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Abstract: The ALICE experiment uses an optical read-out protocol called Detector Data Link
(DDL) to connect the detectors with the computing clusters of Data Acquisition (DAQ) and High-
Level Trigger (HLT). The interfaces of the clusters to these optical links are realized with FPGA-
based PCI-Express boards. The High-Level Trigger is a computing cluster dedicated to the online
reconstruction and compression of experimental data. It uses a combination of CPU, GPU and
FPGA processing. For Run 2, the HLT has replaced all of its previous interface boards with the
Common Read-Out Receiver Card (C-RORC) to enable read-out of detectors at high link rates and
to extend the pre-processing capabilities of the cluster. The new hardware also comes with an
increased link density that reduces the number of boards required. A modular firmware approach
allows different processing and transport tasks to be built from the same source tree. A hardware
pre-processing core includes cluster finding already in the C-RORC firmware. State of the art
interfaces and memory allocation schemes enable a transparent integration of the C-RORC into the
existing HLT software infrastructure. Common cluster management and monitoring frameworks
are used to also handle C-RORC metrics. The C-RORC is in use in the clusters of ALICE DAQ and
HLT since the start of LHC Run 2.
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1 Introduction

1.1 ALICE online systems

ALICE [1] is one of the four major experiments at the Large Hadron Collider at CERN. It is
dedicated to the study of the physics of strongly interacting matter in central heavy-ion collisions
and is designed to cope with high particle densities in central Pb-Pb collisions. ALICE consists
of 19 subdetectors that are read out with a custom optical link protocol called Detector Data Link
(DDL) [2]. The DDL connects the front end read-out electronics in the experiment cavern with the
computing clusters of Data Acquisition (DAQ) and High-Level Trigger (HLT). The DDL protocol
is available in two versions running on a number of different hardware devices and can be operated
at link rates between 2 and 6 Gbps [3].

The data from the detectors is received in custom FPGA based Read-Out Receiver Cards
(RORC) in the Data Acquisition system, transferred into the host PC and handed over to the DAQ
software framework. Additionally, an exact copy of the data is sent towards the High-Level Trigger
already inside the DAQ firmware. The High-Level Trigger also uses FPGA based read-out boards
to receive detector data from Data Acquisition, process it and send it data back to Data Acquisition
via separate RORCs.

The Common Read-Out Receiver Card (C-RORC) [5] was developed as a joint effort of
ALICE DAQ and HLT to enable the read-out of detectors at higher link rates and to extend the
online pre-processing capabilities of the HLT. Higher link rates are especially anticipated by the
Time Projection Chamber (TPC) [6] and the Transition Radiation Detector (TRD) [7]. Additionally,
the interfaces of the previous generation of HLT read-out boards are not available anymore in recent
server PCs. An overview of the read-out architecture with focus on the Read-Out Receiver Cards
is shown in figure 1. The DDL links are drawn as blue arrows. The orange boxes indicate the
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Figure 1. Overview of the ALICE online read-out system with focus on the FPGA based Common Read-Out
Receiver Cards (C-RORC) highlighted in orange. ALICE schematics from [4].

installation of C-RORCs in the systems of DAQ and HLT. Several detectors continue to use the first
generation of DDL during Run 2 so some of the links are still read out from DAQ using the previous
generation of read-out boards, D-RORCs, as shown in the leftmost read-out path. The C-RORC is
backward compatible with these boards, which allows DAQ to install a mixture of C-RORCs and
D-RORCs and enables HLT to connect to the DAQ D-RORCs.

The C-RORC is a XILINX Virtex®-6 based FPGA board with an eight lane PCI-Express
Generation 2 interface to the host PC and 12 optical links realized with three QSFP sockets. The
optical links can be used up to around 6 Gbps limited by the capabilities of the FPGA. The new
hardware provides a factor of six increased link density compared to the previous boards which
in return significantly reduces the number of FPGA boards and server nodes required to read out
the detectors. Two optional pluggable DDR3 SO-DIMM modules allow to integrate large off-
chip memories into the firmware. An on-board flash storage for multiple FPGA bitfiles and a
configuration controller provide a fast and reliable FPGA configuration with failsafe fallback image
and control path to the board even if the PCI-Express link is down.

