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Abstract. We investigate a boundary-value problem for the steady isothermal flow of an
incompressible viscoelastic fluid of Oldroyd type in a 3D bounded domain with impermeable
walls. We use the Fujita threshold-slip boundary condition. This condition states that the fluid
can slip along a solid surface when the shear stresses reach a certain critical value; otherwise the
slipping velocity is zero. Assuming that the flow domain is not rotationally symmetric, we prove
an existence theorem for the corresponding slip problem in the framework of weak solutions.
The proof uses methods for solving variational inequalities with pseudo-monotone operators
and convex functionals, the method of introduction of auxiliary viscosity, as well as a passage-
to-limit procedure based on energy estimates of approximate solutions, Korn’s inequality, and
compactness arguments. Also, some properties and estimates of weak solutions are established.

1. Introduction
We consider the system of nonlinear partial differential equations governing steady-state flows

of an incompressible viscoelastic fluid of Oldroyd type [1] in a bounded domain Ω ⊂ R3 with
sufficiently smooth boundary ∂Ω under the Fujita threshold-slip boundary condition [2]:

ρ(u · ∇)u− div S +∇π = ρf in Ω, (1.1)

S = E + (1− ω)µD(u) in Ω, (1.2)

∇ · u = 0 in Ω, (1.3)

E + λ(u · ∇)E = ωµD(u) in Ω, (1.4)

u · n = 0 on ∂Ω, (1.5)

|(Sn)tan| ≤ q on ∂Ω, (1.6)

|(Sn)tan| < q =⇒ utan = 0 on ∂Ω, (1.7)

|(Sn)tan| = q =⇒ utan ↑↓ (Sn)tan on ∂Ω, (1.8)

where u = u(x) is the velocity at the point x ∈ Ω, S = S(x) is the extra-stress tensor, π = π(x)
is the pressure, f = f(x) denotes the body force, E = E(x) is the elastic part of the stress tensor,
D(u) is the strain-rate tensor,

D(u) =
1

2
(∇u + (∇u)T),

http://creativecommons.org/licenses/by/3.0
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µ > 0 is the viscosity coefficient, ρ > 0 is the density of the fluid, λ > 0 denotes the stress
relaxation time, ω ∈ (0, 1) is a dimensionless parameter, q = q(x) ≥ 0 is the threshold of the
tangential stress, n = n(x) denotes the outward-directed unit normal vector to ∂Ω, and ( · )tan

stands for the tangential component of a vector, i.e.,

utan = u− (u · n)n.

The symbol ↑↓ is used to denote oppositely directed vectors. In other words, for any a,b ∈ R3

a ↑↓ b ⇐⇒ a · b + |a||b| = 0,

where | · | denotes the Euclidean norm.
The unknowns in system (1.1)–(1.8) are u, S, E, and π, while all other quantities are assumed

to be given.
In the present paper, we introduce the concept of weak solutions of problem (1.1)–(1.8) by the

use of variational inequalities. Under appropriate conditions on the data, we prove a theorem
on the existence and properties of weak solutions to (1.1)–(1.8).

The main novelty of our results is that the phenomenon of threshold slip at solid surfaces
is taken into account. This study continues the series of articles written by the author [3–6],
devoted to slip problems for flows of viscoelastic Oldroyd fluids.

Remark 1. Starting from pioneering works of M. Renardy [7] and C. Guillopé & J.-C. Saut [8],
the equations of motion of Oldroyd-type fluids have been studied by many specialists (see, e.g.,
[9–19] and the references therein). A detailed analysis of mathematical results for the Oldroyd
model and other similar non-Newtonian models can be found in the review article [20].

Remark 2. If we make λ = ω = 0 formally, system (1.1)–(1.8) reduces to the classical Navier–
Stokes equations with threshold-slip boundary conditions. For such type of slip problems, well-
posedness results were obtained by H. Fujita [2]; in this regard, see also the papers [21, 22].

