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Abstract. The questions of construction and practical application of the automation system for 

the design of components and aggregates for the construction of transport vehicles are 

considered, taking into account their dynamic characteristics. Based on the results of the 

studies, a unified method for determining the reactions of bonds of a complex spatial structure 

is proposed. The technique, based on the method of substructures, allows us to determine the 

values of the transfer functions taking into account the reactions of the bonds. After the carried 

out researches it is necessary to note, that such approach gives the most satisfactory results and 

can be used for calculations of complex mechanical systems of machines and units of different 

purposes. The directions of increasing the degree of validity of technical decisions are shown, 

especially in the early stages of design, when the cost of errors is high, with careful thorough 

working out of all the elements of the design, which is really feasible only on the basis of 

automation of design and technological work.  

 

Keywords: transport machine, dynamic system, complex structure, communication reaction, 

algorithm, design automation system 

 
1.  Introduction 

In recent years, problems have arisen associated with the need to take into account the elastic 

properties of structures that perform spatial motion, which causes the emergence of a number of new 

situations that have a significant effect on the dynamic characteristics of the object. 

The complexity of the objects created caused the expediency of using new computational models 

based on the development of modern scientifically grounded methods for studying structures in order 

to create efficient systems and programs for automating the design of new equipment objects that 

represent complex structures. 

The motion of a medium of simple structure, used in the mechanics of a deformed body, is described 

by three functions - the projections of the displacement vector. The motion of the medium of a 

complex structure is characterized by the collection of a large number of functions. These functions 

are generalized coordinates of the individual elements of which the medium consists. Thus, the 

concept of a complex structure generalizes the classical concept used in the theory of elasticity. 

Historically, one of the first models of an elastic medium that can not be described within the 

framework of the classical theory of elasticity is the continuum introduced for the first time in 1909 by 

E.F. By Cosser [1]. Another paper [2] describes the vibration fields in the zone of the boundary of the 

contact of two bodies of a complex structure by the methods of the theory of vibration conductivity. 

The purpose of this work is the development of models for determining the dynamic characteristics of 

transport machine designs as complex technical systems [3], taking into account the reactions of bonds 

and the creation on their basis of design techniques. 

mailto:ahtulov-al1949@yandex.ru
http://creativecommons.org/licenses/by/3.0
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2. Formulation of the problem 

The design of transport vehicles as a complex object from the point of view of its design, production 

and preparation of operation can be considered as a multi-level, hierarchical structure [4] The problem 

is [5] derivation of equations of reactions of the elements of the transport machine structure, with 

unrelated interaction with each other  (Fig. 1). 
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Figure 1. Scheme of interaction of unrelated components of the transport machine 

 

Physically, this interaction occurs in a number of design points that have an indirect effect on both 

elements. Mathematically, this means that the vector of generalized displacements {xB
i} one element 

of the transport machine at these points should be equal to the displacement vector {xP
i} another, 

which can be written in the form 
{хB

i} = {хP
i}       (1) 

for any time t.. A similar expression can be written for the vectors of generalized reaction forces at 

common points of interaction 

{RB
i} = - {RP

i}       (2) 

for any time t. 

Using the scheme of unbound bodies [6] (Figure 1), it is easy to derive the equations of motion for 

both elements 
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where {xB} is the vector of generalized displacements, [MB] is the mass matrix, [KB] is the stiffness 

matrix, and {FB} is the vector of external forces for one of the elements of the transport machine. By 

analogy, we also introduce the notation for another element. Equations (3) are unrelated equations of 

motion for non-damped elements, i.e. at the moment, almost everywhere, damping is excluded from 

the equations. It is assumed that the damping can be taken into account by the generally accepted 

method of damping the vibration modes. 

3. Theory 

To obtain the equations of motion of the transport machine system, it is necessary to eliminate the 

previously unknown reaction-force vectors {RB
i} and {RP

i}. Two most commonly used 

transformations are known to solve this problem. In the first one, [7] a non-free and free element of the 

transport machine is used, and in the second [8] both elements of the transport machine are not 

accepted when the interaction surface is free. In both approaches, the following separation of the 

vector {xP} 
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where {xN
P} reflects the unlimited movement of the element, which can be represented as a sum 

{xP
N} = [SP]{xP

i} + {
P

Nx },      (5) 
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where                               [SP] = - [KP
NN]-1[KP

Ni]     

    (6) 

and the vector {
P

Nx } is the vector of unbounded displacements of the element with respect to the 

interaction surface. 

