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Abstract. The underlying open questions in the fields of general relativistic astrophysics and elementary
particle and nuclear physics are strongly connected and their results are interdependent. Although the
physical systems are quite different, the 4D-simulation of a merger of a binary system of two neutron
stars and the properties of the hot and dense matter created in high energy heavy ion collisions, strongly
depend on the equation of state of fundamental elementary matter. Neutron star mergers represent optimal
astrophysical laboratories to investigate the QCD phase structure using a spectrogram of the post-merger
phase of the emitted gravitational waves. These studies can be supplemented by observations from heavy
ion collisions to possibly reach a conclusive picture on the QCD phase structure at high density and
temperature. As gravitational waves (GWs) emitted from merging neutron star binaries are on the verge
of their first detection, it is important to understand the main characteristics of the underlying merging
system in order to predict the expected GW signal. Based on numerical-relativity simulations of merging
neutron star binaries, the emitted GW and the interior structure of the generated hypermassive neutron
stars (HMNS) have been analyzed in detail. This article will focus on the internal and rotational HMNS
properties and their connection with the emitted GW signal. Especially, the appearance of the hadon-quark
phase transition in the interior region of the HMNS and its conjunction with the spectral properties of
the emitted GW will be addressed and confronted with the simulation results of high energy heavy ion
collisions.

1. Introduction
One hundred years after Albert Einstein developed the field equations of general relativity and
predicted the existence of gravitational waves, his theory triumphantly corroborates all experimental
and observational tests it has been put through to date. Among the ≈ 2500 known neutron stars (NSs),
there are some which are in binary systems where the companion of the NS is either a normal star, a
planet, a white dwarf or again a NS. The most impressive binary neutron star system, so far1, is the so
called Double Pulsar: PSR J0737-3039A/B, which has been discovered in 2003 [2]. The two neutron

1 An even more relativistic binary pulsar system has been discovered recently and the corresponding experimental results will
be reported in the near future [1].
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stars in this binary system, which are only separated by 800000 km, orbit around each other with an
orbital period of 147 minutes and a mean velocity of one million km/h. This system is excellent for
testing Einstein’s theory of general relativity and alternative theories of gravity in the strong-field regime
[3]. Due to the emission of gravitational waves, the distance between the two NSs decreases with time
and finally the two objects will merge accompanied by neutrino radiation, a strong gravitational radiation
chirp, and short gamma-ray burst.

Gravitational waves have been recently observed from a pair of merging black holes (BHs) by the
LIGO detectors [4, 5] and GWs emitted from merging neutron star binaries are on the verge of their
first detection. The main difference between GWs originating from a merger of two BHs or NSs is the
possibility of an existence of a post-merger phase after the collisions of the two objects, which can be
only present in the case of a NS-merger. Depending on a variety of parameters, e.g. the initial mass of
the two stars, the product right after the merger could be a prompt collapse to a BH, a metastable HMNS
or a stable supramassive NS. The GWs produced by a merger of NSs are by far more interesting as the
GWs resulting from a BH-merger, as, in the case of existence of a post-merger phase, the equation of
state (EOS) of elementary matter might be deduced by a frequency analysis of the GW [6, 7, 8]. This
is insofar interesting, as the EOS until now is mainly understood by high energy heavy ion collisions
and only coarse constraints are coming from astrophysical observations, like the current observational
constraint on the observed maximum mass in neutron stars, i.e., 2.01 ± 0.04M� [9]. In this article
we will compare the results of numerical simulations of merging NS binaries with simulations of high
energy heavy ion collisions. We will discuss how one can create a similar state of hot and dense nuclear
matter in two seemingly different ’experimental’ setups, namely the mergers of two neutron stars and
relativistic heavy ion collisions. By studying the properties of this QCD natter in a single consistent
approach we can finally address one of the most relevant challenges of high-energy nuclear theory. This
is to determine the properties and phase structure of QCD at large densities and temperature.

