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Abstract. Article is devoted to a problem of decrease in the dynamic loadings arising in 

transitional operating modes of the mine lifting installations leading to heavy oscillating 

motions of lifting vessels and decrease in efficiency and reliability of work. The known 

methods and means of decrease in dynamic loadings and oscillating motions of the similar 

equipment are analysed. It is shown that an approach based on the concept of the inverse 

problems of dynamics can be effective method of the solution of this problem. The article 

describes the design model of a one-ended lifting installation in the form of a two-mass 

oscillation system, in which the inertial elements are the mass of the lifting vessel and the 

reduced mass of the engine, reducer, drum and pulley. The simplified mathematical model of 

this system and results of an efficiency research of an active way of reduction of dynamic 

loadings of lifting installation on the basis of the concept of the inverse problems of dynamics 

are given. 

1. Introduction 

The high speeds of movement of mine lifting installations lead to the emergence of large dynamic 

loads, elastic deformations of structural elements and oscillating movements, causing excessive stress, 

fatigue, increased wear and, as a result, deterioration of durability and safety in operation. The tighten 

of characteristics of safety and reliability of modern lifting  installations places high demands on the 

level of their dynamic calculations and necessitates taking into account the elastic properties of the 

design and development of methods and tools  for reducing dynamic loads and vibrations [1–3]. 

To solve this problem, in [4–7] proposed a special mathematical model that takes into account all 

important features of the mechanics of  mine lifting installation under braking, and in [8] considered 

the impact of different parameters on the dynamic behavior of mine lifts during extreme braking. The 

various circuit designs that can be configured to implement dynamic braking on a  mine hoisting 

system are offered and selection of the load resistance for the desired dynamic braking system 

performance is addressed [9]. The present state of knowledge of dynamics of hoisting systems and 

available modern computer hardware enable to develop and analyze simulation models used for 

optimizing of dynamic characteristics of the system of mine lifting installations [10–12]. 

 In reference [13], computer monitoring systems and registers of the parameters of the lifting 

installations are proposed, which allow to determine the occurrence causes of additional   loads and to 

develop measures for their elimination. The system of automatically controlled safety braking is 

http://creativecommons.org/licenses/by/3.0
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proposed in [14] for minimize dynamic overloads in the mechanical part and increase the safety of the 

mine lifting installations. This system is designed for use on all types of inclined drum and vertical 

multi-channel lifts with radial and disc brakes. In reference [15–17] the use the smooth laws of motion 

of the lifting vessels are encouraged for reduce the dynamic loads in mine hoisting installations. The 

possibilities of application of the retarding force on the vessel during the working of mine lifts in 

mode of lifting are investigated in [18]. The main disadvantages of these methods reduce the dynamic 

loads are either low efficiency under varying operating conditions or the performance of the mining 

installations. 

In this regard, particular interest is the use of the method of reduction of dynamic loads and elastic 

vibrations of the links of managed machines based on the use of the concept of inverse problems of 

dynamics, proposed in [19–23]. The results of research, related to the implementation of this method 

to reduce of dynamic loads and damping of elastic vibrations on the example of one-ended lifting 

installation, are given in this article. 

2. Problem statement 

Currently the developed methods of dynamic synthesis, which would allow to realize a controlled 

movement with the desired dynamic properties, are absent in the dynamics of controlled machines 

with elastic links. Most of the known solutions in this field based on engineering experience and 

intuition than on scientific – methodological basis. Analysis of known work in this area has shown that 

an effective method of problems solving of control synthesis, providing the mechanical movement 

with the desired properties, is the use of methods of solution of inverse problems of dynamics for a 

given type of vibrational motion. A principal scheme of one-ended lifting installation is shown in 

figure 1, for which considered the implementation of this approach for problem solving of reducing of 

dynamic loads. 

 

  Figure 1. A principal scheme of lifting installation:  1 – electric engine;  2, 6 – clutch;  3 – reducer;  

4 – gear; 5 – gear wheel; 7 – drum; 8 – rope; 9 – pulley; 10 – lifting vessel. 

The following assumptions are adopted to obtain the dynamic model of the mine lifting installation: 

 the rigidity of the gear reducer 3, the couplings 2, 6 and shafts is much higher than the 

stiffness of the rope 8; 

 the mass of the rope 8 is concentrated at the drum 7 and lifting vessel 10, the rope is a 

weightless and non-viscous elastic system with a constant stiffness coefficient; 

 the aerodynamic air resistance and friction force in the conductors of the shaft are absent; 

 the movement is considered from the position of static equilibrium of the lifting vessel; 
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 the influence of dynamic processes in the drive motor or braking device is not taken into 

account. 

A design scheme of the mine lifting installation can be represented as a two-mass mechanical 

system, shown in figure 2. 

 

Figure 2. Two-mass design scheme of the 

lifting installation. 

