flow is fully attached. Han et al [31] found that 
an inviscid-based added-mass model was not likely to 
be compatible in high Re and high α configurations, 
which introduce intricate wake structures, as indicated 
in earlier studies [37–44]. Note that an increase in J 
attenuates the LEV [35]. This implies that a wing in 
forward flight creates more irregularly shaped wake 
structures, which cannot be modelled by the conven-
tional aerodynamic model. In order to overcome this 
issue, DeLaurier [55] employed half of the added mass 
coefficient for a flapping wing in the post-stall region. 
This appears to be acceptable because it can be inferred 
that the attached flow only appears on the pressure 
side of the wing. The CFD results by Lee et al [54], 
which show that the correction factor of the added-
mass model was  <1, would support such an inference.

π=C 8A /� (15)

Equation (15) is the added mass coefficient in the 
present study, which is half of the theoretical value used 
by DeLaurier [55]. We used this coefficient for the added-
mass model with the simplified description proposed by 
Troung et al [56] (refer to appendix B for details).

5.  Results and discussion

Figures 8(a) and (b) display the time-historical lift, 
drag, and wing pitching moment in the cases of 
J  =  0.5 and J  =  1.0. In these cases, the wing follows 
artificial wing kinematics of the type widely employed 

Table 1.  Coefficients of the correction factors KP and KV.

a b d

Lift KP,L −2.109 −0.606 4.136

KV,L 2.659 −0.666 −0.344

Drag KP,D −0.182 −2.414 1.370

KV,D 0.765 −1.497 2.078

Pitching moment KP,M 0.803 −0.972 −0.363

KP,M −0.242 −1.354 −0.554

Bioinspir. Biomim. 12 (2017) 036004



8

J-S Han et al

in previous studies [6, 8, 22]. Borrowing certain 
notations [22], the wing motion can be expressed as 
follows: φamp  =  120°, αamp  =  90°, t/TR,φ  =  0.24, and 
t/TR,α  =  0.24. The previous quasi-steady estimations 
(the thin black lines) are represented by the hover-based 

semi-empirical aerodynamic model devised by Han 
et al [31]. In the present model, J was instantaneously 
calculated and applied to the model at each time step. 
The border was defined at J  >  −0.25 in order to prevent 
the extrapolation and divergence of KP and KV.

Figure 7.  Final forms of the correction factors KP and KV for the models (power functions).

Figure 8.  The time-historical lift, drag, and wing pitching moment for artificial wingbeat motion. (a) J  =  0.50. (b) J  =  1.0.

Bioinspir. Biomim. 12 (2017) 036004
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As shown in figures 8(a) and (b), the present model 
adequately estimated the time-historical lift and drag 
in most sections. At the beginning of each stroke, where 
strong peaks of wing-wake interaction existed in the 
hovering case, the model appeared to be more accurate, 
as the wings faced with the freestream could avoid the 
wake effects, as reported in Han et al [35]. However, the 
reductions of the rotational peaks in the measurements 
indicated that the simplified rotational force and moment 
models, based on the Kutta–Joukowski theory [12], should 
be revised at least for this artificial wingbeat motion.

The previous model (thin black lines) overesti-
mated the lift and drag, which mainly appeared in the 
downstroke. Note that the increase in J could depress 
the Coriolis and/or centripetal forces of the flow fields 
around the wing surface, thereby weakening the vor-

ticity of the LEV and consequently the overall aero-
dynamic performance [45, 57]. Thus, these types of 
overestimations are inevitable because the previous 
aerodynamic model was based on the hovering con-
figuration creating the stable LEV.

The final rows in figures 8(a) and (b) describe the 
wing pitching moments along the spanwise axis when 
J  =  0.50 and J  =  1.0. The previous moment model  
(the thin black lines) showed significant underestima-
tions with reference to the measurements, and these were 
particularly remarkable in the downstroke. The rota-
tional moment component (green dashes) appears to 
attempt to compensate for the peak immediately before 
the stroke reversal, but it becomes excessive at J  =  1.0. 
This clearly indicates that the previous model is not suit-
able for use to estimate the aerodynamic moment on the 

Figure 9.  Comparison results in practical cases, as obtained by the wing motions of a living hawkmoth [46]. (a) 2.9 m s−1 ( J  =  0.63). 
(b) 5.0 m s−1 (J  =  0.95). Reproduced with permission of the Journal of Experimental Biology [46].
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wing during forward flight. In contrast, each of the time-
historical estimations by the present model (red thick 
lines) compensated for these effects and was in good 
agreement with the measurements. There was slight gap 
at the stroke reversals in J  =  0.5, but it had mostly dis-
appeared at J  =  1.0. One noticeable outcome is the esti-
mation capabilities during the upstroke in both cases, 
signifying that using the instantaneous J to calculate the 
pitching moment is reasonable. This arises because the 
present model employed a negative value of J to yield CM 
in this phase. As Han et al [31] pointed out, the pitching 
moment is directly associated with longitudinal flight 
stability. This clearly indicates that the flight stability and 
control analysis relying on the previous aerodynamic 
model should be reinterpreted by the present model or 
other models that can encompass the effects of J [48].