2. Notations
Denote by R3×3

sym the space symmetric matrices of size 3×3 with the following scalar product:

A : B =
3∑

i,j=1

AijBij

for the matrices A = (Aij) and B = (Bij).
We use the standard notation

Lp(Ω,Rd), Hm(Ω,Rd) = Wm,2(Ω,Rd)

for the Lebesgue and Sobolev spaces of functions defined on Ω and with values in Rd. For a
detailed treatment of these spaces, consult, e.g., [23].

As is well known, it is possible to ascribe a value at the boundary (the trace) to vector
functions from the space H1(Ω,Rd). For that we use the trace operator [24]

γ0: H1(Ω,Rd)→ H1/2(∂Ω,Rd)

such that γ0w = w|∂Ω when w : Ω̄ → Rd is a smooth vector function. In the sequel, for
v ∈ H1(Ω,Rd), we shall write simply v|∂Ω instead of γ0v.

Denote by C∞0 (Ω,R3×3
sym) the set of infinitely differentiable functions with support contained

in Ω and with values in R3×3
sym.
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Let us introduce the function spaces needed below:

H2
0(Ω,R3×3

sym) = the closure of the set C∞0 (Ω,R3×3
sym) in the space H2(Ω,R3×3

sym),

Q(Ω,R3) = {v ∈ C∞(Ω̄,R3) : ∇ · v = 0, v|∂Ω · n = 0},

X(Ω,R3) = the closure of the set Q(Ω,R3) in the space H1(Ω,R3),

L2
+(∂Ω,R) = {v ∈ L2(∂Ω,R) : v(x) ≥ 0 for a.e. x ∈ ∂Ω}.

Assuming that Ω ⊂ R3 is not a body of revolution, we define the norm in X(Ω,R3) by the
formula

‖v‖2X(Ω,R3) =

∫
Ω

|D(v)|2 dx.

It follows from Korn’s inequality (see the Appendix, Proposition 2 (a)) that the norm ‖·‖X(Ω,R3)

is equivalent to the norm induced from the Sobolev space H1(Ω,R3).

3. Weak (variational) formulation of problem (1.1)–(1.8)
Assume that the following conditions hold:

0 < λ, 0 < µ, 0 < ω < 1, f ∈ L2(Ω,R3), q ∈ L2
+(∂Ω,R). (3.1)

Definition. We say that a triplet

(u,S,E) ∈ X(Ω,R3)× L2(Ω,R3×3
sym)× L2(Ω,R3×3

sym)

is a weak solution of problem (1.1)–(1.8) if the condition (1.2) is valid and

−ρ
3∑

i=1

∫
Ω

uiu ·
∂w

∂xi
dx +

∫
Ω

E : D(w) dx− 1

ωµ

∫
Ω

|E|2 dx

+(1− ω)µ

∫
Ω

D(u) : D(w − u) dx +

∫
∂Ω

q|w| ds−
∫
∂Ω

q|u| ds

≥ ρ
∫
Ω

f · (w − u) dx ∀w ∈ X(Ω,R3), (3.2)

∫
Ω

E : F dx− λ
3∑

i=1

∫
Ω

uiE :
∂F

∂xi
dx = ωµ

∫
Ω

D(u) : F dx ∀F ∈ H2
0(Ω,R3×3

sym). (3.3)

Remark 3. Let us explain how relations (3.2) and (3.3) arise. Suppose that (u,S,E, π) is a
classical solution to problem (1.1)–(1.8) and w ∈ X(Ω,R3). If we take the scalar product of
both sides of (1.1) by the vector function w−u and integrate by parts over the domain Ω, then
we obtain

−ρ
3∑

i=1

∫
Ω

uiu ·
∂w

∂xi
dx +

∫
Ω

S : D(w − u) dx−
∫
∂Ω

(Sn) · (w − u) ds = ρ

∫
Ω

f · (w − u) dx.
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Substituting (1.2) into the second term of the last equality, we get

−ρ
3∑

i=1

∫
Ω

uiu ·
∂w

∂xi
dx +

∫
Ω

E : D(w − u) dx + (1− ω)µ

∫
Ω

D(u) : D(w − u) dx

−
∫
∂Ω

(Sn) · (w − u) ds = ρ

∫
Ω

f · (w − u) dx. (3.4)

Further, taking the scalar product of (1.4) with E and integrating over the domain Ω, we obtain∫
Ω

|E|2 dx = ωµ

∫
Ω

D(u) : E dx, (3.5)

where we used the following equality

3∑
i=1

∫
Ω

ui
∂E

∂xi
: E dx = 0.

