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Quantum state discrimination and selected applications
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Abstract. Determining the state of a quantum system is a central task in quantum information processing
since it encompasses the read-out problem. Very often the optimized state discrimination strategy is a
generalized measurement (Positive Operator Valued Measure, POVM). Therefore, we begin with a brief
introduction to the theory of generalized measurements and illustrate the power of the concept on examples
relevant to applications in quantum cryptography.

1. Introduction
In quantum information and quantum computing the carrier of information is a quantum system and
information is encoded in its state [1]. The state, however, is not an observable in quantum mechanics [2]
and, thus, a fundamental problem arises: after processing the information - i.e. after the desired
transformation is performed on the input state by the quantum processor - the information has to be
read out or, in other words, the state of the system has to be determined. When the set of possible
target states is known and the states in the set are mutually orthogonal, this is a relatively simple
task. One simply has to set up detectors along these orthogonal directions and a click in one of the
detectors will unambiguously identify the state of the system. However, when the possible target
states are not orthogonal they cannot be discriminated perfectly, and optimum discrimination with
respect to some appropriately chosen criteria is far from being trivial even if the set of the possible
nonorthogonal states is known. The problem of discriminating among nonorthogonal states is ubiquitous
in quantum information and quantum computing, underlying many of the communication (cryptography)
and computing (probabilistic algorithms) schemes that have been suggested so far. It is, in general, a
measurement optimization problem (for recent reviews see [3, 4]). It is the purpose of this contribution
to introduce the various theoretical and experimental tools that have been developed for discriminating
among nonorthogonal quantum states. Interestingly, the field of discriminating among nonorthogonal
quantum states was founded by the seminal works of Helstrom [5] and Holevo [6] long before the
term Quantum Information Theory was even coined. Stimulated by the rapid developments in quantum
information theory of the 90’s, the question of how to discriminate between nonorthogonal quantum
states in an optimum way has gained new momentum and state discrimination quickly became an integral
part of quantum information theory. In particular, the suggestion to use nonorthogonal quantum states for
communication in secure quantum cryptographic protocols, most notably in the quantum key distribution
(QKD) scheme based on the two-state procedure as developed by Bennett [7] (henceforth referred to as
the B92 protocol), has given major impetus to this field.

In order to devise an optimum state-discriminating measurement, strategies have been developed with
respect to various criteria. Often, these optimized strategies involve generalized measurements (Positive
Operator Valued Measures, POVMs). Therefore, in Sec. 2 we begin with a brief overview of the quantum
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theory of measurement with special emphasis on POVMs, including their experimental implementation.
Then, as an application of the theory, in Sec. 3 we discuss the two most obvious criteria for optimizing
a measurement scheme that is designed for discriminating between different states of a quantum system.
The two methods are optimum unambiguous discrimination of the states, on the one hand, and state
discrimination with minimum error, on the other hand. They will be outlined in detail in the subsections
3.1 and 3.2. As an application of these two main discrimination strategies, optimal figures of merit for
the B92 protocol will be reviewed in subsection 3.3. Section 4 is devoted to the recently emerging sub-
field of discriminating among mixed states with an application which can be considered as a nontrivial
generalization of the B92 protocol. We conclude with a brief outlook in Sec. 5.

2. Quantum measurements
Measurements are an integral part of quantum information processing. Reading out the quantum
information at the end of the processing pipeline is equivalent to learning what final state the system
is in at the output since information is encoded in the state. Since finding out the state of a system can be
done only by performing measurements on it, we need a thorough understanding of the quantum theory
(and practice) of measurements. To this end we will begin by a brief review of the postulates of standard
quantum measurement theory, due essentially to von Neumann. Then, by analyzing the underlying
assumptions we will show that some of the postulates can be replaced by more relaxed ones and this
will lead us to the concept of generalized measurements (Positive Operator Valued Measures, POVMs)
which are particularly useful in measurement optimization problems. Next, by invoking Neumark’s
theorem we will show how to actually implement POVMs experimentally. These general concepts we
will be illustrated in the next section by explicitly working out optimized measurement schemes for
various state discrimination strategies.