2. Numerical general relativity of neutron star mergers
Einstein’s theory of general relativity and the resulting general relativistic conservation laws for energy-
momentum in connection with the rest mass conservation are the theoretical groundings of neutron star
binary mergers:

Rµν −
1

2
gµνR = 8π Tµν , ∇µTµν = 0 , ∇µ (ρ uµ) = 0 (1)

Tµν describes the energy-momentum tensor, Rµν is the Ricci tensor, which contains first and second
derivatives of the space-time metric gµν , ∇µ is the covariant derivative and uµ is the four velocity of
the star’s fluid. The Einstein equation (first equation in Eq. (1)) describes in which way the space-time
structure need to bend (left hand side of the equation) if energy-momentum is present (right hand side of
the equation). These highly non-linear differential equations describe on the one hand how matter moves
in a curved space-time and on the other hand formulates in which way the amounts of energy-momentum
curves the space-time structure. In the ideal-fluid energy-momentum tensor Tµν = (e+ p) uµuν + p gµν
enters the energy and pressure densities of the nuclear and elementary particle physics contributions of
the underlying neutron star matter and uµ = dxµ/dτ describes the four velocity of the star’s fluid which
is defined as the derivative of the coordinates xµ = (t, x, y, z) by the proper time τ .

The interior metric of a single, spherically symmetric and static neutron star can be calculated by
assuming the following Ansatz of the metric gµν (infinitesimal line element ds)

ds2 = gµν dx
µdxν = − e2ν(r)dt2 +

(
1− 2m(r)

r

)−1
dr2 + r2dθ2 + r2 sin2 θ dφ2 . (2)

By inserting this Ansatz of the metric and the expression for the energy momentum tensor into Eq. (1)
one derives the Tollman-Openheimer-Volkov (TOV) equations (see e.g. [10])

dm

dr
= 4πr2 e ,

dν

dr
=

m+ 4πr3p

r (2m− r) ,
dp

dr
= − (e+ p)

dν

dr
. (3)
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For a given equation of state (EOS: a function p(e)) the TOV equation can be solved numerically by
fixing the central pressure pc and integrating outwards to the star’s surface where the pressure is zero. It
can be shown (Birkov Theorem, see e.g. [11], page 843f) that the metrical structure outside the neutron
star is identical to the Schwarzschild metric of a black hole. It is impressive that Karl Schwarzschild
found this analytical solution of the Einstein equation only three month after Einstein’s article and it is
very unfortunate that he died soon after his remarkable result. The Schwarzschild solution is only valid
in a spherically symmetric approximation and even for a single rotating neutron star the metric outside
the body cannot be described analytically, as a similar theorem like the Birkov Theorem does not hold
for the Kerr solution of a rotating black hole. However, all of the known NSs, including the individual
stars of the famous double PSR J0737-3039A/B, can be described in good approximation with the TOV
equations and only in the case of a very cramped binary system tidal deformations become important.

In order to solve the evolution of a merging neutron star binary system numerically, Eq. (1) needs to
be rewritten, because its structure is not well posed. To reformulate Eq. (1), the so called (3 + 1)-split is
used, which starts by slicing the 4-dimensional manifoldM into 3-dimensional space-like hypersurfaces
Σt. The space-time metric gµν is then sub-classified into a purely spatial metric γij , a lapse function α
and a shift vector βi (µ, ν = 0, 1, 2, 3 and i, j = 1, 2, 3):

gµν =

(
−α2 + βiβ

i βi
βi γij

)
. (4)

The lapse function α describes the difference between the coordinate time t and the proper time of a
fluid particle τ (dτ = α dt). The shift vector βi measures how the coordinates are shifted on the spatial
slice if the fluid particle moves an infinitesimal time step further. In the case of a rotating neutron star,
this shift vector formulates one important difference between Newtonian gravity and general relativity -
the dragging of local inertial frames in the case of a rotating body. The Lensing-Thirring effect, which
has its nature in this property, has been experimentally proved [12] and the gravitomagnetic effect, which
corresponds to a general relativistic counterpart of the Lorentz force has been indirectly verified in the
binary system PSR 1913+16.

