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Abstract. The low-temperature mean-free path of phonon modes in single-wall carbon
nanotubes is calculated within the relaxation time scheme using analytic expressions for the
phonon dispersion relations and the specific heat capacity. We resolve the discrepancy presented
by Yu et al. [Nanoletters, 5, 1842] between the length of the nanotube and their estimated
mean-free path. This is explained to arise from the kinks and bends present in their sample. An
analysis of our calculated radius shows that Yu et al. have studied a (9,9) single-wall nanotube.

1. Introduction

Since 1991 carbon nanotubes have been one of the most important and interesting topics in
nanotechnology [1, 2]. These tubes show many exciting and unique properties not observed
in bulk or other systems and, because of this, these tubes have shown several potential
applications [3]. In particular, the thermal properties of carbon nanotubes (CNTs) have
attracted considerable attention. These remain a topic of contention with several groups
reporting both different experimental [4, 5, 6] and theoretical results [7, 8]. The mean-free
path (MFP) of a phonon mode is an important thermal property normally obtained by estimate
from experimental thermal conductivity results. In the low temperature regime the MFP of
phonon modes in CNTs should be dominated by two processes: boundary and mass-defect (or
point-defect) scattering. Three-phonon scattering events are significant only at temperatures
greater than 300 K [9].

In this report we calculate the MFP of phonon modes at low temperatures (i.e. less than
room temperature) when only boundary and mass-defect scattering are the main processes.
We present a simple theory of boundary scattering taking into account kinks in the tube. We
also derive the relaxation rate due to mass-defect scattering and show a reduced frequency
dependence when compared to bulk. Using these relations we explain the recent discrepency in
the estimates of the MFP made by Yu et al. [6] and also present an estimate of the radius of
the CNT used in their experiments. We also discuss the variation of the MFP with CNT radius
at low temperatures.

2. Methodology

At a macroscopic level, the MFP path of phonon modes in a one-dimensional system is normally
defined from

κ(T ) = C̄v(T )v̄λ̄(T ), (1)
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where κ is the thermal conductivity at temperature T , C̄v is the mean specific heat capacity at
temperature T , v̄ is mean group velocity of the phonon modes and λ̄ is the MFP. This expression
is commonly used when performing thermal conductivity (or conductance) measurements for an
experimental estimate of the MFP.

Within a microscopic approach, one can apply the single-mode relaxation time scheme [10].
Hence, the thermal conductivity, κ, for a one-dimensional system is expressed as

κ(T ) =
∑

k,s

Cv(T, k, s)v(k, s)τ(T, k, s), (2)

where k is the one-dimensional phonon wave-vector and s is the polarisation. Hence, by using
Eqs. (1) and (2) one can calculate the experimentally determined or mode averaged MFP. This
contrasts with the average relaxation time approach where λ̄ = v̄τ̄(T ) where τ̄(T ) is the average
relaxation time at temperature T . In order to perform the calculations of λ̄ and k, one requires
two ingredients: the phonon dispersion relations and the relaxation rate of the phonon modes.

2.1. Phonon dispersion relations and specific heat capacity

Previously, Mahan [12] had developed a series of analytic expressions for the phonon dispersion
relations in CNTs based upon an elastic continuum model. These relations were refined and
developed further [13], and used to explain the specific heat capacity. Here, we utilise the
dispersion relations expressions for the six lowest phonon branches and the density of states as
described in Refs. [13, 14]. These six phonon branches are the longitudinal (LA), the doubly
degenerate transverse (TA), the twist (W), the lowest optical (σ), and breathing branches (B).
From the dispersion relations, the population averaged group velocity [15] of the phonon modes
is determined from

v̄(T ) =

∑

k,s v(k, s)n̄(k, s)
∑

k,s n̄(k, s)
, (3)

where v(k, s) is the group velocity of the phonon mode (k, s) and n̄(k, s) is the Bose-Einstein
distribution function.