2.1. Standard quantum measurements
We begin with a brief summary of the postulates of standard quantum measurements. Standard, or
projective, measurements were introduced by von Neumann [8] by analyzing a simple model for the
coupling between the system to be measured and the meter and by appropriately generalizing the
predictions of the model. Deatails of this analysis are omitted here, for the sake of brevity.

Without losing too much of the generality, we assume that the Hilbert space is finite and discrete, in
order to keep the notation simple. Then the postulates read as

0. To every observable in quantum mechanics there corresponds a Hermitian operatorX which has the
spectral representation X =

∑
j λj |j〉〈j|. From the hermiticity of X it follows that the eigenvalues

λj are real. For simplicity we assume that the eigenvalues are nondegenerate and the corresponding
eigenvectors, {|j〉}, form a complete orthonormal basis set.

1. The projectors Pj = |j〉〈j| span the entire Hilbert space,
∑
j Pj = 1.

2. From the orthogonality of the states we have PiPj = Piδij . In particular, P 2
i = Pi from where it

follows that the eigenvalues of any projector are 0 and 1.

3. A measurement of X yields one of the eigenvalues λj .

4. The state of the system after the measurement is |φj〉 = Pj |ψ〉√
〈ψ|Pj |ψ〉

if the outcome is λj .

5. The probability that this particular outcome is found as the measurement result is pj = ||Pjψ〉||2 =
〈ψ|P 2

j |ψ〉 = 〈ψ|Pj |ψ〉 where we used the property 2.

6. If we perform the measurement but we do not record the results, the postmeasurement state can be
described by the density operator ρ =

∑
j pj |φj〉〈φj | =

∑
j Pj |ψ〉〈ψ|Pj .
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These seven postulates adequately describe what happens to the system during the measurement if it was
initially in a pure state. If the system is initially in the mixed state ρ the last three postulates are to be
replaced by their immediate generalizations:

4a. The state of the system after the measurement is ρj = PjρPj

Tr(PjρPj)
= PjρPj

Tr(Pjρ)
if the outcome is λj .

5a. The probability that this particular outcome is found as the measurement result is pj =
Tr(PjρPj) = Tr(P 2

j ρ) = Tr(Pjρ) where, again, we used the property 2.

6a. If we perform the measurement but we do not record the results, the postmeasurement state can be
described by the density operator ρ̃ =

∑
j pjρj =

∑
j PjρPj .

Of course, 4a–6a reduce to 4–6 for the pure state density matrix ρ = |ψ〉〈ψ|. Therefore, in what
follows we use the density matrix to describe a general (pure or mixed) quantum state unless we want to
emphasize that the state is pure.

Let us summarize the message of these postulates. They essentially tell us that the measurement
process is random, we cannot predict its outcome. What we can predict is the spectrum of the possible
outcomes and the probability that a particular outcome is found in an actual measurement. This leads us
to the ensemble interpretation of quantum mechanics. The state |ψ〉 (or ρ for mixed states) describes not
a single system but an ensemble of identically prepared systems. If we perform the same measurement
on each member of the ensemble we can predict the possible measurement results and the probabilities
with which they occur but we cannot predict the outcome of an individual measurement. Except, of
course, when the probability of a certain outcome is 0 or 1. With the help of these postulates we can
then calculate the moments of the probability distribution, {pj}, generated by the measurement. The first
moment is the average of a large number of identical measurements performed on the initial ensemble.
It is called the expectation value of X and is denoted as 〈X〉,

〈X〉 =
∑

j

λjpj =
∑

j

λjTr(Pjρ) = Tr(Xρ) , (1)

where we used the spectral representation ofX . The second moment, Tr(X2ρ), is related to the variance,

〈(X − 〈X〉)2〉 = Tr(X2ρ)− 〈X〉2 . (2)

Higher moments can also be calculated in a straightforward manner but typically the first and second
moments are the most important ones to consider.

