technical report The following article is Open access

Forward Beam Monitor for the KATRIN experiment

, , , , , , , , and

Published 14 March 2022 © 2022 The Author(s)
, , Citation A. Beglarian et al 2022 JINST 17 T03002 DOI 10.1088/1748-0221/17/03/T03002

1748-0221/17/03/T03002

Abstract

The KArlsruhe TRItium Neutrino (KATRIN) experiment aims to measure the neutrino mass with a sensitivity of 0.2 eV (90 % CL). This will be achieved by a precision measurement of the endpoint region of the β-electron spectrum of tritium decay. The β-electrons are produced in the Windowless Gaseous Tritium Source (WGTS) and guided magnetically through the beamline. In order to accurately extract the neutrino mass the source activity is required to be stable and known to a high precision. The WGTS therefore undergoes constant extensive monitoring from several measurement systems. The Forward Beam Monitor (FBM) is one such monitoring system. The FBM system comprises a complex mechanical setup capable of inserting a detector board into the KATRIN beamline with a positioning precision of better than 0.3 mm. The electron flux density at that position is on the order of 106 s-1 mm-2. The detector board contains two silicon detector chips of p-i-n diode type which can measure the β-electron flux from the source with a precision of 0.1 % within 60 s with an energy resolution of FWHM = 2 keV. The unique challenge in developing the FBM arises from its designated operating environment inside the Cryogenic Pumping Section which is a potentially tritium contaminated ultra-high vacuum chamber at cryogenic temperatures in the presence of a 1 T strong magnetic field. Each of these parameters do strongly limit the choice of possible materials which e.g. caused difficulties in detector noise reduction, heat dissipation and lubrication. In order to completely remove the FBM from the beam tube a 2 m long traveling distance into the beamline is needed demanding a robust as well as highly precise moving mechanism.

Export citation and abstract BibTeX RIS

Published by IOP Publishing Ltd on behalf of Sissa Medialab. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1748-0221/17/03/T03002