By inserting the metric (4) into the Einstein equation (1) one can restate the equations into a system
of first order differential equations, the so called Arnowitt-Deser-Misner (ADM) equations. As the
ADM equations are still not ’well posed’ (for details see [10]), they need to be further transformed
using a conformal traceless formulation. In this article we follow the ’well posed’ Baumgarte-Shapiro-
Shibata-Nakamura-Oohara-Kojima (BSSNOK) formulation [13, 14] of general relativity. This BSSNOK
formulation of general relativity together with the relativistic hydrodynamical equations are finally used
as the grounding equations in our computer program [15, 16].

In the following, the results of two simulations will be presented. The EOS used within the first
framework is composed of a cold nuclear-physics part and a thermal ideal fluid component (for details
see [17, 7]). The cold part have been modelled by a hybrid star matter model (ALF2-EOS [18]),
where a phase transition to color-flavor-locked quark matter has been implemented. Within this model,
the hadronic particles begin to deconfine to quark matter above a certain transition rest-mass density
ρtrans = 3 ρ0, where ρ0 := 2.705 × 1014 g/cm3 is the nuclear-matter rest-mass density. Assuming
a moderate surface tension of the quark matter droplets, a phase transition is implemented by using a
Gibbs-construction (for details see e.g. [19]). As charge neutrality is only globally conserved within this
construction, a mixed-matter phase exists in the rest-mass density range 3 ρ0 ≤ ρ ≤ 7.8 ρ0. The EOS
used within the second simulation is the purely hadronic but temperature dependent Lattimer-Swesty
EOS (LS220-EOS [20]). The initial coordinate separation of the stellar centers has been set to 45 km
for both models. For each EOS, two equal-mass binaries have been considered, where the (gravitational)
mass of each star at infinite separation has the value of MIn = 1.35M� for the ALF2-M135 run and
1.32M� for the LS220-M132 simulation.

The results of 4-dimensional numerical simulations of merging neutron star binaries in full general
relativity (see Fig. 1) show that the emitted GWs of the merger and post-merger phase are strongly
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Figure 1. Rest mass density profiles on the equatorial plane and gravitational wave amplitude |h| and
h+ at a distance of 50 Mpc for the ALF2-EOS with MIn = 1.35M�.

determined by the high density region of the EOS. The underlying general-relativistic hydrodynamical
evolution of the produced HMNS depends on the hadronic and quark matter properties, which also
enters in heavy ion collisions (see Sec. 3). Fig. 1 depicts the GW-amplitude of of the ALF2-M135 run.
The absolute maximum of |h| marks the time of the merger (i.e., t = 0 ms) and the last peak of h+
corresponds to the time where the HMNS collapses to a black hole (i.e., t = 14.16 ms). The upper
part of Fig.1 shows the logarithm of the rest mass density profiles for three different time snap-shots
(t = −0.17, 4.05, 13.16 ms), whereat the boundary of the hadron-quark phase transition (HQPT) is
marked with a red curve. For the used ALF2-EOS with MIn = 1.35M�, the maximum density reached
within the inspiral phase is below the onset of the HQPT, but soon after the merger the density reaches
values above ρtrans, forming a mixed phase inner region of deconfined quark matter. The detection of GWs
from merging neutron star binaries can be used to determine the high density regime of the EOS. The
power spectral density profile of the post-merger emission is characterized by distinct frequency peaks
and with the knowledge of the total mass the system, the GW signal can set tight constraints on the EOS
(see [6, 7, 8] for a definition and discussion of the various frequencies of the post-merger signal).

While the produced HMNS of the ALF2-M135 run collapses to a BH, no gravitational collapse
happens for the LS220-M132 run within our simulation time domain. Fig. 2 shows a comparison
between the two simulations in respect to the evolution of the minimum value of the lapse function
αmin and the maximum magnitude of the rest mass density ρmax. The collapse to the final BH in the
ALF2-M135 case, can be easily seen as a sudden increase in ρmax (sudden decrease in αmin). In contrast,
the LS220-M132 run does not collapse to a BH but evolves to a quasi-stable HMNS. Fig. 3 shows the
density and temperature profiles of the HMNS at a post-merger time of t = 6.34 ms. Additionally, in
Fig. 3, the flowlines tracked by massless tracer particles that are advected in the flow are visualized in
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Figure 2. Minimum value of
the lapse function αmin (upper
panel) and maximum of the rest-
mass density ρmax in units of the
nuclear-matter rest-mass density ρ0
(lower panel) versus time in mil-
liseconds after the merger for the
ALF2-M135 and LS220-M132
simulations. Before the merger,
the maximum (central) value of the
rest-mass density is essentially con-
stant. In the transient post-merger
phase strong fluctuations of ρmax

and αmin occur, while during the
“post-transient” phase, ρmax (αmin)
show a quite regular oscillating be-
haviour with an average increasing
(decreasing) value.