2.2. Positive Operator Valued Measures (POVMs)
Now we are in the position to put the postulates of standard measurement theory under closer scrutiny.
What the last three postulates provide us with is, in fact, an algorithm to generate probabilities. The
generated probabilities are non-negative, 0 ≤ pj ≤ 1, and the probability distribution is normalized to
unity,

∑
j pj = 1 which is a consequence of the first two postulates. Furthermore, the number of possible

outcomes is bounded by the number of terms in the orthogonal decomposition of the identity operator
of the Hilbert space. Obviously, one cannot have more orthogonal projections than the dimensionality,
NA, of the Hilbert space of the system, so j ≤ NA. It would, however, be often desirable to have more
outcomes than the dimensionality while keeping the positivity and normalization of the probabilities. We
will first show that this is formally possible: if we relax the above rather restrictive postulates and replace
them with more flexible ones we can still obtain a meaningful probability generating algorithm. Then
we will show that there are physical processes that fit these more general postulates.

Let us begin with the formal considerations and take a closer look at Postulate 5a (or 5) which is
the one that gives us the prescription for the generation of probabilities. We notice that in order to get
a positive probability by this prescription it is sufficient if P 2

j is a positive operator, we do not need to
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require the positivity of an underlying Pj operator. So let us try the following. We introduce a positive
operator, Πj ≥ 0, which is the generalization of P 2

j , and prescribe pj = Tr(Πjρ). Of course, we want to
ensure that the probability distribution generated by this new prescription is still normalized. Inspecting
the postulates we can easily figure out that normalization is a consequence of Postulate 1 and, therefore,
require that

∑
j Πj = I , that is the positive operators still represent a decomposition of the identity. We

will call a decomposition of the identity in terms of positive operators,
∑
j Πj = I , a POVM (Positive

Operator Valued Measure) and Πj ≥ 0 the elements of the POVM. These generalizations will form the
core of our new postulates 2′ and 6′.

As observed in the previous paragraph, for a POVM to exist we do not have to require orthogonality
and positivity of the underlying Pj operators. Therefore, the underlying operators that, via Postulates 4
(or 4a) and 6 (or 6a), determine the postmeasurement state can be just about any operators, even non-
hermitian ones. For projective measurements orthogonality was essentially a consequence of Postulate 2,
which was our most constraining postulate because it restricted the number of terms in the decomposition
of the identity to at most the dimensionality of the system. Let us now see how far we can get by
abandoning it.

If we abandon Postulate 2 then the operators that generate the probability distribution are no longer the
same as the ones that generate the postmeasurement states and we have a considerable amount of freedom
in choosing them. Let us denote the operators that generate the postmeasurement state by Aj , they are
the generalizations of the orthogonal projectors, Pj . In other words, we define the non-normalized
postmeasurement state by Aj |ψ〉 and the corresponding normalized state after the measurement by

|φ〉 = Aj |ψ〉/
√
〈ψ|A†jAj |ψ〉. This expression will form the essence of our new Postulate 4′. It

immediately tells us that Πj has the structure Πj = A†jAj which by construction is a positive operator.
Let us now use our freedom in designing the postmeasurement state. First note that, since the POVM
elements are positive operators, Π1/2

j exists. Obviously, this is a possible choice for Aj . So is

Aj = UjΠ
1/2
j , (3)

where Uj is an arbitrary unitary operator. This is the most general form of the detection operators,
satisfying A†jAj = Πj and the above expression corresponds to their polar decomposition. What we

see is that the POVM elements determine the absolute value operator through |Aj | = Π1/2
j but leave

its unitary part open. The Aj operators represent a generalization of the projectors Pj whereas Πj

is a generalization of P 2
j . The set {Aj} is called the set of detection operators and these operators

figure prominently in our new postulates 2′, 4′ and 6′ replacing the corresponding ones of the standard
measurements.