The C-RORC boards required for Run 2 were produced together with the ATLAS Experi-
ment [8], which is using the same hardware for the Run 2 upgrade of their Trigger and Data
Acquisition ReadOut System (TDAQ ROS) [9]. Around 370 boards were produced and installed
into the Run 2 production systems of ALICE and ATLAS in Q3 2014 and are in use since the start
of Run 2 in June 2015.
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1.2 ALICE High-Level Trigger

The High-Level Trigger (HLT) is responsible for the online reconstruction and compression of
detector data. The HLT selects interesting events (triggering) or instructs the Data Acquisition
system to discard the detector raw data and to replace it with the results of the online reconstruction.
Raw data replacement and HLT data compression significantly reduce the data volume towards
permanent storage in the DAQ system and are especially important to handle the data rates in
heavy-ion runs. Online reconstruction is required for high-level trigger algorithms and can be
used for more elaborate data compression. The reconstructed HLT tracks are used as seeds for the
offline reconstruction to save memory and CPU resources there. Online calibration of the TPC
is being prepared, working on reconstructed tracks to compensate for temperature and pressure
changes inside the detector. This frees up offline compute resources and makes HLT reconstruction
more precise. Additionally, reconstruction allows much more detailed quality assurance and online
conditions monitoring than what is possible with the raw data.

TheHLT is a computing cluster consisting of 180 server nodes, eachwith aGraphics Processing
Unit (GPU) and 74 of the servers with a C-RORC installed. The machines are interconnected with
a 56 Gbps Infiniband FDR network for data transfer and an Ethernet network for management
tasks. The reconstruction is realized with the help of FPGA-based cluster finding already in the
C-RORC firmware and tracking on GPU accelerators [10] in addition to CPU based data processing
and compression. The experimental data is received via C-RORCs from the Data Acquisition
system, processed inside the HLT and sent back to DAQ via C-RORCs. In this sense, the HLT
appears like another detector to DAQ.

2 High-Level Trigger C-RORC firmware

The C-RORC has two functionalities in the HLT cluster: it is used as a receiving entity for
experimental data coming from the Data Acquisition system (HLT-IN) and as a sending entity to
provide the processed results back to DAQ (HLT-OUT). Data transfer from and to the C-RORC is
realized with Direct Memory Access (DMA) to maximize the data throughput of the interface while
saving CPU resources. Firmware support for DMA data transfer via PCI-Express is required in
both directions, DMA-to-host and DMA-to-device, to serve both use cases. For the same reason
two different modules are available as interface to DDL via the optical links: in the HLT-IN case
the Destination Interface Unit (DIU) is implemented to receive data and in the HLT-OUT case the
Source Interface Unit (SIU) is integrated to send data. Unfortunately, not all HLT-IN units run at
the same link speed because different detectors use different versions of the DDL protocol. An
optional hardware pre-processing core is integrated into the read-out path on a per-detector level.
The firmware is designed in a modular approach so that the interfaces between the different building
blocks are well defined and the blocks are easily interchangeable. This also allows the integration
of the optional FastClusterFinder core, an online pre-processing component to perform hardware
cluster finding on TPC data. The cluster finding is described in detail in section 3. The data
direction, the different link speeds and also performance reasons for the hardware pre-processing
require a set of different firmware images to be deployed in the HLT cluster for different detectors.
Not all features make sense to be integrated into the same firmware image, but are enabled or
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Figure 2. Simplified overview of the firmware building blocks for the HLT-IN case.

disabled with compile time switches from the same source tree. A simplified overview of the
HLT-IN firmware building blocks is shown in figure 2.

The PCI-Express interface in the firmware is implemented with a custom DMA engine. With
up to 12 data channels (one per optical link) and the requirement of independent operation of all
channels and the possibility of attaching them to the existing HLT software infrastructure, none of
the commercially available DMA cores could provide the required functionality. The DMA engine
supports scatter-gather list DMA and operates on ring buffers. The scatter-gather list support of the
DMA engine allows the engine to be used with almost any memory allocation scheme in the host
machine. Two ring buffers are used per data channel, one as event buffer and one as report buffer.
In the DMA-to-host case, experimental data is continuously written into the event buffer. After
each event an entry is written into the report buffer containing offset, size and status flags of the
corresponding event data block in the event buffer. The software notifies the firmware of processed
events in the event buffers and thus makes the buffer space available for DMA again. In the case of
DMA-to-device, the software pushes a list of descriptors into the DMA engine. The engine fetches
the data according to these descriptors and writes a report buffer entry when done.