One remaining issue associated with these types 
of aerodynamic models is the actual performances for 
practical configurations. The wing in this configura-
tion had fully 3D motion depending on the circum-
stances. In order to move forward, for example, the 
wing employs additional kinematics such as a deep 
inclined stroke plane β. Aerodynamic models in these 
situations may diverge from the quasi-steady assump-
tion and therefore provide inaccurate estimations of the 
aerodynamic force, moment, and trim condition which 
form the baseline of flight stability and control analyses.

In order to validate the model, we chose the wing-
beat motion of a hawkmoth at forward speeds of 2.9 and 
5.0 m s−1 [46], which correspond to the preferred flight 
speed [39] and the maximum flight speed. The wing 
kinematics of φ(t), θ(t), and ψ(t) were extracted from 
the literature [46] and were curve-fit with a third-order 
Fourier series. Here, θ(t) is the mean value of all of the 
cross-sections in the literature [46], and the stroke plane 
angles β were constant at 44.4° and 56.3°, respectively.

Figures 9(a) and (b) display the comparison results 
in practical cases. The graphs in the first row show the 
kinematics with α(t), where α(t) is the chord line angle 
from the inflow vector at the reference point (refer to 
appendix B for details). In both cases, the values of 
α(t) were comparably distorted from θ(t). Note the 
curves during the downstroke; α(t) at 2.9 m s−1 was 
augmented to over 45°, whereas α(t) in the case of  
5.0 m s−1 was instead reduced. With regard to the 
freestream, however, both wing kinematics appears ade-
quately to reflect each trim condition. At a flight speed 
of 2.9 m s−1, the lift only produced by the downstroke 
would be sufficient to keep the body aloft owing to the 
inflow velocity. On the other hand, the wing at 5.0 m s−1  
would attempt to reduce the drag using a low α rather 
than producing more lift, as the lift in this configura-
tion is strong enough due to the massive inflow.

The mean values in the 2.9 m s−1 case (the pre-
ferred flight speed) were compared with the trim con-
dition in order to validate such inferences. The pre-
sent aerodynamic model estimated the mean body lift  
(vertical force) and drag (horizontal force) as 0.109 and 
0.0075N, respectively. Given the relationship between the 
scaled-up model and an actual insect determined by Fry 
et al [58], the lift and drag were converted to 1.974 g and 
0.136 g. These numbers clearly indicated the trim condi-
tions (the weight of the hawkmoth was 1.995 g [46]) and 
the capability of the present aerodynamic model, which 
can provide accurate results even in practical cases.

The time-historical lift and drag (correspondingly 
the second and third rows in figure 10) also support 
the appropriateness of the present model. The time-
historical changes were in fairly good agreement with 
the measurements, only showing slight differences of 
1.8% and 6.6% from the measurements of the mean 
lift values. In contrast to the results from the present 

Figure 10.  Schematics of the time-varying force components during forward flight. (a) 2.9 m s−1 ( J  =  0.63). (b) 5.0 m s−1 ( J  =  0.95).
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model, the previous aerodynamic model did not com-
pensate for the effects of J, thereby yielding excessive lift 
estimations of 12% and 29% in the downstroke phase 
(the thin black lines in the second row). The drag at 
both flight speeds also drifted from the measurements. 
Regarding the pitching moments, the previous model 
estimated lower values at certain temporal locations.

One advantage of this type of aerodynamic model 
is that the force and moment can easily be decomposed 
into the translational, rotational, and added-mass comp
onents. Note that these components were individually 
governed by the α, α̇, and α̈, implying that we can very 
conveniently evaluate the wingbeat motion and predict 
which component is dominant when generating lift, 
thrust, and counteract moment in each stroke phase. In 
addition, an evaluation with living insects can offer infor-
mation about how insects use their wings to gain flight 
stability, which would be helpful for designing flapping 
actuators and motion profiles of FWMAVs in detail.