With this we completed our goal that we set out to do at the beginning of this section, namely the
generalization of all of the postulates of the standard measurement theory to more flexible ones while
keeping the spirit of the old ones. What we see is that Postulate 0. is no longer necessary and rest of the
new postulates read as

1′. We consider the decomposition of the identity,
∑
j Πj = 1, in terms of positive operators, Πj ≥ 0.

Such a decomposition is called a POVM (Positive Operator Valued Measure) and the Πj the
elements of the POVM.

2′. The elements of the POVM, Πj , can be expressed in terms of the detection operators Aj as
Πj = A†jAj where, in general, the detection operators are non-hermitian ones, restricted only by

the requirement
∑
j A

†
jAj = I . Then, by construction, the POVM elements are positive operators.

3′. A detection yields one of the alternatives corresponding to an element of the POVM.
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4′. The state of the system after the measurement is |φ〉 = Aj |ψ〉/
√
〈ψ|A†jAj |ψ〉 if it was initially in

the pure state |ψ〉, and ρj =
AjρA

†
j

Tr(AjρA
†
j)

=
AjρA

†
j

Tr(A†jAjρ)
if it was initially in the mixed state ρ.

5′. The probability that this particular alternative is found as the measurement result is pj =
Tr(AjρA

†
j) = Tr(A†jAjρ) = Tr(Πjρ) where we used the cyclic property of the trace operation.

6′. If we perform the measurement but we do not record the results, the postmeasurement state is
described by the density operator ρ̃ =

∑
j pjρj =

∑
j AjρA

†
j .

Very often we are not concerned with the state of the system after such operation is performed but only
with the resulting probability distribution. For this, it is sufficient to consider Postulates 1′ and 5′ defining
the probability of finding alternative j as the detection result. Note, that at no step did we require the
orthogonality of the Πj’s. Since orthogonality is no longer a requirement, the number of terms in this
decomposition of the identity is not bounded by NA. In fact, the number of terms can be arbitrary.
Obviously, what we arrived at is a generalization of the von Neumann projective measurement. It is a
surprising generalization as it tells us that just about any operation that satisfies Postulates 1′ and 2′ is
a legitimate operation that generates a valid probability distribution. It is a rather natural generalization
of the standard quantum measurement, as it provides us with a well-defined algorithm that generates a
well-behaved probability distribution. So this procedure can be regarded as a generalized measurement
and, indeed, for most purposes it is a sufficient generalization of the standard quantum measurement.

Of course, up to this point all this is just a formal mathematical generalization of the standard quantum
measurement. The important question is: How can we implement such a thing physically? In the next
section we set out to answer this question and then we will study examples of POVMs.

2.3. Neumark’s theorem and the implementation of a POVM via generalized measurements
First, let us take a look at what happens if we couple our system to another system called ancilla, let
them evolve, and then measure the ancilla. The Hilbert space of the system is HA and the Hilbert space
of the ancilla is HB . We want to gain information about the state of the system that we now denote as
|ψA〉. Let {|mB〉} be an orthonormal basis for HB , and UAB a unitary operator acting on HA ⊗ HB .
The probability pm of measuring |mB〉 is then given by

pm =‖ (IA ⊗ |mB〉〈mB|)UAB(|ψA〉 ⊗ |φB〉) ‖2 . (4)

Define
Am|ψA〉 ≡ 〈mB|UAB(|ψA〉 ⊗ |φB〉) . (5)

ThenAm is a linear operator onHA that depends on |mB〉, |φB〉 andUAB . With the help of this definition
we can write the measurement probability as

pm =‖ Am|ψA〉 ⊗ |mB〉 ‖2= 〈ψA|A†mAm|ψA〉 . (6)

