This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Close this notification
Paper The following article is OPEN ACCESS

Classical and quantum superfield invariants in $\mathscr{N}$ = (1, 1), 6D SYM theory

Published under licence by IOP Publishing Ltd
, ,

1742-6596/965/1/012021

Abstract

We give an overview of recent results on the classical and quantum superfield invariants of $\mathscr{N}$ = (1, 1), 6D supersymmetric Yang-Mills theory in the off-shell $\mathscr{N}$ = (1, 0) and on-shell $\mathscr{N}$ = (1, 1), 6D harmonic superspaces.

Export citation and abstract BibTeX RIS

cc-by

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  • [1]
    Beisert N 2010 On Yangian Symmetry in Planar N = 4 SYM Preprint arXiv:1004.5423 [hep-th]

    PreprintGoogle Scholar

  • [2]
    Dennen T and Huang Y 2011 Dual Conformal Properties of Six-Dimensional Maximal Super Yang-Mills Amplitudes JHEP 1101 140 Preprint arXiv:1010.5874 [hep-th]

    CrossrefPreprintGoogle Scholar

  • [3]
    Tseytlin A A 1997 On non-abelian generalization of Born-Infeld action in string theory Nucl. Phys. B 501 41-52 Preprint hep-th/9701125

    CrossrefPreprintGoogle Scholar

  • [4]
    Frampton P H and Kephart T W 1983 Explicit Evaluation of Anomalies in Higher Dimensions Phys. Rev. Lett. 50 1343

    CrossrefGoogle Scholar

  • [5]
    Bern Z, Carrasco J J M, Dixon L J, Johansson H and Roiban R 2010 The Complete Four-Loop Four-Point Amplitude in N=4 Super-Yang-Mills Theory Phys. Rev. D 82 125040 Preprint arXiv:1008.3327 [hep-th]

    CrossrefPreprintGoogle Scholar

  • [6]
    Berkovits N, Green M B, Russo J G and Vanhove P 2009 Non-renormalization conditions for four-gluon scattering in supersymmetric string and field theory JHEP 0911 063 Preprint arXiv:0908.1923 [hep-th]

    PreprintGoogle Scholar

  • [7]
    Bjornsson J 2011 Multi-loop amplitudes in maximally supersymmetric pure spinor field theory JHEP 1101 002 Preprint arXiv:1009.5906 [hep-th]

    CrossrefPreprintGoogle Scholar

  • [8]
    Cederwall M 2013 Pure spinor superfields - an overview Preprint arXiv:1307.1762 [hep-th]

    PreprintGoogle Scholar

  • [9]
    Howe P S, Stelle K S and West P C 1985 N = 1, d = 6 harmonic superspace Class. Quant. Grav. 2 815

    IOPscienceGoogle Scholar

  • [10]
    Zupnik B M 1986 Six-dimensional Supergauge Theories in the Harmonic Superspace Sov. J. Nucl. Phys. 44 512

    Google Scholar

  • [11]
    Galperin A S, Ivanov E A, Kalitzin S, Ogievetsky V I and Sokatchev E S 1984 Unconstrained N = 2 matter, Yang-Mills and supergravity theories in harmonic superspace Class. Quant. Grav. 1 469-498

    IOPscienceGoogle Scholar

  • [12]
    Galperin A S, Ivanov E A, Ogievetsky V I and Sokatchev E S 2001 Harmonic Superspace (Cambridge University Press) 306

    CrossrefGoogle Scholar

  • [13]
    Bossard G, Ivanov E and Smilga A 2015 Ultraviolet behavior of 6D supersymmetric Yang-Mills theories and harmonic superspace JHEP 1512 085 Preprint arXiv:1509.08027 [hep-th]

    PreprintGoogle Scholar

  • [14]
    Bossard G, Howe P S and Stelle K S 2009 The Ultra-violet question in maximally supersymmetric field theories 2009 Gen. Rel. Grav. 41 919 Preprint arXiv:0901.4661 [hep-th]

    CrossrefPreprintGoogle Scholar

  • [15]
    Buchbinder I L, Ivanov E A, Merzlikin B S and Stepanyantz K V 2016 One-loop divergences in the 6D, N = (1, 0) abelian gauge theory Phys. Lett. B 763 375-381 Preprint arXiv:1609.00975 [hep-th]

    CrossrefPreprintGoogle Scholar

  • [16]
    Buchbinder I L, Ivanov E A, Merzlikin B S and Stepanyantz K V 2017 One-loop divergences in 6D, N = (1, 0) SYM theory JHEP 1701 128 Preprint arXiv:1612.03190 [hep-th]

    CrossrefPreprintGoogle Scholar

  • [17]
    Buchbinder I L, Ivanov E A, Merzlikin B S and Stepanyantz K V 2017 Supergraph analysis of the one-loop divergences in 6D, N = (1, 0) and N = (1, 1) gauge theories Nucl. Phys. B 921 127-158 Preprint arXiv:1704.02530 [hep-th]

    CrossrefPreprintGoogle Scholar

  • [18]
    Howe P S, Sierra G and Townsend P K 1983 Supersymmetry in six dimensions Nucl. Phys. B 221 331-348

    CrossrefGoogle Scholar

  • [19]
    Ivanov E A, Smilga A V and Zupnik B M 2005 Renormalizable supersymmetric gauge theory in six dimensions Nucl. Phys. B 726 131-148 Preprint hep-th/0505082

    CrossrefPreprintGoogle Scholar

  • [20]
    Ivanov E A and Smilga A V 2006 Conformal properties of hypermultiplet actions in six dimensions Phys. Lett. B 637 374-381 Preprint hep-th/0510273

    CrossrefPreprintGoogle Scholar

  • [21]
    Howe P S and Stelle K S 1984 Ultraviolet Divergences in Higher Dimensional Supersymmetric Yang-Mills Theories Phys. Lett. B 137 175-180

    CrossrefGoogle Scholar

  • [22]
    Markus N and Sagnotti A 1984 A test of finiteness predictions for supersymmetric theories Phys. Lett. B 135 85-90

    CrossrefGoogle Scholar

  • [23]
    Buchbinder I L and Pletnev N G 2015 Construction of 6D supersymmetric field models in N = (1, 0) harmonic superspace Nucl. Phys. B 892 21-48 Preprint arXiv:1411.1848 [hep-th]

    CrossrefPreprintGoogle Scholar

  • [24]
    Buchbinder I L and Pletnev N G 2015 Leading low-energy effective action in the 6D hypermultiplet theory on a vector/tensor background Phys. Lett. B 744 125-130 Preprint arXiv:1502.03257 [hep-th]

    CrossrefPreprintGoogle Scholar

Export references: BibTeX RIS