Combining (3.4) and (3.5), we find that

−ρ
3∑

i=1

∫
Ω

uiu ·
∂w

∂xi
dx +

∫
Ω

E : D(w) dx− 1

ωµ

∫
Ω

|E|2 dx

+(1− ω)µ

∫
Ω

D(u) : D(w − u) dx−
∫
∂Ω

(Sn) · (w − u) ds = ρ

∫
Ω

f · (w − u) dx. (3.6)

It can be shown that the system of boundary conditions (1.6)–(1.8) is equivalent to the
following system:

|(Sn)tan| ≤ q on ∂Ω,

(Sn)tan · utan + q|utan| = 0 on ∂Ω.

Employing these relations and the Cauchy–Schwarz inequality, we deduce

−
∫
∂Ω

(Sn) · (w − u) ds =

∫
∂Ω

(Sn)tan · (u−w)tan ds

= −
∫
∂Ω

q|utan|+ (Sn)tan ·wtan ds ≤ −
∫
∂Ω

q|u| ds+

∫
∂Ω

q|w| ds.

If we combine this with (3.6), we obtain (3.2).
On taking the scalar product of both the left-hand and right-hand sides of (1.4) with a vector

function F ∈ H2
0(Ω,R3×3

sym) and integrating over Ω, we get (3.3).
Finally, it should be also noted that if a weak solution (u,S,E) of problem (1.1)–(1.8) is

sufficiently regular, then there exists a function π such that (u,S,E, π) is a classical solution to
problem (1.1)–(1.8).
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4. Main results
We are now in a position to state our main results.

Theorem. Assume that Ω ⊂ R3 is not a body of revolution and relations (3.1) hold. Under
these conditions, we have

(i) boundary-value problem (1.1)–(1.8) has at least one weak solution (u,S,E) such that

(1− ω)µ

∫
Ω

|D(u)|2 dx +
1

ωµ

∫
Ω

|E|2 dx +

∫
∂Ω

q|u| ds ≤ ρ
∫
Ω

f · u dx; (4.1)

(ii) the set of weak solutions to problem (1.1)–(1.8) is sequentially weakly closed in the space

X(Ω,R3)× L2(Ω,R3×3
sym)× L2(Ω,R3×3

sym);

(iii) if (u0,S0,E0) is a weak solution of problem (1.1)–(1.8) such that

(u0,S0,E0) ∈ X(Ω,R3)× L2(Ω,R3×3
sym)×H1(Ω,R3×3

sym),

then

(1− ω)µ

∫
Ω

|D(u0)|2 dx +
1

ωµ

∫
Ω

|E0|2 dx +

∫
∂Ω

q|u0| ds = ρ

∫
Ω

f · u0 dx; (4.2)

(iv) if there exists a potential h ∈ H1(Ω,R) such that f = ∇h, then (u0,S0,E0) = (0,0,0).

5. Sketch of the proof of the theorem
The proof of statement (i) is derived in four steps.
Step 1. For a fixed u ∈ X(Ω,R3), we consider the following linear problem depending on a

positive parameter ε:
Find E ∈ H2

0(Ω,R3×3
sym) such that

ε

∫
Ω

∆E : ∆F dx +

∫
Ω

E : F dx− λ
3∑

i=1

∫
Ω

uiE :
∂F

∂xi
dx

= ωµ

∫
Ω

D(u) : F dx ∀F ∈ H2
0(Ω,R3×3

sym). (5.1)

For any ε > 0 and u ∈ X(Ω,R3), problem (5.1) has a unique solution. Denote by Tε(u) the
solution of this problem. It can be proved that the operator

Tε: X(Ω,R3)→ H2
0(Ω,R3×3

sym)

is completely continuous.
Step 2. Let us consider one more auxiliary problem:
Find u ∈ X(Ω,R3) such that