Note that
∑
m

〈ψA|A†mAm|ψA〉 =
∑
m

(〈ψA| ⊗ 〈φB|)U †AB|mB〉〈mB|UAB(|ψA〉 ⊗ |φB〉)

= 1 . (7)

Since this is true for any |ψA〉, we must have that

∑
m

A†mAm = IA , (8)
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where IA is the identity in HA.
The non-normalized state of the total ’system plus ancilla’ after the measurement is Am|ψA〉 ⊗ |mB〉

so the (normalized) postmeasurement state of the system alone is

|φA〉 =
1√

〈ψA|A†mAm|ψA〉
Am|ψA〉 . (9)

The set {A†mAm} thus gives a decomposition of the identity in terms of positive operators. Therefore,
we can identify them with a POVM. In fact, what we see here is the first half of Neumark’s theorem:
If we couple our system to an ancilla, let them evolve so that they become entangled, and perform
a measurement on the ancilla, which collapses the ancilla to one of the basis vectors of the ancilla
space, then this procedure will also transform the system because the ancilla degrees of freedom are now
entangled to the system. The transformation of the state of the system is, however, neither unitary nor a
projection. It can adequately be described as a POVM so the above procedure corresponds to a POVM
in the system Hilbert space. Thus, we have just found a procedure that, when we look at the system only,
looks like a POVM. We now know that there are physical processes that can adequately be described as
POVMs.

Next we address the question, given the set of operators {Am} acting onHA such that
∑
mA

†
mAm =

I , can this be interpreted as resulting from a measurement on a larger space? That is, can we find
H = HA ⊗HB , |φB〉, {|mB〉} ∈ HB and UAB acting on H such that

Am|ψA〉 = 〈mB|UAB(|ψA〉 ⊗ |φB〉) (10)

holds?
The answer to this question is yes as we will now prove it constructively. Let us choose HB to have

dimension M and let {|mB〉} be an orthonormal basis for HB , and choose |φB〉 to be an arbitrary state
of HB . Let us further define a transformation UAB via

UAB(|ψA〉 ⊗ |φB〉) =
∑
m

Am|ψA〉 ⊗ |mB〉 , (11)

which implies the Eq. (10). UAB is inner product preserving,

(
∑

m′
〈ψ′A| ⊗ 〈m′

BA
†
m′)(

∑
m

Am|ψA〉 ⊗ |mB〉) =
∑
m

〈ψ′A|A†mAm|ψA〉 = 〈ψ′A|ψA〉 , (12)

so it is unitary on the one-dimensional subspace spanned by |φB〉 and it can be extended to a full unitary
operator on HA ⊗HB because, e.g., on the subspace that is orthogonal to |φB〉 it can be the identity.

This completes the proof of Neumark’s theorem which asserts that there is a one-to-one
correspondence between a POVM and the above procedure which sometimes is itself called a generalized
measurement. Hence, a generalized measurement can be regarded as the physical implementation of a
given POVM. As a final remark to this Section we note that there are two standard methods to extend a
Hilbert space. One is the tensor product extension, the other is the direct sum extension. Both methods
are employed in practical schemes and they lead to rather different implementations of the same POVM.
We will not pursue this issue further here but details can be found in Ref [4], for example.

3. State discrimination strategies and their application to quantum cryptography
As examples of a measurement optimization task we will consider two schemes for the optimal
discrimination of quantum states. The first is unambiguous discrimination and the second is
discrimination with minimum error. We will see that the optimum measurement for the first strategy
is a POVM while the optimum measurement for the second is a standard von Neumann measurement.
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The two main discrimination strategies evolved rather differently from the very beginning. Unambiguous
discrimination started with pure states and only very recently was it extended to discriminating among
mixed quantum states. Minimum-error discrimination addressed the problem of discriminating between
two mixed quantum states from the very beginning and the result for two pure states follows as a special
case. The two strategies are, in a sense, complementary to each other. Unambiguous discrimination is
relatively straightforward to generalize for more than two states, at least in principle, but it is difficult to
treat mixed states. The error-minimizing approach, initially developed for two mixed states, is hard to
generalize for more than two states. To close this chapter we will analyze the B92 protocol for quantum
key distribution (QKD). QKD is the crucial ingredient of most quantum cryptographic protocols and in
the B92 proposal all of the concepts of this chapter come together in a particularly clean and instructive
form.