We found that most of the lift was produced by the 
translational component, and was solely distributed in 
the downstroke at both speeds (figure 10). These comp
onents accounted for 87.2% and 83.0% in the total lift 
production. The rotational components only accounted 
for 12.5% and 7.8%, and the added mass only had por-
tions of 0.65% and 1.73% in the total lift. These rota-
tional and added-mass components are much lower 
than those of a hovering fruit fly, playing a substantial 
role in lift production (~35% in the total lift production) 
[5]. In order words, translational force component may 
be enough by itself to generate lift in forward flight.

Another notable feature is that the values of α, which 
gradually decreased with respect to an increase in J, were 
likely to be associated with each maximum value of CL. 
This variation in α can not only be observed on the wings 
of fruit flies [59], which have a stroke plane of nearly zero 
and which use asymmetric pitching motions for free-
flight maneuvers [60], but also on other insects [61] which 
directly tilt the mean force vector using an inclined stroke 
plane. In the case of a hawkmoth [46], the α reconstructed 
from the kinematics varied from ~50° at 0.9 m s−1 to ~10° 
at 5.0 m s−1 near the middle of the downstroke. Note the 
distribution of the peaks of CL, as shown in figure 5(a). This 
change of α with respect to J is fairly coincident with the 
maximum values of CL. This implies that insects may use an 
optimal α to generate lift depending on the circumstances.

We also found that the rotational components during 
pronation (0.2  <  t/T  <  0.4 at 2.9 m s−1; 0.26  <  t/T  <  0.46 
at 5.0 m s−1) had a remarkable role in the generation of 
thrust. These accounted for 22.6% and 75.0%. The added 
mass also contributed to thrust generation at 13.0% and 
45.8% at forward speeds of 2.9 and 5.0 m s−1. The total 
portion of ~121% at 5.0 m s−1 should be noted. This 
indicates that the translational component could not 
generate any thrust at this speed, while the rotational and 
added-mass components must be employed to eliminate 
the drag and to maintain this high-speed forward flight.

The rapid wing pitch during pronation also led 
to strong pitching-down moment near the end of the 
upstroke. These pitching-down moments counteract 

to cancel each other out, with the pitching-up moment 
likely accumulating when the wing produces lift dur-
ing the downstroke. We inferred that an insect may use 
the rapid wing pitch for the trim, and the rotational 
moment components are essential to generate the 
pitching-down moment. As stated above, the rotational 
components were solely governed by the pitch rate. This 
clearly indicates that the wing pitch mechanism should 
be considered with α̇ and α̈ in order to improve the  
performance capabilities of FWMAVs.

6.  Conclusion

In order to allow a model to predict accurate aerodynamic 
forces and moment during a forward flight configuration, 
the aerodynamic characteristics depending on α and J 
in 147 individual cases were collected and interpreted. 
The Polhamus leading-edge suction analogy was then 
employed, and the power functions were used to build 
the correction factors KP and KV. All KP and KV values 
converged as J increased, indicating both the attenuation 
of the aerodynamic performances and the feasibility of 
the compensation strategy used in the present study. The 
increase in KP and the degradation of KV with respect to J, 
which describe LEV attenuation and the weakened vortex 
lift, were also in line with earlier works on the effects of J 
on a flapping wing. While the previous model over- or 
underestimated the aerodynamic forces and moment, this 
model clearly showed adequate estimations. The model 
also showed better estimations than those by the previous 
model in practical cases. In particular, the present model 
brought a noticeable improvement in the aerodynamic 
pitching moment estimation capability, even when the 
wing had fully 3D motion. This model indicated that 
a smaller α during the downstroke may be adequate to 
generate lift during high-speed forward flight. Moreover, 
the rotational and added-mass components during the 
upstroke played a substantial role in producing the thrust 
and in maintaining the body pitch. The proposed model 
can contribute to determining the design requirements 
of FWMAVs, including the detailed wingbeat motion 
profiles, and can provide the basis for analyzing the flight 
stability, control, and dynamic characteristics of living 
insects and FWMAVs during forward flight.
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Appendix A.  The geometric parameters  
for the BET

This chapter derives BET-based geometrical parameters 
of flapping wings. This would help readers understand 
definitions that require the additional parameters 
of r2 and rM. Figure A1 shows a schematic of the 
blade elements and major reference quantities. Here, 
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R denotes the pivot-based geometric parameters. 
Reconstruction starts from the typical Euler number, 
which is expressed as the surface area and velocity square. 
In the case of hovering, this number can be rewritten 
as equations (A.1) and (A.2) using the locations of the 
blade elements and the related integration.