2.2. Relaxation rate

In the low temperature regime, the total relaxation time of phonon mode ω(k, s) (where ω is the
frequency) is calculated from Mathiessen’s rule and by considering mass-defect and boundary
scattering. The common definition of the relaxation time due to boundary scattering is

τ(BS, k, s) =
L0

v(k, s)
, (4)

where L0 is the length of the tube. Recent evidence [16] has shown that CNTs act as waveguides.
This means that the boundary mean-free path is unaffected by the tube’s curvature except in
extreme cases. However, the effective length L0 between boundary scattering events is reduced
if the CNT has any sharp kinks [17]. In figure 2 of Ref. [6], a kink in the CNT can be observed
at approximately 0.4-0.5 µm. This value can also be calculated from the gradient of the thermal
conductivity results from Yu et al. Hence in this work L0 is set to 0.46 µm.

The theory of phonon scattering by isotropic mass defects in three-dimensional solids has been
discussed by Klemens [18]. We adopt that theory for CNTs in the form of a one-dimensional
system. Accordingly, the relaxation time due to mass-defect scattering can be expressed as

τ−1
s (ω, md) =

πGmd

2

|T|

L0

∑

s′

gs′(ω(s))ω2(s). (5)
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Figure 1. The population-averaged
phonon velocity (v̄) as a function of
temperature for a (10,10) carbon nanotube.
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Figure 2. The mean-free path (λ̄)
of phonon modes in a (10,10) carbon
nanotube as a function of temperature.

where T is the translation vector of the tube, gs′(ω(s)) is the density of states of phonon branch

s′ at the frequency ω(k, s), Gmd =
∑

i fi

(

∆Mi

M̄

)

, M̄ is the average mass, fi is the fraction of

atoms with mass Mi and and ∆Mi = Mi − M̄ . In nature, carbon-13 provides a natural isotope
in CNTs and occurs in a 1:1000 ratio, resulting in Gmd = 6.5 × 10−6.

3. Results

The average group velocity of a phonon mode as a function of temperature is shown in figure 1.
As expected, at low temperatures the result is in approximate agreement with the Debye
expression over four acoustic branches of 4v̄−3 =

∑

s v(s)−3, yielding v̄ = 11.82 kms−1. However,
as the temperature increases and the optical modes become increasingly populated, the average
group velocity of the phonon modes decreases.

The MFP of a phonon mode as a function of temperature is shown in figure 2. The most
striking result is the decrease in the MFP as the temperature decreases below 300 K. This
is contrary to the traditionally expected result (i.e. a constant) for the MFP of a phonon
due to boundary scattering. The reason for the deviation is threefold: (i) the change in the
mean velocity of the phonon mode, (ii) the deviation from linear temperature dependence in
the specific heat capacity at low temperatures [13], and (iii) the difference between the
expressions in Eqs. (1) and (2).

The latter of these reasons (i.e. (iii)) is easily explained as being a result of the simplistic
macroscopic theory of Eq. (1) against the microscopic expresssion in Eq. (2), which is
more rigorous and does not average over values within the summation. In particular, as
different phonon modes have different population weightings at various temperatures, the simple
definition breaks down. Hence, the effect of taking an average value for each of the terms (Cv

and v̄) in Eq. (1) is to underestimate the MFP of the phonon mode. The variation in velocity
dominates the change in behaviour of the MFP distance at low temperatures. The average
velocity (as seen in figure 1) increases with a decrease in temperature at low temperatures.
Because of this, the MFP starts to increase with a decrease in temperature for temperatures
less than 70 K. The point of inflexion is a result of this effect and the low temperature deviation
from linear behaviour in the specific heat capacity.