The equations of motion in the case of a free element [9] are derived by means of expressions (1) and 

(5) in the form of a coordinate transformation 
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Using the notation, we can write in the form 
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As well as equations (2), (3) and (7), we obtain the following equations of motion for the case of a free 

element of the construction of a transport machine 
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If both elements are formally described identically, i.e. 

                                              ,BNB

iB

B

N xxSx                                                   (10) 

Then a suitable coordinate transformation is a transformation of the form 
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The resulting equations of motion for non-free elements of the transport machine structure with a free 

interaction surface (boundary) can be written in the form 
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Matrices [SB] and [TB] are defined similarly to [Sp] and [Tp]. The main difference between equations 

(9) and (12) is the presence in the last additional term due to the rigidity of the unbound system. 
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The columns of the matrices [Tp] and [TB] will be referred to as coupling modes, which allows us to represent 

the motion of structural elements using a combination of coupling modes, rigid-body motion modes, and 

modes of a fixed boundary. The introduction of such a simplification allows the modes of motion of a rigid 

body not to be considered separately from the bond modes when using the transformation (5). This is precisely 

the transformation of the coordinates, which leads to the appearance in (9) and (12) of a term due to the rigidity 

of the unbound system. 

The forces acting on the structural element can be assigned to two categories [8]: the forces arising in 

the bonds and the forces applied by means of sources external to the system. 

The first category includes forces acting through links to other elements, as well as reactions acting on 

the system with fixed connections. The forces arising in the bonds work on the movements of the 

element, while the reactions in the fixed bonds do not work. 

The forces acting in the bonds between the elements are further subdivided into two categories: Rs
R is 

the force applied to the statically determined connection and Rr
C is the force applied to the redundant 

link. 

External forces with respect to the system can be distributed or concentrated. Let f be the intensity of 

the distributed load at an arbitrary point, and let it be the concentrated force at some point with 

displacement. 

The virtual work [8], produced by these forces on the virtual displacement of the element, is given by 

the expression 
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Where 
R

su~  is the virtual displacement of the s-th statically determinable connection during a hard 

transfer; 
R

ru~  is the virtual movement of r-th redundant communication during hard transfer; C

ru~  is 

the virtual movement of the r-th redundant communication at offset. 

Note that the movements of the links are distinguished by signs in the form of a wavy line above the 

letter. These displacements are assumed to be scalar quantities, since the bonds themselves determine 

the direction of displacements [6], which can be determined through typical constraints that limit the 

movement of elements and their reactions 
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where 
RR

sj
~

 is the typical displacement of the s-th statically determined connection for the j-th rigid 

form; 
CR

rj
~

 is the typical movement of the rth redundant link at the j-th rigid form; 
CC

rj
~

 is the typical 

movement of the r-th redundant link at the j-th form of displacement due to the coupling. 

Substituting expression (14) into (13), we obtain the following equation for virtual work: 
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Virtual work can also be written through generalized forces and movements 
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Comparing relations (15) and (16) and taking into account that the generalized virtual displacements 

,...)3,2,1( jj  are independent, we obtain the following equations for generalized forces: 
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It is convenient to write the system of generalized external forces separately in this form: 
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Taking expression (18) into account for generalized forces, we can rewrite equation (17) in the matrix 

form 
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Here it should be noted that the translations of the links are transformed into generalized 

displacements by means of a matrix  ~ in this way: 
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where 
Ru~  is the complete movement of the statically determinate connection; Cu~  is the complete 

redundancy transfer. 

Using the continuity condition [10] in the relations of the elements, it can be shown that the 

equilibrium of the interacting forces in these bonds is automatically satisfied. In order to show the 

validity of this statement, it is necessary to clearly formulate and track the steps leading to the 

definition of a system of generalized forces. Substitution of relation (19) into (2) shows that the force 

vector for the system has the form 

{Q (t)} = [  T  T
~ R     F.     (21)  

In this equality, the matrix is  ~ composed of matrix components arranged as follows: 
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Similarly, the components of the vectors R and F are the corresponding vectors for the individual 

elements of the construction [11], arranged in this order: 
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Since the components of the vector of the system R are the forces acting in the bonds of the 

elements, i.e. Are internal with respect to the entire structure under consideration, they do not affect 

the generalized forces of the system {Q (t)}. Therefore, the first term on the right-hand side of (21) 

disappears, and the system is simplified. 

