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Abstract. Dynamic processes in starter-generators features high winding are overcurrent. It 

can lead to insulation overheating and fault operation mode. For hybrid and electric vehicles, 

new high efficiency construction of induction machines windings is proposed. Stator thermal 

processes need be considered in the most difficult operation modes. The article describes 

construction features of new compact stator windings, electromagnetic and thermal models of 

processes in stator windings and explains the influence of innovative construction on thermal 

processes. Models are based on finite element method. 

1.  Problem Statement 

For vehicles application mass and dimension reduction of electric equipment is strongly relevant. In 

hybrid vehicles, starter-generator, based on induction squirrel-cage machine, is applied [1]. Original 

stator construction of electric machine for HEVs is designed [2]. It allows to decrease overhang 

deviation and reduce copper intensity due to rectangular cross-section stator conductors. Greater 

dimensions reduction can be achieved in case of multipolar induction machine integrated with 

multiphase semiconductor converter [3, 4]. Electric machine in [3] has squirrel-cage rotor and stator 

windings. Suggested electric drive based on this electric machine, has real-time control of phase 

number and wide speed range. However, small number of turns per phase defines extra-low voltages. 

Mass and dimensions reduction is also relevant for aviation [5]. Integration of 

electromechanical converters and engine is prospective. Electric machines operates at high 

temperatures and rotation speed. Here, as well as in combined power units for HEVs and EVs, 

attention is paid to cooling system of power converters [6, 7]. 

Significant dimensions and overhang deviation reduction is able in innovative stator compact 

winding construction. This winding has rectangular irregular cross-section conductors [8, 9]. 

Construction feature defines irregular current density in parts with reduced cross-section. Irregular 

current density influences phase resistance [9]. Improvement of dynamic modes increase starting 

currents in these electric machines [10]. It needs be considered in electromagnetic and thermal 

calculation of electromechanical converters. 

In fig. 1 time diagrams of HEV internal combustion engine (ICE) start process is illustrated. Starter-

generator rated power is 15 kW, and its power supply is 144 V DC source. Induction machine replaces 

flywheel on the ICE crankshaft. 
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a) b) 

Figure 1. Frequency start of ICE time diagrams. 

        

a) b) 

Figure 2. Stator compact winding 

In fig. 1a variations of electromagnetic torque M, crankshaft torque Mst, rotation frequency n and 

absolute slip Beta are illustrated. In fig. 1b valve converter input voltage Ud and DC source current Id 

are illustrated. For start torque 450 Nm, DC source current Id reaches 400 A. Stator phase current 

reaches maximum rating in the first moment of start process, and winding temperature rises rapidly. 

Insulation aging is significant at high temperatures. Thus, to improve reliability of electric machine in 

start/stop processes for HEVs and EVs, precise thermal simulation is needed [11]. 

This article focuses on thermal simulation and calculation for innovative induction machines as parts 

of autonomous power units. Innovative construction allows to reduce dimensions and improve 

efficiency, and is protected by patent [8]. Fig. 2 illustrates stator of innovative induction machine. 

 

Let us consider the features of the construction. Stator winding is three-phase and conductors are 

rectangular cross-section. Each phase is divided on three branches. Overhang parts of compact 

winding are parallel to stator end-faces. Connection spots of slot and overhang parts has double 

reduced cross-section. This solution allows to place overhang conductors of different slots in the same 

layer. 

Fig. 2a illustrates compact winding stator end-face with phase outs. The winding in this machine is 

wave and concentrated, and the branches are connected in series. On the figure, position 1 points 

conductor, connecting branches of the winding. Pos. 2 points phase outs, connected with slot 

conductors of the upper layer. Pos. 3 points connection of half-branches. Pos. 4 points connection 

spots of slot and overhang parts. There is a small air gap between overhang parts and stator end-face. 

Overhang deviation is significantly reduced. 

Fig. 2b illustrates opposite stator end-face. This is the side without phase outs. Overhang 

conductors connect slot conductors with each other. Overhang construction does not depend on branch 

connection order.  
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Due to length and resistance reduction, power losses in stator winding also decrease. Overhang 

deviation reduction decrease total length of the electric machine, allowing to apply machine in limited 

space of HEVs and EVs. Nevertheless, irregular cross-section of stator conductors influences thermal 

processes in stator [12]. This needs be considered especially in dynamic modes, start/stop processes of 

hybrid and electric vehicles, for example. 

In this article, thermal processes for different air gap value between overhang parts and stator end-

faces are considered. Research is made for induction squirrel-cage machine with compact stator 

winding. 