Traditionally, when performing MFP calculations, the optical modes are ignored due to
their low group velocity, and their short lifetimes (when compared to the acoustic modes).
In CNTs low-lying optical modes are created due to zone-folding. Two of these low-lying
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Figure 3. (color online) Contributions to the
total mean free path (λ̄) from different phonon
branches as a function of temperature for a
(10,10) carbon nanotube. Here LA= Longitu-
dinal, TA= (doubly degenerate) Transverse (or
Flexural), W= Twist, B = Breathing and σ= the
lowest non-zero optical branch.
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Figure 4. The phonon mean-free path (λ̄) at
300 K as a function of the chiral index n for
(n,n) nanotubes.

branches are particularly significant, the B and σ branches. These low-lying phonon modes have
group velocities comparable to the acoustic modes, and their frequencies are also comparable.
Figure 3 shows the contributions from different phonon modes to the total MFP as a function of
temperature. As expected, the MFP is dominated by the acoustic modes at low temperatures
(the LA, TA and W branches), but at high temperatures the contribution from the B and the
σ mode (and their associative branches) are highly significant. If one ignores the contribution
of these two branches to the total MFP then one would underestimate the MFP of the phonon
modes and the resultant estimate would be half of the correct value.

Our calculations show that the difference that mass-defect scattering makes to the total
MFP is less than 5%. At 250 K the MFP with only boundary scattering is 719 nm, whereas
if both boundary and mass-defect scattering are included, the total MFP is 703 nm. If one
artificially increases the magnitude of Gmd by a factor of ten, which represents a sample with an
abnormally large amount of impurities, the MFP is reduced to approximately 85% of its original
value. However, such a system is unrealistic. The decrease in the strength of mass-defect
scattering is caused by a reduction in the power law for the frequency dependence of the density
of states; i.e. changing from ω2 for three-dimensions to ω0 for one-dimension. This reduces the
significance of the mass defect scattering rate when compared to the boundary scattering as the
latter does not change with dimensionality. This shows that the thermal conductivity and MFP
properties of CNTs (in general) are relatively uneffected by mass defects within the tube. By
considering the ineffectiveness of mass defect scattering and Eq. (4) we can now show that the
initial discrepancy between the reduced MFP observed by Yu et al. and the length of their tube
is a direct result of a kink within their sample.
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Figure 4 shows the mode averaged MFP as a function of chiral number (n) [19] for a (n,n)
CNT. As can be seen, the thinner the tube, the shorter this MFP will be. This is because
the higher velocity phonon modes have a larger contribution to the total population in thinner
tubes and this affects Eqs. (1) and (2) differently. Yu et al. [6] have measured the thermal
conductance at 300 K of a CNT of unknown radius and used this to estimate three different
MFPs of the phonon mode which are dependent on the tube’s radius. Yu et al. estimated the
MFP, assuming the radius of the CNT to be 1 nm, 2 nm, and 3 nm, to be 750 nm, 375 nm and
350 nm, respectively. Using figure 4, we can now show that the diameter of the CNT used by
Yu et al. is 1.2 nm. This corresponds to the (9,9) CNT, and fits well with their SEM image.

4. Conclusion

In summary, we have presented a theory and results for the mean-free path of phonon modes
in single-wall carbon nanotubes at low temperatures. We have included the effects of boundary
and mass-defect scattering and have shown that in CNTs the effect of mass-defect scattering is
almost insignificant, when compared to boundary scattering, due to the 1D nature and the small
isotopic concentration. We have shown that kinks in a CNT reduce the commonly perceived
length for boundary scattering is not necessarily the same as the total length of the tube, and
have shown this is in agreement with the measurements of Yu et al. We have shown that the
discepancy between their CNT length and the MFP is a result of a kink found within their
sample. We have shown that the measured MFP is both a function of temperature and of tube
radius, and used this feature to calculate the radius of the CNT used by Yu et al. for their
experimental measurements. We believe these results provide the much needed clarity for future
measurements of MFP in future as well as suggest a mechanism (kink formation) by which one
could control the thermal conductivity of CNTs.
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