The DDL protocol block is an IP core provided by the Data Acquisition group. It connects
directly to the FPGA transceivers and provides a simple bus interface with flow control. Two
DDR3 memory controllers are implemented in the HLT-IN firmware images to allow the replay
of generated or previously recorded detector data into the system at its very first entry point into
the HLT. The HLT output firmware can be configured in a way that it discards event data right
before it would be sent back to DAQ. This allows to do standalone tests of the full HLT cluster with
configurable data, event rates or sizes. The replay system proved to be a valuable tool to test the
limits of different HLT configurations during the initial commissioning of the HLT system, but also
during the integration of new or updated processing components.

In order to validate the hardware pre-processing core the TPC read-out firmware is equipped
with a secondary read-out path: the TPC raw data is additionally available via separate DMA chan-
nels and can optionally be read out to compare the hardware pre-processing results with a software
reference operating on raw data. The firmware allows reading out only a configurable selection of the
raw data in order to enable a validation also in a high load scenario or as a continuous parallel service.

Several error counters and status flags throughout the whole data path allow to gather statistics
at several stages and help to detect error conditions. Status and control signals of the transceivers, the
protocol and all firmware components are available from an on-chip slow control bus via software.
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Status information from the QSFP modules is available via an I2C master core also connected to
the slow control bus and allows diagnosis of the fiber connection network.

3 FPGA hardware cluster finding

The FastClusterFinder is an optional pre-processing component in the HLT C-RORC firmware
for the read-out of the Time Projection Chamber (TPC) data. The FastClusterFinder was already
developed for and used in Run 1 and is still an essential component of the system that significantly
reduced the amount of CPU computing power required in the HLT [11]. It is operating on TPC
raw data and is performing cluster finding in time direction and one space direction along a row
of read-out pads. Clusters of neighboring pads are merged and overlapping clusters are separated.
The correlation of data from adjacent pads and sample times allows clusters to be localized below
the pad dimension and time stamp resolution. The FastClusterFinder is designed in a way that it
can handle the full bandwidth of the DDL link so it does not throttle the event rate and introduces
only a marginal additional latency in the read-out path.

The algorithm consists of four major processing steps. In a first stage the detector protocol is
decoded. The hardware address of the input data block allows a look-up of the physical location of
the data origin as row and pad. The look-up additionally provides a per-pad gain correction factor
which is applied on the input data stream. A sliding window peak finding algorithm in a second
stage analyzes the time based sequence of data samples and cuts out a region of interest (ROI)
around the peaks. The ROI is characterized with weighted sums in time and space direction, as well
as the peak value and the accumulated charge. The resulting clusters are merged with clusters from
neighboring pads in a third step. The last stage is a single floating point division with data formatting
and handover to the DMA engine interface. In all except the final step the data processing operations
are based on integer or fixed point arithmetic, which makes it well suited for the C-RORC FPGA.

The Readout Control Unit (RCU), the device responsible to ship data from the TPC front-end
electronics to the Data Acquisition system, is being upgraded to a new revision, the RCU2 [12]. The
RCU2 is doubling the read-out link speed to 4.25 Gbps which also influences the FastClusterFinder
in the HLT C-RORC firmware: the core has to run with twice the clock rate to maintain its ability
to handle the full DDL bandwidth. Some data reordering tasks are moved into the RCU2 firmware
which reduces the resource usage of the HLT FastClusterFinder core. In order to achieve the
required clock rates some of the processing components were rewritten and register stages were
integrated into existing parts where possible.

The FastClusterFinder core for the RCU2 is now running at 318.75MHz in the C-RORC FPGA
and can handle the full input bandwidth of the DDL2 link at 4.25 Gbps. Six FastClusterFinder
instances are implemented in each of the 36 TPC C-RORCs in the HLT. The TPC end-plates are
segmented into 2× 18 trapezoidal sectors and the DDL links from each sector are read out from the
same C-RORC. This allows local processing of TPC data already on the input node without having
to move data around. The FastClusterFinder enables cluster finding at the full data rate requiring
zero additional CPU resources.

– 5 –
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Figure 3. Mapping of physically scattered DMA memory into a virtually continuous user space buffer.

4 Integration into the HLT data transport framework

The HLT data processing is realized with an object oriented data transport framework based on
the publisher-subscriber model [13]. A chain of framework components allows detector data to
be processed in a pipelined way. Gatherer components collect event fragments from the different
input sources, bridges provide a transparent connection between different processing nodes and
scatterer components allow processing tasks to be distributed among parallel processes or nodes. A
framework interface to AliRoot, the ALICE Offline framework for simulation, reconstruction and
analysis [14], allows AliRoot tasks to be instantiated as the actual processing entities. This enables
the same code to be used online in the HLT and in the Offline environment. The required processing
steps for each run depend on the list of detectors being used and the read-out configuration. An
automated HLT tool prepares this chain, the underlying publisher-subscriber data graph and the
distribution of these processes across the worker nodes at the start of each run from a set of
configuration files and the information received from the Experiment Control System (ECS).