( ) ( ˙ ) ( )

˙ ( )

∫

∫

∑ ρ ρ φ

ρφ

= ⋅ ⋅ ∆ = ⋅

= ⋅

=
F C U c r r C r c r r

C r c r r

1

2

1

2
d

1

2
d

N R

R
ele 1

F ele
2

ele 0 F
2

F
2

0
2

�

(A.1)

Using the normalized lengths of ĉ  and r̂ , we obtain the 
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The simple process above clearly indicates the necessity 
of r2̂ and rM̂ as the reference points for flapping wing 

aerodynamics and implies that = ⋅U U rRef tip 2̂ is 
more suitable as the reference velocity to express the 
aerodynamic characteristics of biological flyers, as 
empirically found by Lua et al [47].

For the wing with a horizontal stroke plane in for-
ward flight, φ φ= + ∞U r U cosele

˙ . The integration term 
in equation (A.1) is then written as follows:
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Meanwhile, the reference point-based description 
becomes
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Although equation (A.5) is theoretically adequate 
for the BET in forward flight, we used equation (A.7) 
to determine CF and CM, as derived from the fixed 

reference point. In fact, the r 2
2^  and r1

1^  combination 

in equation (A.5) offers the moving reference point 
depending on J. This implies that the interpretation 

Figure A1.  Geometry of the model wing.
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of the effect of J would be somewhat flawed due to its 
movement. In contrast, using equation (A.7) gave us a 
simple and more intuitive sense. This is also how power 
functions are utilized to build correction factors, which 
are functions of r2̂. When considering the potential of 
readers who must use the present aerodynamic model 
to design FWMAVs, using equation (A.7) is much 
easier when determining the wing planform, and it 
yields a proper reference point regardless of a change in 
the forward speed. In our calculation, there were only 
slight differences between them. In the case of J  =  0.25,  
for example, the maximum difference was  <3%.

Appendix B.  Mathematical description of 
the aerodynamic model

Figure B1 describes two different frames on the wing 
and the body and the relationship between the wing 
kinematics. These utilize the notation used in Willmott 
and Ellington [46]. Due to this notation, the stroke 

plane angle β and deviation angle ψ should show a 
negative rotating direction in Euler angles, and these 
were included in equation (B.1).

Figure B2 shows the schematics of the angles of 
attack and the directions of the translational lift and 
drag components on the inboard and outboard blade 
elements. In contrast to hovering flight, which does not 
have a freestream, the angles of attack on each blade ele-
ment vary with the spanwise location and are gradually 
distributed on the wing. This implies that the magni-
tudes of the angles of attack and the directions of the lift 
and drag should be individually calculated with respect 
to the inflow vectors (the sum of Vwing and Vbody), and 
applying a vector relationship may provide an easier 
description of the aerodynamic model.

The Euler angle from the body-fixed frame to the 
wing-fixed frame RRB W→  could be derived using the fol-
lowing equation (B.1), where the superscripts B and W 
denote the body- and wing-fixed frames, respectively.

Figure B2.  The values of αi and VVi at the in- and outboard blade elements. (a) Inboard section. (b) Outboard section.

Figure B1.  The schematic of the body- and wing-fixed frames, and the kinematic definitions.
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Using the above descriptions, the forward velocity 

of the body in the body-fixed frame VV body
B  could be 

transformed to the wing-fixed frame, as shown in 
equation (B.2).

=VV RR VVbody
W B W

body
B→� (B.2)

The angular velocity of the wing in the wing-fixed 
frame can be expressed by equation (B.3), as φ̇, ψ̇, and 
θ̇ are defined with respect to the first, second, and third 
destinations of RRB W→ .
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Equation (B.4) expresses the inflow velocity vector on 

the ith blade element VV i,inflow
W , where rri

W denotes the 
distance from the pivot to the ith blade and only has a 

y-component. VV i
W shown in equation (B.5) is the final 

version of VV i,inflow
W  for the BET, where the y-component 

of VV i,inflow
W  is eliminated as the BET is based on two 

dimensions.
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In order to calculate the angle of attack of the ith blade 
αi, we defined another unit vector lying on the ith 

blade element cci
W^ , which is heading to the leading edge. 

Subsequently, αi becomes the angle between the two 
vectors. It can be determined by equation (B.6),
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The derivatives of the combination of the Euler angle are as follows:
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Equations (B.8) and (B.9) are the final forms of the 
present aerodynamic model, where the subscripts 
of trans, rot, and added denote the translational, 
rotational, and added-mass components. All of the 
following formulas in the curved brackets yield scalar 
values, and the following unit vectors assign the 
direction at the wing-fixed frame.

= + +FF FF FF FFW
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W
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W
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W� (B.8)
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The inverse Euler angle can be used to transform to the 
body-fixed frame, as follows:

=FF RR FFTB B W W[ → ]

=MM RR MMTB B W W[ → ] :

the moments at the pivot in figure B1.
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