Q (t)} = []TF.       (24) 

Thus, the assertion concerning the self-equilibrium of internal forces can be carried out by showing 

that the first term on the right-hand side of (21) actually vanishes, that is 

       .0
~

R
TT

        (25) 

The proof can be carried out by applying the principle of a minimum of virtual work [3] to two 

interrelated elements of the system. It is not difficult to show that two reactions in the general 

connection are equal in magnitude and opposite in direction with continuity of displacements, which is 

the proof of the validity of (24). 

Consequently, the coupling reactions of a system of several bodies consisting of p rigid bodies with q 

bonds can be described by a linear overdetermined system of equations: 
zqgQ 
      (26) 

with 6 qp  – distributed matrix qQ ;  – a vector of the generalized coupling reaction; q and 6p are the 

vectors denoting the coupling reactions 
zq at the center of mass. 

A numerical solution can be a numerical standard approach, for example, the Gauss elimination 

method [5]. In this paper it is shown that it is possible to use a block matrix structure Q as the basis for 

the algorithm. 

Thus, the reactions of the positions of Lk, k = 1 (1) l of the bodies Ki and Kj under consideration; i, j = 1 

(1) p are connected (Fig. 2) with the help of the radius vector rGk and the rotation matrix Gk determine 

the stability of the coordinate system [4]. 

 
Figure 2. Geometrical description of the position of the reaction of bonds 

 

Next, the scalar factor gm, m = I (1) q is carried out for each direction of the position, which corresponds to 

the magnitude of the generalized coupling reaction in this direction and still retains a visual significance. 

If we describe the law of conservation of momentum and the law of angular momentum for bodies with 

identical vector starts, we obtain the equation of the bond reaction [12]. 
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With a block matrix    iiRiRTiT GGGGDiagGTTTTDiagT  1111 ;,;  , 
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, 

while the symbol is a cross product. The constant matrix IE is the matrix of the incidence of a system 

of several bodies, where, as necessary, the unit elements are replaced 33  by the unit matrix and the 

zero elements by means 33  of the zero matrix. 

To solve equation (27), first calculate the G-vector gTGRy   from (27). Then, for systems with a 

complex structure, it is possible to find a solution, for example, by direct use of the Gauss algorithm 

[5]. 

In systems with S kinematic nodes, a similar solution for y is not possible, since the matrix IE reflects 

the slope 6S [9]. Therefore, we obtain a 6S-parametric solution Yyy  ˆ  with a particular solution 

vector ŷ , a constant sl 66  -matrix of a homogeneous solution of Y and a 6s vector of an arbitrary 

parameter  . 

For the vector g, only equation: 

1

1 )ˆ(









GG

YyRGgT

T

T                           (28)  

And        



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1

1 . 

What corresponds to the vector component for all positions of the multiple-body system. 

Each q component, which corresponds to the closed position of the direction, contains, depending on the 

circumstances, the components of the vector q. For each node, 6 equations are obtained for the calculation 

of the vector. The further course of action corresponds to a system with a building structure. 

4. Results 

On the basis of the obtained algorithm, a computer program is developed that leads the numerical 

calculation of the communication reactions, according to which the calculation time is much less than 

required for the Gauss algorithm. 

In Fig. 3 represents the object and its typical element e. 

{Mр}{xp} + {Kp}{xp} = {Fp}.                                        (29) 

 
Figure 3. The object and the definition of its element e 
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It is required to determine the load or the vector of internal forces acting on this element. The force 

vector can be represented in the form 

{Fе
P}= [kе ][Те]{хР},                                           (30) 

where [xp] is the displacement vector of the payload, [kе] is the stiffness matrix of the element e and 

[Te] is the transformation matrix reflecting the displacements of the element e through the 

displacements of the payload, which are determined from the equation of the form (28). 