 

An inertial elements of the lift installation are the mass of the lifting vessel with part of the rope 

mass and the resulting mass of the engine, reducer, drum, parts of a rope and pulley, connected by a 

weightless elastic rope. The differential equations of motion of two-mass system, obtained on the basis 

of the D'alembert principle, are as  

              mnn FQqqcqm  )( 211 ;                                                  (1) 

                  0)( 122  qqcqm  ,                                                        (2) 

where nm – the reduced mass of the engine, reducer, drum, parts of a rope and pulley; m – the reduced 

mass of the lifting vessel with part of the rope mass; c – the reduced coefficient of rope stiffness; 

mn FQ , – the reduced values of the driving force of the actuator and the braking force; 1q  – the 

generalized coordinate of the mass movement nm ; 2q  – the generalized coordinate of the lifting 

vessel movement. 

Summing to equations (1) and (2) and denoting the elastic deformation of the rope 12 qqq  , 

obtain the equation of motion of the first mass 

mnn FQqmqmm  1)( .                                                  (3) 

The expression (2) takes the form 

                            01  qcqmqm  .                                                          (4) 

It is required to determine the law of change of motive ( nQ ) or braking ( mF ) forces in expression (1), 

providing a minimum dynamic load and compensation of elastic vibrations of the lifting vessel, when 

it goes up, by solving the inverse dynamic problem for a given law of change of elastic deformation of 

the rope and limiting the movement acceleration of the first mass value aq 1 . 

3. Theory 

Find the control action nQ , by which the elastic vibrations of the lifting vessel is fully extinguished 

for any valid values of acceleration time (deceleration) and the motion acceleration of the first mass 

does not exceed a predetermined value aq 1 . Consider the mode of the vessel lifting, assuming that 

the elastic vibrations are absent in the initial time, i.e. 0)0()0(  qq  , in this case the elastic 

deformation of the rope is changed under the harmonic law 














 t

T
q

p
p




2
cos1 ,                                                              (5) 

where p  – a constant value; pT  – acceleration time (deceleration). Then the conditions 0 qq   

will be implemented when 0t  and pTt   and on the basis expression (5). After double 
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differentiating in time (5), the law of acceleration change of the elastic deformation of the rope is 

obtained 

t
TT

q
pp

p  2
cos

4 2

  .                                                         (6) 

Express from expression (1) when 0mF  the acceleration 

n

n

m

qcQ
q


1 .                                                             (7) 

Combining expressions (7) with (4), is obtained 

nn mQqq  2 ,                                                         (8) 

where 
n

n

mm

mmc )( 
 – the frequency of free oscillations of the system. 

Substituting expressions (5) and (6) into equation (8), the required law of change of driving 

(braking) force is determined 





























 t

TT
t

T
mQ

ppp
pnn




2
cos

42
cos1

2

2
2 .                                       (9) 

The definition of constant p . Substituting expressions (5) and (9) into equation (7) is obtained 




























 t

T
t

TT
q

ppp

p







2
cos1

2
cos

4 2
02

2

1 ,                                          (10) 

where mс0  –  the partial oscillation frequency of the mass of the lifting vessel. 

After double integrating (10) the speed and coordinate the movements of the first mass are 

1
2
01

2
sin

2

2
sin

2
Сt

T

T
tt

TT
q

p

p

pp
p 




































 ;                                   (11) 

212

22
2
01

2
cos

42

2
cos CtCt

T

Tt
t

T
q

p

p
p

p
p 






















 .                              (12) 

The constants of integration 1C  and 2C  are found using the initial conditions 0)0()0( 11  qq   

01 C ; 















2

22
0

2
4

1





p
p

T
C .                                                 (13) 

Constant p  is defined using the boundary conditions устp VTq )(1 , where устV  is the steady-

state value of the movement speed. Substituting the last condition in expression (11) is obtained 

р

уст
p

T

V

0
  .                                                                    (14) 

Given expression (14) the laws of change of the driving (braking) forces and acceleration of the 

first mass are of the form 

t
TT

Vm
t

TT

Vmm
Q

pp

устn

pp

устn

n





 2
cos

42
cos1

)(

32
0

2


















 ;                                   (15) 

t
TT

V
t

TT

V
q

pp

уст

pp

уст 



 2
cos

42
cos1

32
0

2

1 













 .                                      (16) 
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Substituting in expression (16) instead 1q  of its limit value aq
пр

1
 , the expression for 

determining of the permissible value of acceleration time (deceleration) is 




























 t

TTT

V
a

ppp

уст 



 2
cos

4
11

22
0

2

.                                               (17) 

It is obvious that the maximum acceleration will occur in start and end moment of acceleration 

time ( 0t and pTt  ). In this case expression (17) takes the form 

32
0

24

p

уст

T

V
a




 , 

where permissible acceleration time 

0

2




pT .                                                                  (18) 

4. Discussion of results 

A comparison of the effectiveness of the obtained compensating exposure with the optimal movement 

of two-mass system at a predetermined distance is held. We define the control providing a system 

movement from resting state 

)0()0()0()0( ** qqqq                                                     (19) 

at a predetermined distance 0q , with vibration damping  

0)()()(;)( *0*  pppp TqTqTqqTq  .                                      (20) 

When 0mF  from expression (3) and (4) the acceleration is  

)(2 tuqq   ,                                                         (21) 

where nn mQtu )(  –  the driving force. 

