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Abstract. Paper clarifies the necessity of the emergency mechanical brake systems usage for 

wind turbines. We made a deep analysis of the wind turbine braking methods available on the 

market, identifying their strengths and weaknesses. The electromechanical braking appeared 

the most technically reasonable and economically attractive. We described the developed 

combined electromechanical brake system for vertical axis wind turbine driven from electric 

drive with variable torque enough to brake over the turbine even on the storm wind speed up to 

45 m/s. The progress was made due to the development of specific kinematic brake system 

diagram and intelligent control system managed by special operation algorithm.  

1.  Introduction 

During the last decade several countries have been actively engaged in the development of the 

Arctic territories. The northern territories are full of undiscovered mineral deposits, and that was the 

main reason of this activity. According to the UN estimates, the cost of the mineral reserves on the RF 

Arctic territories comprises over 21 trillion dollars [1, 2]. About 90 % of the Russian gas are produced 

on the Yamal [3, 4]. Besides, the Arctic territories are treated as strategic locations. Military facilities 

(for example, air defense complexes) or navigation facilities (GLONASS stations) can be placed there 

[5]. The Yamal peninsula is also unique because it is equidistant from Paris and Beijing. Thus, in the 

existing geopolitical environment the region can become a central link in the energy reserves supply 

chain throughout the entire continent. 

Currently, two thirds of the Russian territory are still not electrified by the centralized network. [6, 

7]. It can be easily explained economically – the cost of installing power electric lines and their 

operation and maintenance expenses will be very high, and it may take too long for them to pay back. 

However, it should be noted that even now the territories connected to the common electric grid are to 

a certain extent covered by decentralized and self-contained power supply. Yet, the cost of 1 kW-h at 

some facilities can reach 100 rubles and more [8–10]. Such a high price is predetermined by a low 

development level of the applied energy technologies. According to different estimates, from 10 to 25 

mln. people live on the energetically decentralized territory of the country [11–14]. Over 50 regions 

are considered energy-deficient, which jeopardizes their own energy security [15]. 

Figure 1 shows a night satellite image of the Eurasian continent [16]. It is clear from the image that 

the European (western) and the southern parts of Russia are most electrified, while «the darkest» are 

the northern and the far-eastern territories. For a stable development of these territories it is necessary 

to have a relevant infrastructure with a sufficient power supply. Currently, diesel fuel is the main 

energy carrier in these regions [17]. However, this type is environmentally harmful, and the fuel 

transportation cost increases the cost of 1 kW-h making it swollen [18]. 

mailto:nii-uralmet@mail.ru
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Figure 1. Eurasian continent screenshot during nighttime. 

 

The noted problem can be solved by using wind turbines (WT). Moreover, it will be expedient to 

use small wind turbines with the power of up to 100 kW, which can operate under self-sustainment (in 

a non-networked mode) [19]. Figure 2 shows the distribution of the average annual wind speeds on the 

RF territory and the adjacent territories [20]. If we compare figure 1 and 2, we can see that the 

maximum average annual wind speeds are registered on the «unilluminated» northern and far-eastern 

territories. The northern coastal regions of the continent are within the green area of the wind load, 

which corresponds to the wind speed range of 5…10 m/s. Some far-eastern regions, in particular, the 

Kamchatka peninsula, are within the area of stably high wind speeds of 10…15 m/s (marked yellow). 

Thus, the use of wind turbines on the said territories will be maximally profitable for the economic and 

technical reasons. 

 

 
 

Figure 2. Annual wind speeds spherical map covering Eurasian continent (RF border is marked red). 

2.  Methods of the WT Power Control 

An overwhelming majority of wind turbine manufacturers design their products in such a way, that 
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the nominal power is generated at the wind speed of 11 m/s [21]. At the same time, they do not 

consider climatic and geographical factors of the future wind turbine operation. Based on such design 

features of wind turbines, at the wind speed of over 11 m/s it is necessary to limit power at the wind 

wheel [22]. 

To date, there are several traditional ways to limit power at the wind turbine rotor: 

1. Increase of the electric load on the generator. When the wind speed grows, the WT controller 

increases the electric load on the generator, thus, decreasing the rotor speed [23]. This power control 

method is most energy-efficient from the perspective of power takeoff, however, it is not meant for 

operation at continuous high wind speeds [24]. It is because the generator windings will be heated 

with an increasing electric load and at some time reach the critical temperature, after which they have 

to be cooled down. Periods of a high wind load generally last from one day to several weeks. 

2. Closure of the generator windings using the pulse-width modulation. Such braking method 

enables to brake the wind turbine rotor within the necessary rotation frequency ranges. However, a 

weak point of this method is a quick overheating of the electrical generator, whereas the kinetic energy 

of the wind wheel is generated into the heat energy on the generator windings [25]. As a result, this 

method can be used only for a short period. 

3. Airbraking. There are many configurations of aerodynamic regulators, including: blades rotating 

around the flap axis, special brake blades, which turn around depending on the rotation frequency, 

devices moving the wind wheel away from the approach flow. However, in practice such regulators 

were efficient only at large megawatt-class WTs. 