−ρ
3∑

i=1

∫
Ω

uiu ·
∂w

∂xi
dx +

∫
Ω

Tε(u) : D(w − u) dx + (1− ω)µ

∫
Ω

D(u) : D(w − u) dx

+

∫
∂Ω

q|w| ds−
∫
∂Ω

q|u| ds ≥ ρ
∫
Ω

f · (w − u) dx ∀w ∈ X(Ω,R3). (5.2)
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By [X(Ω,R3)]∗ denote the dual space of X(Ω,R3) and introduce the following operators:

M: X(Ω,R3)→ [X(Ω,R3)]∗,

〈M(u),w〉 = (1− ω)µ

∫
Ω

D(u) : D(w) dx,

Kε: X(Ω,R3)→ [X(Ω,R3)]∗,

〈Kε(u),w〉 = −ρ
3∑

i=1

∫
Ω

uiu ·
∂w

∂xi
dx +

∫
Ω

Tε(u) : D(w) dx,

J : X(Ω,R3)→ R,

J(u) =

∫
∂Ω

q|u| ds.

In these notations, problem (5.2) can be written as the following variational inequality

〈M(u) + Kε(u)− ρf ,w − u〉+ J(w)− J(u) ≥ 0 ∀w ∈ X(Ω,R3). (5.3)

Observe that M is a monotone operator and

〈M(u),u〉 = (1− ω)µ‖u‖2X(Ω,R3).

Moreover, it can be shown that the sum M + Kε is a pseudo-monotone operator and

〈M(u) + Kε(u),u〉+ J(u)

‖u‖X(Ω,R3)
→ +∞

as ‖u‖X(Ω,R3) → +∞. Then from the existence results for variational inequalities with pseudo-
monotone operators and convex functionals (see the Appendix, Proposition 1), it follows that
for any ε > 0 inequality (5.3) has a solution uε ∈ X(Ω,R3).

Step 3. Let εn > 0 be a sequence such that εn → 0 as n→∞. We denote by uεn the solution
of (5.3) corresponding to ε = εn. Set Eεn = Tεn(uεn). Obviously, we have

εn

∫
Ω

∆Eεn : ∆F dx +

∫
Ω

Eεn : F dx− λ
3∑

i=1

∫
Ω

uεniEεn :
∂F

∂xi
dx

= ωµ

∫
Ω

D(uεn) : F dx ∀F ∈ H2
0(Ω,R3×3

sym), (5.4)

−ρ
3∑

i=1

∫
Ω

uεniuεn ·
∂w

∂xi
dx +

∫
Ω

Eεn : D(w − uεn) dx

+(1− ω)µ

∫
Ω

D(uεn) : D(w − uεn) dx +

∫
∂Ω

q|w| ds−
∫
∂Ω

q|uεn | ds

≥ ρ
∫
Ω

f · (w − uεn) dx ∀w ∈ X(Ω,R3). (5.5)
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Using (5.4) and (5.5), we establish estimates independent of εn:

‖uεn‖X(Ω,R3) ≤
ρ

(1− ω)µ
‖f‖[X(Ω,R3)]∗ , (5.6)

‖Eεn‖L2(Ω,R3×3
sym) ≤ ρ

√
ω

1− ω
‖f‖[X(Ω,R3)]∗ . (5.7)

Step 4. We want to pass to the limit n → ∞ in (5.4) and (5.5). Taking into account the
estimates (5.6) and (5.7), we can assume without loss of generality that

lim
n→∞

uεn = u∗ weakly in X(Ω,R3), (5.8)

lim
n→∞

Eεn = E∗ weakly in L2(Ω,R3×3
sym) (5.9)

for some u∗ ∈ X(Ω,R3) and E∗ ∈ L2(Ω,R3×3
sym).