We assume that the approach based on the formulation of Newton's equations for each mode [7] 

makes it possible to more accurately determine the vector {Xp} and, consequently, the internal force 

vector {Fe
p}. The use of such an approach leads to the need to solve the equation relative to {xp} and 

the modal decomposition {xp}, that is, 

{xp}={Kp}-1[{Fp} - [Mp]{xp}].                                     (31) 

Assuming that М the mod of the free element and the N modes of the cantilevered second element are 

stored in [фB]. 

First N + M related equations in the system are replaced by N M systems of two equations, each of 

which reflects the interaction of one mode of one element with one mode of another, namely: 
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       (32) 

In equation (30), it was assumed that the interaction surface was statically determined, ie. 

[TP
TKPTP]=[0]. 

Then, for each of the N M-modal reactions of the element, the limiting value qBP is introduced. This 

is realized by compiling a new model for the input action (forcing function [8]) in equation (30). A 

rather complex forcing function is replaced by a much simpler (for example, a force pulse), which 

generates the same maximum reaction value as the original force. Thus, from the equation with some 

subsequent simplifications it turns out to be possible to obtain an analytical expression of the reaction, 

which makes it possible to determine its maximum value. Then the limit value of the payload reaction 

qP is determined by summing the modal limit values qBP ((in absolute units or in the rms sense, which 

allows the introduction of weighting coefficients)). The responses of the payload element are 

determined by summing the contributions of all the modal components. 

As noted above, the forcing function in equation (30) is replaced by a modal -function of a given 

amplitude FB. This amplitude is determined by analyzing the transient processes of the transport 

machine in the presence or absence of an artificial load. Advantages of the method of analyzing the 

spectrum of maximum loads are the small amount of computation and the brevity of each 

computational cycle. 

It can be noted that this method can be effectively used in cases where the mass of the structure is not 

the main factor or when preliminary estimates of the dynamic responses at the initial stages of the 

payload design process are preliminary calculated. 

Therefore, in principle, it is necessary to consider only methods that take into account only free 

vibrations. The advantage of this approach is to simplify the process of obtaining and analyzing data. 

In this case, for free vibrations, the equation of motion, neglecting damping, is written in a simplified 

form: 

0}]{[}]{[  qKqM  .                             (33) 

The solution of this equation, using the Euler substitution, can be represented in the following form: 
tt

NN
CC eDeDDDqqqq





}{},...,,{},...,,{}{ 2121 ,   (34) 

Where {D} is a column vector of the oscillation amplitudes; С is the circular frequency of its own 

undamped oscillations. 

Substituting (32) into the equation of free oscillations, we obtain a system of linear homogeneous 

algebraic equations with respect to the coefficient Dj   [G]{D} = 0, 
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111

     (35) 

where ijCijij KmG  2 . 

From this we obtain the condition for oscillations of the construction at natural frequencies 

)(...)(

.........

)(...)(

2

1

2

1

1

2

111

2

11

NNCNNNCN

NCNC

KmKm

KmKm








.    (36) 

From (33) we find N roots 
NCCC )(...)()( 2

2

2

1

2   .      

 (37) 

After finding the roots, we find the coefficients D1, ..., DN. Each root of equation (36) has its own 

system of coefficients. Most often, not the coefficients themselves, reduced to a given natural 

frequency of oscillations, are used, but their ratio: 

 
1D

D
Ф i
i  , (i=1, 2, 3, ..., N),                  (38) 

Called the eigenmodes of the system's vibrations (modes). 
When solving the characteristic equation (36) with allowance for damping, we obtain N roots, 

NCCC )(...)()( 2

2

2

1

2   ,                   (39) 

Where )1( 222

cCC   is the circular frequency of the self-damped oscillations; C  – damping 

parameter of natural oscillations. 

Thus, the equation has 2N roots, which determine 2N values of , from which, on the basis of the 

Laplace transform [10] with zero initial position and velocity {D}={Q*} 12 ])[][][()([  KCMB  , 

where 12 ])[][][()([  KCMB   is the matrix of transfer functions. 