3.1. Unambiguous discrimination of two pure states
Unambiguous discrimination is concerned with the following problem. An ensemble of quantum systems
is prepared so that each individual system is prepared in one of two known states, |ψ1〉 or |ψ2〉 with
probability η1 or η2 (such that η1 + η2 = 1), respectively. The preparation probabilities are called a
priori probabilities or, simply, priors. The states are, in general, not orthogonal, 〈ψ1|ψ2〉 6= 0 but linearly
independent. The preparer, Alice, then draws a system at random from this ensemble and hands it over
to an observer, called Bob, whose task is to determine which one of the two states he is given. The
observer also knows how the ensemble was prepared, i.e. has full knowledge of the two possible states
and their priors but does not know the actual state that was drawn. All he can do is to perform a single
measurement or perhaps a POVM on the individual system he receives.

In the unambiguous discrimination strategy the observer is not allowed to make an error, i.e. he is
not permitted to conclude that he was given one state when actually he was given the other. First we
show that this can not be done with 100% probability of success. To this end, let us assume the contrary
and assume we have two detection operators, Π1 and Π2, that together span the Hilbert space of the two
states,

Π1 + Π2 = I . (13)

For unambiguous detection we also require that

Π1|ψ2〉 = 0 ,
Π2|ψ1〉 = 0 , (14)

so that the first detector never clicks for the second state and vice versa, and we can identify the detector
clicks with one of the states unambiguously. The probability of successfully identifying the first state
if it is given is p1 = 〈ψ1|Π1|ψ1〉 and the probability of successfully identifying the second state if it is
given is p2 = 〈ψ2|Π2|ψ2〉. Multiplying (13) with 〈ψ1| from the left and |ψ1〉 from the right and taking
into account (14), gives p1 = 1 and, similarly, we obtain p2 = 1, and it appears as though we could have
perfect unambiguous discrimination. However, multiplying (13) with 〈ψ1| from the left and |ψ2〉 from
the right and taking into account (14) again, gives 0 = 〈ψ1|ψ2〉 which can be satisfied for orthogonal
states only. In fact, we have just proved that perfect discrimination of nonorthogonal quantum states is
not possible.

Equation (13) allows two alternatives only, it assumes that we can have two operators that
unambiguously identify the two states all the time. Since this is impossible, we are forced to modify
this equation and have to allow for one other alternative. We introduce a third POVM element, Π0, such
that Eq. (14) is still satisfied but (13) is modified to

Π1 + Π2 + Π0 = I . (15)

The first and second POVM elements will continue to unambiguously identify the first and second state,
respectively. However, Π0 can click for both states and, thus, this POVM element corresponds to an
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inconclusive detection result. It should be emphasized that this outcome is not an error, we will never
identify the first state with the second and vice versa, we simply will not make any conclusion in this
case. We can now introduce success and failure probabilities in such a way that 〈ψ1|Π1|ψ1〉 = p1 is the
probability of successfully identifying |ψ1〉, and 〈ψ1|Π0|ψ1〉 = q1 is the probability of failing to identify
|ψ1〉, (and similarly for |ψ2〉). For unambiguous discrimination we have 〈ψ2|Π1|ψ2〉 = 〈ψ1|Π2|ψ1〉 = 0
from (14). Using this, we obtain from Eq. (15) p1 + q1 = p2 + q2 = 1. This means that if we allow
inconclusive detection results to occur with a certain probability then in the remaining cases the observer
can conclusively determine the state of the individual system.