Data exchange between C-RORC and software framework is implemented with the Portable
Driver Architecture (PDA) [15] and device access is realized fully from user space. DMA memory
for the ring buffers is allocated with the help of a minimal kernel module using standard Linux
allocation methods. The allocated memory is not necessarily physically continuous but may be
scattered into several chunks. The physically scattered memory fragments are mapped twice and
consecutively into a virtually continuous buffer in user space so the data processing software does
not even notice the scattering or the ring buffer structure. This allows a transparent handling of a
ring buffer wrap-around: events always appear in a single, virtually continuous memory region. An
illustration of the buffer mapping is shown in figure 3. The ring buffers for C-RORC read-out are
allocated once at the start of run so they do not increasememory fragmentation over acquisition time.

The data source components in the publisher-subscriber chain initialize the C-RORC DMA
engine, allocate buffers and poll the report buffer for new events. Each DDL link is handled by a
separate read-out process, so up to 12 processes are accessing the sameC-RORC. Whenever an event
is received, its descriptor is published into the processing chain. Follow-up subscriber components
directly access the C-RORC DMA buffer based on the information in the event descriptor, process
the data and put the result into their own output buffers. Whenever an event is processed completely,
the corresponding buffer memory is made available for DMA again. The data sink components
connect to the HLT-OUT C-RORCs in the same way: the processed data is placed into DMA buffers
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by the last publisher component in the chain. The data output process sends an event descriptor to
the C-RORC. The DMA engine fetches the event from the DMA buffer and writes a report buffer
entry when done. The firmware takes care about transferring the event to the Data Acquisition
via DDL. In parallel to data handling, the data source and sink components also monitor the DDL
link and the corresponding DMA engine: link errors or stall conditions are detected and reported
immediately. Per-event conditions are handed over to software synchronously with the event stream
using predefined flags in the report buffer entry.

5 C-RORC maintenance and monitoring

A total of 74 C-RORCs are installed in the HLT. Depending on data direction and connected DDLs,
they have to have different firmware images loaded. In order to keep track on the firmware of each
board an automated firmware management system is deployed. The software installation, config-
uration and maintenance of the HLT machines is done with Puppet [16] and Foreman [17]. The
existing system is configured to also watch and adjust the C-RORC firmware. Each machine with a
C-RORC installed is assigned to a host group defining theC-RORC function. A central configuration
file defines firmware revision and type for each host group. The currently active firmware revision
and type is available via Facter, a Puppet tool to gather facts about the client system. A Puppet run
on the client compares the current firmware with the target version of the host group. On mismatch,
the correct FPGA bitfile is fetched and written into the C-RORC on-board flash via PCI-Express. A
reconfiguration of the FPGA is triggered via the on-board configuration controller. After a rescan of
the PCI-Express bus the C-RORC is available againwith the new firmware. A firmware update of the
whole cluster is as easy as uploading the new firmware image to the server and adjusting one config-
uration file. The next Puppet run takes care of everything else without even rebooting the machine.

In addition to the information about the firmware image itself, each board provides status and
health readings from on-board sensors. These per-board readings are queried by Zabbix [18], which
is used as monitoring solution for the host metrics of all HLT machines. This allows to monitor
FPGA temperature and PCI-Express link state of all boards in the cluster and makes it possible to
alert the administrator in case of error conditions. Monitoring of per-link conditions is integrated
into the data transport framework as described in section 4.

6 Summary and Run 2 status

The Common Read-Out Receiver Card (C-RORC) is a common hardware platform used in the
production systems of ALICE DAQ, ALICE HLT and ATLAS TDAQ ROS. The modular structure
of the HLT C-RORC firmware allows several firmware variants to be created from the same source
tree, including variants with online data pre-processing already in the FPGA. The FastClusterFinder
is an online pre-processing component in the HLT C-RORC firmware that performs cluster finding
on TPC raw data. It complements the CPU and GPU processing power of the HLT cluster by an
FPGA contribution. The C-RORC is integrated into the existing HLT data transport framework
with data source or sink components using a user space device driver. Standard open source cluster
management tools are used to assure correct firmware images and tomonitor all boards in the cluster.