 

2.  Theoretical Basement 

For electromagnetic and thermal research in electromechanical converters, finite element method is 

suitable [13, 14]. 
For 2D flat model, electromagnetic field is described by equation: 
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here: 
e
zJ  – current density; v – rotor velocity vector; σ – conductivity; A – magnetic vector 

potential; μ0 - magnetic constant; μr - relative permeability; ΔV – potentials difference on the conductor 

ends; L – conductor length by the Z axis;   – cyclical frequency. 

Zero magnetic potential on the distant border of computing area is the boundary condition: 

 0zA  

Difference between magnetic circuits of rotor and stator is considered with B-H curves. 

Definition of limit operation modes, when the conductors and the cores of stator and rotor are not 

overheated, is one of the design issues [15–22]. For this reason, internal heat sources in stator and 

rotor conductors are calculated in electromagnetic problem. In squirrel-cage conductors current 

frequency depends on slip; this leads to skin effect and increased power losses in conductors. Heat 

sources definition in overhang parts of stator winding is another issue. Broken magnetic circuit gives 

another current density condition, despite of small conductor dimensions. Even if current penetration 

depth exceeds conductor cross-section, current density and heat dissipation density conditions vary a 

lot. 

Thermal processes calculation faces problems, concerned with heat transfer coefficient definition 

between stator and rotor construction and air [23–26], as well as thermal conductivity of multi-layer 

insulation and air gaps. Heat transfer coefficient is defined in hydrodynamic problem of air transfer 

inside the housing, or by theoretical calculation within proper criteria. Air gap can be easily taken into 

account in mathematical model, but in practice air gap depends of many different circumstances, such, 

as vibration, assembly quality, etc. 

The following terms influence induction machine cooling condition: 

1. Forced cooling provides air flow and improves heat convection in overhang parts. 

2. Reduction of gap between overhang parts and machine housing increases air flow resistance and 

reduces heat transfer. 

3. Overhang parts of stator winding are copper busbars with insulation layer and air gap between 

each other. Thermal conductivity is low, and overhang conductors in the middle of the overhang 

layer are in hardest thermal condition. 

Thermal calculation in «stator – rotor – stator overhangs – environment» system takes into 

consideration overhang position. Small air gap prevents air circulation, reducing heat convection 
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between overhangs and stator core. The same situation we can see in air gap between stator and rotor. 

Without axial air flow, temperature of air between stator and rotor cores is high. 

For thermal distribution calculation in stator winding and core, the following 3D mathematical 

model is given: 
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here: n – normal to the outer surface of computing area; с – specific heat capacity of conductors, 

core steel and insulation; γ – specific density of conductors, core steel and insulation; α – heat transfer 

coefficient; k – heat conductivity coefficient of conductors, core steel and insulation;  tzyxQ ,,,  – 

internal heat sources distribution function. 

Partial differential equation (3) describes conditions of copper conductors, laminated steel, wire 

and slot insulation. Anisotropy in stator core, defined by laminated stacks of steel, was considered in 

mathematical model. 

3.  Computer Simulation Results 

Cross-section of conductors is 9,574,14,3   mm2, total cross section of conductors in a stator slot – 

34,5 mm2,
 
and rotor slot – 40 mm2. Rms current is 60 A, frequency – 50 Hz. 

For this current value and stator length 100 mm, thermal calculation has given the following results: 

in each stator conductor average power losses 988,061,01 
S

P  W, total power losses in six slot 

conductors 963,46 
S

P  W, rotor conductor power losses 191,21 
R

P  W. Instantaneous values of 

current and power losses in every slot differ from maximum values, and total power loss in stator 

conductors 1,11924 
S

P W and in rotor conductors 43,82 W. Bulk power density in stator for this 

values of power losses 
6

104,1 Q  W/m3. 

The same calculations for overhang part show small influence of air gap width on bulk power 

density (table 1). 

Table 1. 

Δx, mm 0,3 1 10 

Q, W/m3 998000 997000 968500 

 

Air gap between overhang parts and stator end-face has small impact on stator bulk power. Thus, 

this variable would have minimum value in case air gap exceeds 10 mm. For each 30 mm overhang 

conductor heat power 177,01 
S
OVP W, and for array of six conductors heat power is 1,062 W. 

For stator end-face and the nearest overhang winding parts, air flow is parallel to stator end-face 

surface. Average air speed equals linear speed of the fan impeller outer parts: 

 

 ,0 rv   

here: ω – rotor cycling speed, r – rotor radius. 
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For 200 Hz source frequency and 4 pole-pairs number, rotation frequency equals 3000 rpm. Rotor 

radius is 0,044 m, so air speed reaches 13,86 m/s. 