It is rather easy to see that a simple von Neumann measurement can accomplish this task. Let us
denote the Hilbert space of the two given states by H and introduce the projector P1 for |ψ1〉 and P̄1 for
the orthogonal subspace, such that P1 + P̄1 = I , the identity in H. Then we know for sure that |ψ2〉
was prepared if in the measurement of {P1, P̄1} a click in the P̄1 detector occurs. A similar conclusion
for |ψ1〉 can be reached with the roles of |ψ1〉 and |ψ2〉 reversed. Of course, when a click along P1 (or
P2) occurs then we learn nothing about which state was prepared, this outcome thus corresponding to
the inconclusive result. In the von Neumann set-ups one of the alternatives is missing. We either identify
one state or we get an inconclusive result but we miss the other state completely. This scenario is actually
allowed by (15).

We now turn our attention to the determination of the optimum measurement strategy for
unambiguous discrimination. It is the strategy, or measurement set-up, for which the average failure
probability is minimum (or, equivalently, the average success probability is maximum). We want to
determine the operators in (15) explicitly. If we introduce |ψ⊥j 〉 as the vector orthogonal to |ψj〉 (j = 1, 2)
then the condition of unambiguous detection, Eq. (14), mandates the choices

Π1 = c1|ψ⊥2 〉〈ψ⊥2 | , (16)

and
Π2 = c2|ψ⊥1 〉〈ψ⊥1 | . (17)

Here c1 and c2 are positive coefficients to be determined from the condition of optimum.
Inserting these expressions in the definition of p1 and p2 gives c1 = p1/|〈ψ1|ψ⊥2 〉|2 and a similar

expression for c2. Finally, introducing cosΘ = |〈ψ1|ψ2〉| and sinΘ = |〈ψ1|ψ⊥2 〉|, we can write the
detection operators as

Π1 =
p1

sin2 Θ
|ψ⊥2 〉〈ψ⊥2 | ,

Π2 =
p2

sin2 Θ
|ψ⊥1 〉〈ψ⊥1 | . (18)

Now, Π1 and Π2 are positive semi-definite operators by construction. However, there is one additional
condition for the existence of the POVM which is the positivity of the inconclusive detection operator,

Π0 = I −Π1 −Π2 . (19)

This is a simple 2 by 2 matrix inH and the corresponding eigenvalue problem can be solved analytically.
Non-negativity of the eigenvalues leads, after some tedious but straightforward algebra, to the condition

q1q2 ≥ |〈ψ1|ψ2〉|2 , (20)

where q1 = 1− p1 and q2 = 1− p2 are the failure probabilities for the corresponding input states.
Eq. (20) represents the constraint imposed by the positivity requirement on the optimum detection

operators. The task we set out to solve can now be formulated as follows. Let

Q = η1q1 + η2q2 (21)

Quantum Optics III IOP Publishing
Journal of Physics: Conference Series 84 (2007) 012001 doi:10.1088/1742-6596/84/1/012001

8



denote the average failure probability for unambiguous discrimination. We want to minimize this failure
probability subject to the constraint, Eq. (20). Due to the relation, P = η1p1 + η2p2 = 1 − Q, the
minimum of Q also gives us the maximum probability of success. Clearly, for optimum the product
q1q2 should be at its minimum allowed by (20), and we can then express q2 with the help of q1 as
q2 = cos2 Θ/q1. Inserting this expression in (21) yields

Q = η1q1 + η2
cos2 Θ
q1

, (22)

where q1 can now be regarded as the independent parameter of the problem. Optimization of Q with
respect to q1 gives qPOVM1 =

√
η2/η1 cos Θ and qPOVM2 =

√
η1/η2 cos Θ. Finally, substituting these

optimal values into Eq. (21) gives the optimum failure probability,

QPOVM = 2
√
η1η2 cos Θ . (23)