the corotating frame of the rest-mass density (for details on the implementation of tracers see [21, 22]).
The fluid trajectories indicate that the temperature hot spots also represent vortices around which fluid
elements rotate. In order to understand the temperature profile and underlying reason of the curious tracer
paths, the angular velocity distribution Ω is visualized in Fig. 4. The temperature and Ω distributions bear
a remarkable similarity and the position of the hot spots overlaps closely with the position of the maxima

Figure 3. Distributions of the rest-mass density ρ in units of ρ0 (left panel) and the temperature (right
panel) on the equatorial plane at a post-merger time of t = 6.34 ms for the LS220-M132 binary. Also
shown are portions of the flowlines of several tracer particles that remain close to the (x, y)-plane and
for which we show only the final part of the flowlines. In the left picture, the black isocontours have
been drawn at ρ/ρ0 = 0.5n (n ∈ N), while the red isocontour indicates ρ = 3 ρ0. The temperature
isocontours (right picture) have been drawn at T = 10n MeV.
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Figure 4. Angular velocity distribution Ω on
the equatorial plane at a post-merger time of
t = 6.34 ms for the LS220-M132 binary.
Ω, which is defined as Ω := dφ

dt = uφ

ut =

α vφ − βφ consists of a lapse-corrected
part of the φ-component of the three-velocity,
minus a frame-dragging term provided by
the φ-component of the shift vector. The
figure shows that the HMNS is a strongly
differentially rotating object whereat the two
maxima appear at a radial distance of ' 6 km,
while the inner core is rather slowly rotating.
The largest gradients in the Ω-profile take place
at the positions of the temperature hot spots.
The white isocontours have been drawn at Ω =
[0.4, 0.8, 1.2, 1.6] kHz.

in the angular-velocity distribution. Furthermore, the profiles for ρ and Ω show a m = 2 deformation,
however, they have a phase offset of' 90 degrees between them. The physical cause of this phase offset
and the underlying reason of the hot spots can be explained rather simply with the Bernoulli’s theorem
for which areas of low rest-mass density (pressure) are accompanied by regions of large velocity (for
details see [23]).

For later times the HMNS reaches a stationary state, the two hot spots disappear and the temperature
distribution reaches an axisymmetric pattern. Interestingly, the high-temperature region is not the central
one, which is slowly rotating and comparatively colder, but appears at an annular region at about 7-8
km from the center. The figures A1 and A2 in the Appendix A show the rest-mass density ρ and the

Figure 5. Distributions of the rest-mass density ρ in units of ρ0 (left panel) and the temperature (right
panel) on the equatorial plane at a post-merger time of t = 0.94 ms for the LS220-M135 binary. In
the left picture, the black isocontours have been drawn at ρ/ρ0 = 0.5n (n ∈ N). The temperature
isocontours (right picture) have been drawn at T = 10n MeV.
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Figure 6. Density (left panel) and velocity (right panel) profiles for head on mergers of NSs. The
snapshots are taken at a time t = 1.4 ms. We compare collisions where a black hole is formed (red line)
and collisions where a NS remnant remains (blue line).

temperature profile at a post-merger time of t = 11.54 ms and t = 23.83 ms.
However, within the transient post-merger phase (0 < t < 3 ms) the temperature hot spots appear

in the central area of the inner core of the HMNS and could reach values up to T ≈ 100 MeV. Fig. 5
shows the density and temperature distributions 0.94 ms after merger. The equatorial density profile (left
picture) indicate clearly that the HMNS, at this early phase, has still a double core structure and the high
temperature region is located between these density maxima. The underlying simulation of Fig. 5 has
been set up with slightly different initial conditions (MIn = 1.35M�, for details see [23]) but the main
characteristics of the described density and temperature structures of the different post merger phases
are independent on the EOS or initial mass of the binary, if the merger product does not immediately
collapse to a BH due to a to heavy initial mass.