The C-RORC is in use since the start of LHC Run 2 and all ALICE data from and to HLT as
well as all data from the TPC and the TRD is handled by C-RORCs. The HLT in Run 2 is connected
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to 437 DDLs from DAQ of which 216 are coming from TPC. The DDL link rates vary between 4.0
Gbps for TRD, 4.25 Gbps for TPC RCU2 and 2.125 Gbps for everything else. The data path from
HLT to DAQ is done with 28 DDLs running at 5.3125 Gbps. The raw TPC data is discarded by the
Data Acquisition system and only the compressed TPC data from HLT containing the clusters from
the FastClusterFinder is sent to permanent storage. This reduces the TPC data volume by a factor
of around three to four.

Acknowledgments

Supported by the German Federal Ministry of Education and Research BMBF 05P15RFCA1.

References

[1] ALICE collaboration, The ALICE experiment at the CERN LHC, 2008 JINST 3 S08002.

[2] ALICE collaboration, H. de Groot, ALICE trigger data-acquisition high-level trigger and control
system: technical design report, CERN-LHCC-2003-062, CERN, Geneva Switzerland (2003).

[3] F. Carena et al., DDL, the ALICE data transmission protocol and its evolution from 2 to 6Gb/s, 2015
JINST 10 C04008.

[4] J. Thaeder, 3D ALICE schematic, August 2012.

[5] H. Engel and U. Kebschull, Common read-out receiver card for ALICE Run 2, 2013 JINST 8 C12016.
[6] J. Alme et al., The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high

multiplicity events, Nucl. Instrum. Meth. A 622 (2010) 316 [arXiv:1001.1950].

[7] ALICE collaboration, ALICE transition-radiation detector: technical design report,
CERN-LHCC-2001-021, CERN, Geneva Switzerland (2001).

[8] ATLAS collaboration, The ATLAS experiment at the CERN Large Hadron Collider, 2008 JINST 3
S08003.

[9] W. Vandelli et al., Evolution of the ReadOut System of the ATLAS experiment, PoS(TIPP2014)205.

[10] ALICE collaboration, ALICE HLT high speed tracking on GPU, IEEE Trans. Nucl. Sci. 58 (2011)
1845.

[11] T. Alt, High-speed algorithms for event reconstruction in FPGAs, presentation at IEEE Real-Time,
(2010).

[12] J. Alme et al., RCU2 — the ALICE TPC readout electronics consolidation for Run 2, 2013 JINST 8
C12032.

[13] T.M. Steinbeck, V. Lindenstruth and M.W. Schulz, An object-oriented network-transparent data
transportation framework, IEEE Trans. Nucl. Sci. 49 (2002) 455.

[14] ALICE off-line project webpage, http://aliweb.cern.ch/Offline/, accessed October 2015.

[15] D. Eschweiler and V. Lindenstruth, The portable driver architecture, in Proceedings of the 16th

Real-Time Linux Workshop, Open Source Automation Development Lab (OSADL), Germany
October 2014.

[16] Puppet, Open Source Configuration Management webpage, https://puppetlabs.com, accessed October
2015.

[17] Foreman webpage, http://theforeman.org, accessed October 2015.

[18] Zabbix, Enterprise Open Source Monitoring for Networks and Applications webpage,
http://www.zabbix.com, accessed October 2015.

– 8 –

http://dx.doi.org/10.1088/1748-0221/3/08/S08002
http://cds.cern.ch/record/684651
http://dx.doi.org/10.1088/1748-0221/10/04/C04008
http://dx.doi.org/10.1088/1748-0221/10/04/C04008
http://dx.doi.org/10.1088/1748-0221/8/12/C12016
http://dx.doi.org/10.1016/j.nima.2010.04.042
http://arxiv.org/abs/1001.1950
http://cds.cern.ch/record/519145
http://dx.doi.org/10.1088/1748-0221/3/08/S08003
http://dx.doi.org/10.1088/1748-0221/3/08/S08003
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(TIPP2014)205
http://dx.doi.org/10.1109/TNS.2011.2157702
http://dx.doi.org/10.1109/TNS.2011.2157702
http://dx.doi.org/10.1088/1748-0221/8/12/C12032
http://dx.doi.org/10.1088/1748-0221/8/12/C12032
http://dx.doi.org/10.1109/TNS.2002.1003773
http://aliweb.cern.ch/Offline/
https://puppetlabs.com
http://theforeman.org
http://www.zabbix.com

	Introduction
	ALICE online systems
	ALICE High-Level Trigger

	High-Level Trigger C-RORC firmware
	FPGA hardware cluster finding
	Integration into the HLT data transport framework
	C-RORC maintenance and monitoring
	Summary and Run 2 status