And then, the transfer function  J

ijB  for the characteristic points i and j of the subsystem J can be 

determined analytically [4] or experimentally [12]. Due to the presence of damping, there is a lag in 
phase between the disturbance and the reaction. Consequently, in the general case, they are complex 

numbers with real and imaginary part, or modulus and phase angle, as a function of frequency . 
In the analytic determination of the transfer function, it is necessary to know the values of the normal 
forms Vik, representing the reaction of the k-th tone at the point i, as well as the frequencies of the k-th 

tone k and the generalized masses mk. For example, the transfer function transfer, or conductivity, 
with small or proportional damping is defined as 

 
  









kkkk

jkikJ

ij
im

VV
B

222
,                 (40) 

where 
k  is the calculated or measured value of the damping coefficient (generally depending on the 

frequency). 
For the movements and rotations of the transport machine as a solid, the corresponding 
eigenfrequencies in equation (38) are zero. From equation (38) it is possible to obtain other 
expressions for the transfer functions. For example, the transfer function in terms of speed or 

acceleration is obtained by multiplying equation (38) by i and – 2, respectively. 

5. Discussion of results 
In the experimental determination of the transfer function (Fig. 4), the structure is excited by a vibrator 
creating a perturbing force that is close in shape to a sinusoid with a slowly varying frequency; The 
reaction of the system is recorded. After appropriate filtering, the analog data processing system 
allocates a phase shift between them as a function of frequency; Then these data are digitized. In the 
analytical determination of transfer functions, the calculation of vibration modes is performed taking 
into account the boundary conditions imposed by the characteristics of the chosen model. However, in 
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experimental studies it is expedient to determine the transfer functions for free, non-attached 
subsystems. For this purpose, the "soft suspension" method is often used, when the frequencies of the 
solid body on the suspension are removed from the fundamental disturbance frequency. 

 
Figure 4. Block diagram of the transfer function determination system 

 

On the other hand, it is often possible to use the symmetry of subsystems with respect to axes or 

planes, when the support devices can be installed so that they have no effect on the reaction being 

investigated. The most widely used is the elastic fixing of the subsystem at the points under study with 

measurements for each level of disturbance of all forces and displacements of the support (Fig. 5), the 

main components of the signal, 

 
Figure 5. Excitation of structures by several vibrators with simultaneous measurement of all 

supporting reactions: DB – typical movement; PB is a typical support force; 1 is the excitation voltage; 

2 – displacement sensor and dynamometer 

 

those. Module of the ratio of the reaction to the disturbance and, as will be shown below, the influence 

of the test equipment can be eliminated by computation, resulting in the transfer functions of an 

unattached system. 

As will be shown below, the influence of the test equipment can be eliminated by computation, 

resulting in the transfer functions of an unattached system. 

We represent through the real [H] and imaginary [J] matrices in the form: 

 ][)]([])[]([ EBJjM   ,                             (41) 

Where [E] is the identity matrix. 
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On the basis of the solutions obtained, the vector-column of the accelerations of the system can be 

represented in the form 

 



N

j

t

jcj
jeФq

2

1

2 }{){


 ,     (42) 

Where N is the number of measurement points. 

Displacements at any point in the system are obtained from their own forms by modal overlap 

 



L

k

kiki qФq
1

.       (43) 

Then, taking into account (37) and (38) from expression (36), we can write: 

 
C

k

gik

cc

ik
ik

k

k

Mx

q
B 


 







)( ,         (44) 

Where i = 1, 2, 3, ..., N is the number of measurement points; K = 1, 2, 3, ..., L is the number of proper 

forms. 

The ratio of the acceleration at the output to the input frequency is usually denoted by the acceleration 

transfer coefficient of the construction [11] 

C

ik
gik

x

q
k




 . 

Then we get            
C

ikk
gik

Bk
k



 )(




.       (45) 

6. Conclusion 

The dynamic properties of linear systems in solving theу described  problem are usually characterized 

by the ratio of the reaction to the external action in the frequency function, that is, the transfer 

functions. It is also established that the nature of the signal passing through a complex system 

determined by its structure (stiffness and inertial mass characteristics), as well as the type of the input 

action, have, in the main, nonlinear dependences on the magnitude of the input action. 

Thus, with the linearization of the construction of the transport machine as a complex mechanical 

system [11], the proposed method of substructures allows us to determine both its own forms and 

frequencies of oscillations, and its individual parts, using solutions for individual elements and 

aggregates. In this case, the dynamic model of the individual elements and aggregates of the transport 

machine can be reduced to a spatial system of solids modeled by finite element methods [14, 15], 

connected together and the base by elastic-inertial elements representing the bonds. 
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