Figure 6 shows the density and velocity profiles of neutron star matter in a head on merger of two NSs.
Note the considerable radial acceleration of the matter at the shock fronts of the colliding neutron star
matter slabs, which yields in a millisecond time step relative flow velocities above 0.5 c - and densities
of several times the central density of the separated NSs. These velocities are close to the velocities and
densities achieved in relativistic heavy ion collisions at the GSI and FAiR accelerators, but below those
at RHIC and the LHC.

In the following section we will present, for those accelerator energies, the compressions achieved
in relativistic nuclear collisions. By using different models for the dynamical description of the
compressional phase, with a realistic EOS for hot and dense nuclear matter, we can make a connection
from heavy ion collisions to the matter created in NS mergers.

3. The hot and dense QCD equation of state for heavy ion collisions and neutron star mergers
As we have seen, the densities created in the mergers of compact stars can exceed several times the
nuclear ground state density. Furthermore we have shown that in the early time of the merger high
temperatures T ≤ 100 MeV are obtained. The properties of matter at such high temperature and
density are very different from what we expect from cold nuclear matter. In fact we know that similar
densities and temperatures can be created in the relativistic collisions of heavy nuclei at different particle
accelerators. In such heavy ion experiments the heavy nuclei are accelerated to relativistic velocities.
As they collide, they create a small system (of several fm in size and a lifetime of approximately 20
fm/c) which is expected to have a temperature of T ≥ 80 MeV and densities several times the nuclear

International Workshop on Discovery Physics at the LHC                                                                 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 878 (2017) 012031          doi:10.1088/1742-6596/878/1/012031

7



ground state density. It is therefore very intriguing to study QCD matter at similar temperatures and
densities in two rather different ’experimental’ setups, in neutron star mergers and heavy ion collisions.
By combining the findings from both observations one may be able to deduce information on the
properties of the QCD matter at high densities and finally on the phase structure of QCD. The properties
of the equation of state of QCD are the link connecting the neutron star mergers and relativistic nuclear
collisions. Consequently the goal of such studies has to be to find a description for the EOS that is able
to describe neutron star merger and nuclear collision observables and therefore establish the connection.

In the following we will introduce such a model for hot and dense QCD matter and discuss how it
is constructed. But first we have to establish common features and differences of the systems created
in heavy ion collisions and neutron star mergers. For that we estimated the expected maximal compres-
sion reached in nuclear collisions at different colliding beam energies. Since the very early stage of a
nuclear collision is a very rapid and violent process, expected to take place out of thermal equilibrium,
estimating the maximal compression is no unambiguous task. We compare the energy and net baryon
densities reached, as function of the colliding beam energy per nucleon pair

√
sNN in figures 7. Here we

use different methods, which do not depend on the EOS, to estimate these densities.

The dashed lines follow from a simple geometric overlap model where one assumes that the total
energy and baryon number of the nuclei, colliding head on, is completely stopped in a volume which is
equal to the Lorentz contracted volume of a singe nucleus. The expected densities then can be written
as:

ρini = 2 γc.m. ρ0 and εini = 2 mN ρ0 γ
2
c.m. (5)

where ρ is the net-baryon density, ε is the energy density, γc.m. is the Lorentz gamma of the nuclei in the
center of mass (c.m.) frame of the collision and mN is the nucleon mass. The densities from the geo-
metric overlap model serve as a lower bound of the expected densities since this simple approach does
not take into account the additional compression which occurs as the two nuclei penetrate each other.
To get a more realistic estimate for the initial compression we also show results where a microscopic
transport model is used to simulate the initial non-equilibrium compression stage (grey band in figures
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Figure 7. Left: Largest net-baryon densities achieved in central collisions of Au+Au nuclei at different
colliding beam energies. Right: Largest energy density achieved in central collisions of Au+Au nuclei
at different colliding beam energies. For both figures we compare results from an overlap model (dashed
black line) with results where we used the UrQMD model to estimate the initial compression. The green
lines with crosses indicate the beam energies where we expect the maximal temperature to exceed 100
or 175 MeV. The temperatures are calculated using the QχP model described in the text.
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7). The Ultrarelativistic Quantum Molecular Dynamics Model (UrQMD) is used in its cascade mode
as well as a setup that includes nuclear interactions via potentials [24, 25]. To obtain a smooth density
distribution from the microscopic model we run a large number of events and average densities over
this event-ensemble. The so obtained values of the densities are generally larger, by up to a factor of 2,
than the values of the overlap model. We find that is we want to study systems that have densities of
approximately 4 times the nuclear ground state density ρ ≈ 0.6fm3 we have to study systems created at
beam energies of