The weak convergence (5.8) and the compactness of the embeddings

i: X(Ω,R3)→ L4(Ω,R3), γ0: X(Ω,R3)→ L2(∂Ω,R3)

imply that
lim
n→∞

uεn = u∗ strongly in L4(Ω,R3), (5.10)

lim
n→∞

uεn |∂Ω = u∗|∂Ω strongly in L2(∂Ω,R3). (5.11)

Putting F = Eεn in (5.4), we see that∫
Ω

D(uεn) : Eεn dx ≥ 1

ωµ

∫
Ω

|Eεn |2 dx.

If we combine this inequality with (5.5), we obtain

−ρ
3∑

i=1

∫
Ω

uεniuεn ·
∂w

∂xi
dx +

∫
Ω

Eεn : D(w) dx

− 1

ωµ

∫
Ω

|Eεn |2 dx + (1− ω)µ

∫
Ω

D(uεn) : D(w − uεn) dx

+

∫
∂Ω

q|w| ds−
∫
∂Ω

q|uεn | ds ≥ ρ
∫
Ω

f · (w − uεn) dx ∀w ∈ X(Ω). (5.12)

Using (5.8)–(5.11) and the following inequalities∫
Ω

|D(u∗)|2 dx ≤ lim inf
n→∞

∫
Ω

|D(uεn)|2 dx, (5.13)

∫
Ω

|E∗|2 dx ≤ lim inf
n→∞

∫
Ω

|Eεn |2 dx, (5.14)

we pass to the lower limit in (5.12). The result is

−ρ
3∑

i=1

∫
Ω

u∗iu∗ ·
∂w

∂xi
dx +

∫
Ω

E∗ : D(w) dx
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− 1

ωµ

∫
Ω

|E∗|2 dx + (1− ω)µ

∫
Ω

D(u∗) : D(w − u∗) dx

+

∫
∂Ω

q|w| ds−
∫
∂Ω

q|u∗| ds ≥ ρ
∫
Ω

f · (w − u∗) dx ∀w ∈ X(Ω,R3). (5.15)

Further, fix an arbitrary vector function Φ from the space C∞0 (Ω,R3×3
sym). Putting F = Φ in

(5.4) and integrating by parts the first term, we obtain

εn

∫
Ω

Eεn : ∆(∆Φ) dx +

∫
Ω

Eεn : Φ dx− λ
3∑

i=1

∫
Ω

uεniEεn :
∂Φ

∂xi
dx = ωµ

∫
Ω

D(uεn) : Φ dx.

Taking into account (5.8)–(5.10), we pass to the limit n→∞ in the last equality and obtain∫
Ω

E∗ : Φ dx− λ
3∑

i=1

∫
Ω

u∗iE∗ :
∂Φ

∂xi
dx = ωµ

∫
Ω

D(u∗) : Φ dx.

Since the set C∞0 (Ω,R3×3
sym) is dense in the space H2

0(Ω,R3×3
sym), the last equality remains valid if

we replace Φ with an arbitrary vector function F ∈ H2
0(Ω,R3×3

sym). Thus, we have

∫
Ω

E∗ : F dx− λ
3∑

i=1

∫
Ω

u∗iE∗ :
∂F

∂xi
dx = ωµ

∫
Ω

D(u∗) : F dx ∀F ∈ H2
0(Ω,R3×3

sym). (5.16)

Let us define S∗ by the formula

S∗ = E∗ + (1− ω)µD(u∗). (5.17)

Then relations (5.15) and (5.16) together with (5.17) mean that the triplet (u∗,S∗,E∗) is a weak
solution to problem (1.1)–(1.8).

In addition, setting w = 0, from (5.12) we derive

(1− ω)µ

∫
Ω

|D(uεn)|2 dx +
1

ωµ

∫
Ω

|Eεn |2 dx +

∫
∂Ω

q|uεn | ds ≤ ρ
∫
Ω

f · uεn dx.

Employing (5.10), (5.11), (5.13), and (5.14), we can pass to the lower limit in the last inequality
as n → ∞ and obtain the energy estimate (4.1) with u = u∗ and E = E∗. Thus, statement (i)
is proved.

Further, using the passage-to-limit procedure as above, we establish that the set of weak
solutions to problem (1.1)–(1.8) is sequentially weakly closed in the space

X(Ω,R3)× L2(Ω,R3×3
sym)× L2(Ω,R3×3

sym).

