paper The following article is Open access

The High Energy Light Isotope eXperiment program of direct cosmic-ray studies

, , , , , , , , , , , , , , , , , , , , , , , , , , , and

Published 18 January 2024 © 2024 The Author(s)
, , Citation S. Coutu et al 2024 JINST 19 C01025 DOI 10.1088/1748-0221/19/01/C01025

1748-0221/19/01/C01025

Abstract

HELIX is a new NASA-sponsored instrument aimed at measuring the spectra and composition of light cosmic-ray isotopes from hydrogen to neon nuclei, in particular the clock isotopes 10Be (radioactive, with 1.4 Myr lifetime) and 9Be (stable). The latter are unique markers of the production and Galactic propagation of secondary cosmic-ray nuclei, and are needed to resolve such important mysteries as the proportion of secondary positrons in the excess of antimatter observed by the AMS-02 experiment. By using a combination of a 1 T superconducting magnet spectrometer (with drift-chamber tracker) with a high-resolution time-of-flight detector system and ring-imaging Cherenkov detector, mass-resolved isotope measurements of light cosmic-ray nuclei will be possible up to 3 GeV/n in a first stratospheric balloon flight from Kiruna, Sweden to northern Canada, anticipated to take place in early summer 2024. An eventual longer Antarctic balloon flight of HELIX will yield measurements up to 10 GeV/n, sampling production from a larger volume of the Galaxy extending into the halo. We review the instrument design, testing, status and scientific prospects.

Export citation and abstract BibTeX RIS

Published by IOP Publishing Ltd on behalf of Sissa Medialab. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1748-0221/19/01/C01025