√
sNN ≈ 2.5 − 3.0 GeV. This is the energy region of the current SIS18 accelerator at

GSI, as can be seen in figures 7.

As in the case of neutron star mergers the spatial density distribution in nuclear collisions is far from
uniform. While in the center of the collision zone very high densities and temperatures can be obtained,
we also observe a steep gradient of the densities. To illustrate this we show in figures 8 contour plots
of the net-baryon density and the corresponding temperatures for collisions of Au+Au nuclei at a fixed
target beam energy of 1.5 A GeV, as expected for the SIS18 accelerator. This snap-shot of the densities
as taken at a time t = 15fm/c, a time where one expects the system to be at least partially in local
equilibrium. Again we observe that the bulk of the system reaches densities ranging from 1 to 4 time
nuclear ground state density and temperatures from 50 to 100 MeV.

It is important to note at this point that in order to extract the temperature of the system at given densi-
ties, one requires knowledge on the effective degrees of freedom of the system, encoded in the equation
of state. So depending on the EOS the temperatures reached in these relativistic collisions may vary
significantly. It is therefore most important to employ an EOS that entails a realistic set of degrees of
freedom as well as interactions. In the following we will present a model for such an EOS which can be
employed to describe the matter produced in neutron star mergers as well as heavy ion collisions, thus
an EOS which is able to link the properties of collision events in drastically different environments.

3.1. The QχP model
The model we employed is the so called Quark-Hadron Chiral Parity Doublet Model (QχP) [26, 27].
In this approach, an explicit mass term for baryons in the Lagrangian is possible, which preserves
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Figure 9. Largest net-baryon
density (solid lines) and
temperatures (dashed lines)
achieved in collisions of heavy
ions and compact stars at a
given center of mass beam
energy

√
sNN = 2 · γc.m. ·mN .

To calculate the densities and
temperatures we used the Taub
adiabat (see text) with the QχP
EOS. Due to the different prop-
erties of the EOS as function
of iso-spin the temperatures in
heavy ion collisions are larger
and densities slightly smaller,
at the same relative velocities.

chiral symmetry. Chiral symmetry is considered one of the most important features of QCD and the
restoration of chiral symmetry may be deeply connected with the deconfinement phase transition. The
chiral condensate serves as order parameter of the chiral transition and is the only well defined order
parameter in QCD thermodynamics.
In the (QχP) model, the signature for chiral symmetry restoration is the degeneracy of the usual baryons
and their respective negative-parity partner states. The positive and negative parity states of the SU(3)f
baryons are grouped in doublets N = (N+, N−) as discussed in [28, 29].

Taking into account the scalar and vector condensates in mean-field approximation, the resulting
Lagrangian LB includes [27]

LB =
∑
i

(B̄ii∂/Bi) +
∑
i

(
B̄im

∗
i Bi
)

+
∑
i

(
B̄iγµ(gωiω

µ + gρiρ
µ + gφiφ

µ)Bi
)
, (6)

summing over the states of the baryon octet. Furthermore the scalar meson interaction, driving the
spontaneous breaking of the chiral symmetry, is expressed in terms of SU(3) invariants I2 = (σ2 +
ζ2), I4 = −(σ4/2 + ζ4) and I6 = (σ6 + 4ζ6) as:

V = V0 +
1

2
k0I2 − k1I22 − k2I4 + k6I6 , (7)

where V0 is fixed by demanding a vanishing potential in the vacuum. The quark and gluonic degrees
of freedom are introduced as done in the PNJL approach [30, 31]. This model uses the Polyakov loop
Φ field to describe an effective thermal de-confinement. To suppress hadrons in the deconfined phase
we also introduced a simple excluded volume for the hadrons. The various parameters of this model are
fixed by demanding a reasonable description of nuclear ground state properties like the saturation den-
sity, binding energy and symmetry energy. Furthermore if this model is extended to finite temperature
and vanishing chemical potentials it gives a reasonable qualitative description of lattice QCD thermody-
namics. A more detailed description of this model, can be found in [26, 27].

This model is highly qualified to study the properties of matter at high densities and intermediate
temperatures, as expected in nuclear collisions as well as neutron star mergers. Within the same
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parameter set we can use this model to calculate the EOS and chemical properties of QCD matter. A
straight forward way of connecting the features of the EOS with the maximally achievable compression
of a relativistic collision is by employing the so called Rankine-Huguniot-Taub-Adiabat [32]. The Taub
adiabiat is essentially a shock wave solution of two colliding infinite slaps of matter. If the EOS, i.e.
the connection between pressure, energy density and baryon density is know (as p(ε,ρ)), then one can
calculate the maximum compression in a collision by solving the following Taub-equation:

(ρ0 X0)
2 − (ρ X)2 − (p0 − p)(X0 +X) = 0 (8)

with X = (ε + p/ρ2), the generalized volume. For simplicity we assume p0 = 0. One can furthermore
connect the center of mass gamma factor γc.m. of the colliding slabs to the densities created:

γ2c.m. =

(
ε ρ0
ρ ε0

)2

(9)

The resulting beam energy dependence of the net-baryon density and temperatures reached is shown in
figure 9 for two different scenarios:

(i) The EOS for heavy ion collisions, i.e. with conserved strangeness and no beta-equilibrium
(ii) The EOS for compact stars, i.e. in beta-equilibrium

Again we observe that the densities and temperatures achieved in this consistent approach are
similar to those discussed earlier. An important observation is that the density compression in iso-spin
symmetric matter and NS matter is very similar the actual temperature is quite different. The reason
for this difference are the additional degrees of freedom, i.e. leptons in beta equilibrium and non-
conserved strangeness, which decrease the temperature at a given compression. Again this highlights
the importance to employ a consistent and realistic temperature dependent EOS for the description of
NS matter. Eventually this EOS can also be used in full 3+1D fluid dynamical simulations of heavy
ion collisions. As in the NS merger simulations the goal here is to possibly find observables for a (non-
equilibrium) first order phase transition in dense QCD matter [33].

To highlight similarities and differences in the chemical composition of the systems created in these
collisions we show in figure 10 the number densities of different hadronic species at a fixed temperature
and net-baryon density, as function of the iso-spin per baryon of the system. This stresses the different
composition of systems created in collisions of Au+Au nuclei (where the iso-spin per baryon is -0.1) and
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of neutron star matter. The matter in neutron stars not only has a an iso-spin per baryon of -0.38 but also,
according to beta equilibrated strangeness, a significantly different composition of strange particles.

4. Conclusions
In this article we show that the properties of elementary matter at high temperatures (T ≈ 100 MeV) and
densities (ρ ≈ 3 ρ0) can be studied in two different physical scenarios. High energy heavy ion collision
experiments try do determine the phase structure of the iso-spin symmetric QCD equation of state,
and the knowledge of the iso-spin asymmetric QCD-EOS is needed in a general relativistic computer
simulation of binary neutron star mergers. These two different fields of physics, namely elementary
particle physics and astrophysics, combine when two neutron stars collide. It is therefore possible to
study the properties of dense QCD for systems of different size, time-scales and chemical composition,
which will eventually lead to an understanding of the properties of this elementary form of matter.
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Appendix A. Evolution of the density and temperature distributions in the late post merger phase

Figure A1. Same as in Figs. 3 and 4 but at a post-merger time of t = 11.54 ms.

Figure A2. Same as in Figs. 3 and 4 but at a post-merger time of t = 23.83 ms.
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