4. Mechanical brake systems. This type of systems is most primitive out of all the above-listed. 

However, at this technical and technological development stage it is most reliable and most 

economically sound. Firstly, mechanical braking of the wind wheel implies turning of the kinetic 

energy into the heat one generated on the brake shoes. Modern friction materials preserve their 

operational characteristics at the temperatures of up to 800 oC, while it is not recommended to heat the 

generator windings above 100 oC [26]. Secondly, such mechanisms have maximum maintainability, 

whereas worked-out mechanical parts can be replaced without opening the wind turbine body. Thirdly, 

mechanical brake systems play the part of a compulsory backup brake system. According to the 

standards, all the WT, which power exceeds 5 kW, must be fitted with at least one backup brake 

system [27]. 

 

3.  WT Electromechanical Brake System 

This paper considers an electromechanical brake system with an actuating mechanism in the form 

of a three-pawl unit for a 3 kW vertical-axis WT. The strong points of such wind turbine include a lack 

of necessity for wind orientation, low vibration and acoustic irradiation indices, relatively high wind 

energy efficiency (up to 0,4) [28]. 

The electromechanical brake system is integrated into the WT structure in the mating place of the 

mast and the hub. Figure 3 shows a 3-d model of the actuating three-pawl mechanism directly used for 

braking. Each pawl is fitted with a replaceable friction lining. A limit switch for timely system 

disabling in the reverse mode is located inside the pawl body. 

Due to the multiplicity of advantages of this wind turbine can be installed near residential 

properties. And also, it may be mounted on the roof of the building. In this case the structure will not 

threaten the vibrational oscillations of the wind turbine. Given the close location of wind turbines to 

the residential infrastructure necessary to provide adequate operational safety equipment. First and 

foremost, we need to prevent the destruction of the windmill blades, since the rotor speed 180 rpm 

variation of the blades can be up to 50 m in radius. Therefore, the braking system should prevent such 

situations and to ensure safe work of the personnel. 
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Figure 3. Computer model of the actuating three-pawl assembly of braking system. 

 

Figure 4 shows a kinematic diagram of the entire brake system. When the permissible rotation 

frequency of the WT rotor or the generator’s maximum operating temperature is exceeded, or in case 

of vibrations, the system’s electric drive is activated. Then, power is supplied from the drive through 

the planetary reduction gear to the scroll gear (with an Archimedian spiral). The scroll gear is fitted 

with friction pawls with special combs cut in the bottom part. When the scroll gear rotates, the pawl 

combs begin to move along the spiral, and the pawls move radially. The pawls moving from the center 

to the periphery bump into the contact wall, which is fixed on the hub and rotates together with it. 

Thus, when the pawls touch the contact wall, the sliding friction process begins, and the wind wheel 

brakes. 

 

 
Figure 4. Kinematic diagram of electromechanical braking system: 1 – electric drive; 2 – planetary 

reduction gear; 3 – contact wall on the hub; 4 – scroll gear; 5 – friction pawls. 

 

Such electromechanical brake system is to be used when the regular control system is unable to 

carry out the control process (for example, in case of a hurricane force wind) or in case of emergency 

[29]. These can be technical failures of the regular control system and external effects (lightning stroke 

or influence of electrical appliances) [30]. Therefore, the designated microcontroller, being a part of 

the top-level controller, is meant to control the system, however, it can also operate under self-

sustainment. Besides, this controller and the system’s electric drive are also fed by a separate 
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autonomous accumulator. The charge of this accumulator passes parallel to the charge of the main 

accumulator bank, being a part of the entire energy complex. 

The control system tracks the status of the WT’s three main parameters: generator temperature, 

wind wheel rotation speed and metal structure’s vibration oscillations. If necessary, the system 

activates the brake’s electric drive as per the algorithm and scheme shown in fig. 5 and 6. 

 

 
 

Figure 5. The flow chart of interconnection between braking system electric components. 

 

 

 
Figure 6. Electromechanical braking system operation algorithm. 

 

Actuation and operation of the electric drive continue, until the current intensity in the drive 

reaches 10 A. It proves that the pawls press the contact wall with the force of 30,000 N. Such pressure 

must be applied to brake the vertical-axis wind turbine. Then, the rotor stops, and the system waits for 

2 minutes, after which the electric drive is re-activated but in the reverse mode. The drive keeps 

operating, until the pawls return to the initial position and press the limit switch. A brake signal can be 

given to the electromechanical brake control system from the top-level control system (for example, it 

can be user-activated remote braking of the WT). 
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4.  Conclusion 

The considered electromechanical brake system has the outstanding competitive advantages both 

on economic and technical sides. Reliable mechanical links withstand high temperature loads 

absorbing more excessive power at the WT rotor area, comparing with analogs. The mechanical links 

are operable at a high load long term operation, which enables braking of the wind turbine even at 

storm wind speeds. Thus, at this technological development stage, the electromechanical method (as a 

duplicating one) is most reasonable. 
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