Assume that the driving force is limited in absolute value  

0)( utu  .                                                                  (22) 

Neglecting the influence of elastic oscillations on the actuator movement, the driving force 

according to expression (1) for the minimum time pT  taking into account (22) is 

*qu  .                                                                     (23) 

Present expressions (21) and (23) in the form 

uzzzzuzzz  3
2

443221 ;;;  ,                                   (24) 

where .; 2*1 qzqz   

The Hamilton function for the system (24) can be written 

)( 3
2

443221 zuzuzH   ,                                       (25) 

where 4321 ,,,   are auxiliary variables that can be determined from the system of equations 

3443121 ;;;0    .                                         (26) 

The optimum control, providing the maximum of the function (26), has the form 

)sgn( 420   uu .                                                     (27) 

According to expression (27) the optimal control )(tu  is a relay function taking values 0u . The 

number of switching points and their positions are unknown. As an example we consider the control 

with one switching point 2pTt   of function )(tu  
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







.2)(

;20)(

0

0

pp

p

TtTприutu

Ttприutu
                                               (28) 

Integrating the motion equation (24) with 0uu   and initial conditions (19), we obtain 

 
.

sin
;

cos1

;;
2

0

2

0

02*1

2
0

1*1

t

u
q

t

u
q

tuzq
tu

zq













                                              (29) 

Similarly we find the solution for 0uu   on the interval  pp TT ,2  and the end conditions (20) 

 
.

)(sin
;

1)(cos

);(;
2

)(

0

2

0

0*1

2
0

0*1

tT

u
q

tT

u
q

tTuq
tTu

qq

pp

p

p




















 







                               (30) 

The found solutions expressions (29) and (30) must be continuous at 2pTt  . The continuity of 

the values of *q  and q  takes place at any values of the coordinate 0q , the continuity condition for 

*q  and q  is secured if 

.1
2

cos;
4

2
0

0 















pp TTu
q


                                                (31) 

On the basis of expression (31) are 

2

0
2

0

4
;

4







 ku
q

k
Tp  ,                                                   (32) 

where ...3,2,1k  

Thus, the control mode with one switching point satisfies the maximum principle only for 

magnitude values of the displacement 0q , defined by expression (31). For prove the optimality of the 

obtained control, it is sufficient to verify the existence of a nonzero vector of auxiliary variables, that 

providing 0)( pTH and satisfy system (26). Solving this system, we define 

0;0;
2

; 4321 













 

pT
tCC ,                                 (33) 

where .0 constC  

Substituting expression (33) into (27), we have 

.
2

sgn0



























pT
tCuu                                                      (34) 

The calculation of the Hamilton function according to expression (25) leads to 0)( pTH . 

We compare the acceleration time, expended for control with one switching point, with time 

expression (18), received for action, which provides the harmonic nature of the changes in the elastic 

coordinates. On the basis of expression (32) the minimum acceleration time can't be less than the value 

2
min

pT . Given 00 <
n

n

m

mm 
 , we have pp TT 

min
, defined from the expression (18). 

In this case, the time difference grows with decreasing mass nm . Thus, management (34) provides 
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higher performance compared to the found control (15). However, management (34) requires 

instantaneous change in force, which makes difficult its practical feasibility using real drives.  

The found the control law (15) is a software, independent on the regulator structure of the engine or 

the brakes. As a result, the possibility of problem solving, not only parametric but also structural 

synthesis of motion control system of the lifting installation appears, by using the expression of 

obtained time dependence on generalized coordinates. Using expressions (5) and (14), trigonometric 

function through elastic coordinate is expressed  

q
V

T

T уст



2
01

2
cos


.                                                     (35) 

Substituting expression (35) into (15), we obtain 

qcQtQn  *
0)( ,                                                       (36) 

where 




























 cm

T
c n

p

2
02

2
* 4




; 
32

0

2

0

4

p

устn

T

Vm
Q




  – the constant component of the force. 

We find the control as a function of acceleration of elastic vibrations. After double differentiating 

expression (5) in time subject to (14), is obtained 

t
TT

V
q

pp

уст 



 2
cos

4

32
0

2

  , 

from which 

q
V

T
t

T
уст

p

p


2

32
0

4

2
cos




.                                                      (37) 

Substituting expression (37) into (15), we have 

,*
0 qmQQn                                                             (38) 

where 
p

устn

T

Vmm
Q

)(
0


  − the constant component of the force; 

2

222
0

22
0*

4

)]4([



 
 PnP TmTm

m . 

The coefficients *с , *m in expressions (36) and (38) can be interpreted as an amplification 

coefficients of additional feedback on the elastic coordinate q  and its derivatives. Structural scheme 

of two-mass system with an additional feedback of the form (36) is shown in figure  3.  

 

Figure 3. Structural scheme of the system with additional feedback on the elastic coordinate 
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In this diagram, the amplification coefficient of the additional feedback on the elastic coordinate 

are equal *ckD  . Thus, the found control can be implemented using a closed-loop by the elastic 

deformation of the rope of control system providing for active damping of oscillations and the 

required level of dynamic load of mine lifting installation. 
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