Reynolds number is defined by perimeter of average stator circle [21]: 




mlv0
Re   

Perimeter of stator circle: 

    mrrml 342,0044,0065,02/
minmax2    

For air kinematic viscosity equals 6101,15  m2/s, Reynolds number: 


5

1014,3
6

101,15

342,086,13
Re 





  

Air flow mode is defined by Reynolds number. For flat surface streamlining, turbulence appears 
when Reynolds number exceeds 5·105. But in case of perturbance by complex form of overhang parts, 
unstable mode appears. Hence, we take into consideration turbulent air flow, and Nusselt number is 
[21]:  

   27,799
8,05

1014,3032,0
8.0

Re032.0 Nu  

From another hand, Nusselt number is: 




 ml
Nu


  

From this equation, convective heat transfer coefficient is: 

 CmW

ml

Nu








2
/60

342,0

0257,027,799
  

here: λ – air heat conductivity, equals 0,0257 W/m °С for air temperature 20 °С. 

Convective heat transfer coefficient varies from 5 W/(m2°С) without air convection to 60 W/(m2°С) 

with high intensity air flow. On the surfaces that are closed from the direct air flow transitional 

coefficient values are set. Every conductor part needs be considered in limit operation modes. 

Temperature distribution in stator for different overhang positions illustrated on fig. 3, 4. 
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Figure 3. Temperature distribution in stator for  

60 A stator current and 2 mm air gap between 

overhang parts and stator steel. 

Figure 4. Temperature distribution in stator for 

60 A stator current and 15 mm air gap. 

 
 

 

 

Figure 5. Temperature diagrams in overhang parts for: 1 – with common insulation; 2 – without common 
insulation. 

Heat transfer area on stator end-face decreases due to shielding by overhang parts, and stator steel 
temperature rises. At the same time, heat transfer in enclosed overhang parts decreases due to small air 
gap between stator and overhang parts. 

Overhang conductors could be enclosed with common insulation for greater mechanic solidness 
and reliability. Thermal conditions for overhang parts are more difficult than for slot parts. This leads 
to temperature increasing, depicted on fig. 5. Temperature diagram illustrates asymmetrical thermal 
condition of different overhang conductors. 

Hence, to improve heat transfer in overhang parts they need common insulation without air gap 

between each other. 

To increase air flow and heat transfer in stator end-faces, air gap between overhang parts and stator 

needs be increased. Temperature calculation for wide air gap is given below. Calculations are made 

for variety of heat transfer coefficients. Average results of temperature distribution in slot and 

overhang parts are given in table 2. 
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Table 2. Temperature distribution in stator compact winding. 

Heat transfer coefficient, W/(m2°С) Slot conductors 

temperature, °С  

Overhang conductors 

temperature, °С  

Stator end-face Overhang 

parts 

min max min max 

30 29 107.5 109.5 108.3 109.1 

30 35 98.8 100.6 99.1 100 

30 39 86.8 88.9 86.8 87.7 

60 43 73.5 75.8 72.8 73.55 

60 29 90.3 92 89.8 90.3 

From this results we can see, that temperature gradient in slot and overhang parts becomes lower, 

as well as maximum temperature in machine. From the other hand, overhang deviation and total length 

increase. 

4.  Results Discussion 

The given research work explains the possibility of significant reduction of induction machines 

dimensions. This is able due to original overhang parts construction. Innovative construction needs 

new methods of thermal calculation and machine design. Design of electric machine in static and 

dynamic modes should consider reduced heat transfer. Minimum temperature in windings and cores is 

the best criteria for construction optimization. Improved precision simulation should be held for heat 

transfer, thermal and electric conductivity determination, with the help of multiphysical models of 

electromagnetic, thermal fields and aerodynamics. 

New construction of compact overhang parts allows to increase air gap between them and stator 

end-face. Big air gap reduces temperature gradient in stator winding. However, this solution negates 

positive effect of dimension reduction. It is necessary to conduct further researches of thermal 

reliability and cooling system optimization. 

 

Conclusions 

1. Proposed compact winding construction for induction machines allows to modify overhang 

deviation and rule thermal condition of machine. 

2. To improve thermal conductivity of conductors, overhang parts are placed closely within 

common insulation. 

3. To decrease temperature gradients within induction machine and improve heat transfer, air gap 

between overhang parts and stator should be increased. 

4. Rely thermal condition allows to increase current and power of induction machines and starter-

generators in static and dynamic modes. 
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