Now we show that equality (4.2) holds. By definition, we have∫
Ω

E0 : F dx− λ
3∑

i=1

∫
Ω

u0iE0 :
∂F

∂xi
dx = ωµ

∫
Ω

D(u0) : F dx

for any F ∈ H2
0(Ω,R3×3

sym). After integrating the second term by parts, we get

∫
Ω

E0 : F dx + λ
3∑

i=1

∫
Ω

u0i
∂E0

∂xi
: F dx = ωµ

∫
Ω

D(u0) : F dx.
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Since H2
0(Ω,R3×3

sym) is dense in the space L2(Ω,R3×3
sym), it follows that the last equality is valid

for any vector function F ∈ L2(Ω,R3×3
sym). Setting F = E0, we find∫

Ω

|E0|2 dx = ωµ

∫
Ω

D(u0) : E0 dx. (5.18)

Putting u = u0, E = E0, w = 2u in the inequality (3.2) and taking into account (5.18), we
derive the following inequality

(1− ω)µ

∫
Ω

|D(u0)|2 dx +
1

ωµ

∫
Ω

|E0|2 dx +

∫
∂Ω

q|u0| ds ≥ ρ
∫
Ω

f · u0 dx. (5.19)

On the other hand, substituting u = u0, E = E0, w = 0 in (3.2), we obtain

(1− ω)µ

∫
Ω

|D(u0)|2 dx +
1

ωµ

∫
Ω

|E0|2 dx +

∫
∂Ω

q|u0| ds ≤ ρ
∫
Ω

f · u0 dx.

This inequality together with (5.19) give (4.2).
Finally, if there exists a function h ∈ H1(Ω,R) such that f = ∇h, then∫

Ω

f · u0 dx =

∫
Ω

∇h · u0 dx =

∫
∂Ω

hu0 · n ds−
∫
Ω

hdiv u0 dx = 0.

Combining this with (4.2) and applying Korn’s inequality, we get (u0,S0,E0) = (0,0,0).
The theorem is completely proved.

6. Concluding remarks
In this paper, we studied the threshold-slip problem for an incompressible viscoelastic fluid

of Oldroyd type, assuming that the flow domain Ω is not rotationally symmetric. This condition
plays an important role in the proof of the existence of weak solutions, because for such domains
Korn’s inequality ensures the coercivity of the relevant operators. Using Proposition 2 (b)
(see the Appendix), one can obtain similar results for the case of a flow in a hollow body of
revolution under the additional boundary condition u|Σ = 0, where Σ is a part of ∂Ω.

7. Appendix
For the convenience of readers, we provide two statements used in Section 5.
Proposition 1 (see [25]). Let V be a reflexive Banach space, V∗ its the dual space,

A: V → V∗ a pseudo-monotone operator, and J : V → R a lower semi-continuous convex
functional. Suppose also that

〈A(v),v〉+ J(v)

‖v‖V
→ +∞

as ‖v‖V → +∞. Then, for an arbitrary z ∈ V∗, there exists an element uz ∈ V such that

〈A(uz)− z,w − uz〉+ J(w)− J(uz) ≥ 0 ∀w ∈ V.

Proposition 2 (Korn’s inequalities; see, e.g., [26]). Assume that Ω is a bounded domain in
space R3 and ∂Ω ∈ C0,1. Under these conditions, we have
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(a) if Ω is not a body of revolution, then there is a constant C1 = C1(Ω) > 0 such that

‖D(v)‖2
L2(Ω,R3×3

sym)
≥ C1(Ω)‖v‖2H1(Ω,R3) for all v ∈ H1(Ω,R3) such that v|∂Ω · n = 0;

(b) if Σ ⊂ ∂Ω and the surface measure of Σ is positive, then there is a constant C2 = C2(Ω) > 0
such that

‖D(v)‖2
L2(Ω,R3×3

sym)
≥ C2(Ω)‖v‖2H1(Ω,R3) for all v ∈ H1(Ω,R3) such that v|Σ = 0.
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