Let us next see how this result compares to the average failure probabilities of the two possible
unambiguously discriminating von Neumann measurements that were described at the beginning of this
section. The average failure probability for the first von Neumann measurement, with its failure direction
along |ψ1〉, can be written by simple inspection as

Q1 = η1 + η2|〈ψ1|ψ2〉|2 , (24)

since |ψ1〉 gives a click with probability 1 in this direction but it is only prepared with probability η1 and
|ψ2〉 gives a click with probability |〈ψ1|ψ2〉|2 but it is only prepared with probability η2.

By entirely similar reasoning, the average failure probability for the second von Neumann
measurement, with its failure direction along |ψ2〉, is given by

Q2 = η1|〈ψ1|ψ2〉|2 + η2 . (25)

What we can observe is that Q1 and Q2 are given as the arithmetic mean of two terms and
QPOVM is the geometric mean of the same two terms for either case. So, one would be tempted
to say that the POVM performs better always. This, however, is not quite the case, it does so only
when it exists. The obvious condition for the POVM solution to exist is that both qPOVM1 ≤ 1
and qPOVM2 ≤ 1. Using η2 = 1 − η1, a little algebra tells us that the POVM exists in the range
cos2 Θ/(1 + cos2 Θ) ≤ η1 ≤ 1/(1 + cos2 Θ). If η1 is smaller than the lower boundary, the POVM
goes over to the first von Neumann measurement and if η1 exceeds the upper boundary the POVM goes
over to the second von Neumann measurement. This can be easily seen from Eqs. (18) and (19) since
p1 = 1− q1 = 0 for q1 = 1 and Π0 becomes a projection along |ψ1〉 (and correspondingly for p2 = 0).

These findings can be summarized as follows. The optimal failure probability, Qopt, is given as

Qopt =





QPOVM if cos2 Θ
1+cos2 Θ

≤ η1 ≤ 1
1+cos2 Θ

,

Q1 if η1 <
cos2 Θ

1+cos2 Θ
,

Q2 if 1
1+cos2 Θ

< η1 .

(26)

The optimum detection operators are given by

Π1 =
1− qopt1

sin2 Θ
|ψ⊥2 〉〈ψ⊥2 | ,

Π2 =
1− qopt2

sin2 Θ
|ψ⊥1 〉〈ψ⊥2 | . (27)
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Figure 1. Succes probability, P = 1 − Q, vs. the prior probability, η1. Dashed line: P1 = 1 − Q1,
dotted line: P2 = 1 − Q2, solid line: PPOVM = 1 − QPOVM . For the figure we used the following
representative value: |〈ψ1|ψ2〉|2 = 0.1. For this the optimal success probability, Popt = 1 − Qopt is
given by P1 = 1 − Q1 for 0 < η1 < 0.09, by PPOVM = 1 − QPOVM for 0.09 ≤ η1 ≤ 0.9 and by
P2 = 1−Q2 for 0.9 < η1.

These expressions show explicitly that Π1 = 0 and Π2 is the projector |ψ⊥1 〉〈ψ⊥1 | when qopt1 = 1 and
qopt2 = cos2 Θ, i.e. the POVM goes over smoothly into a projective measurement at the lower boundary
and, similarly, into the other von Neumann projective measurement at the upper boundary.

Fig. 1 displays the failure probabilities, Q1, Q2, and QPOVM vs. η1 for a fixed value of the overlap,
cos2 Θ.

The above result is very satisfying from a physical point of view. The POVM delivers a lower failure
probability in its entire range of existence than either of the two von Neumann measurements. At the
boundaries of this range it merges smoothly with the one von Neumann measurement that has a lower
failure probability at that point. Outside this range the state preparation is dominated by one of the states
and the optimal measurement becomes a von Neumann projective measurement, using the state that is
prepared less frequently as its failure direction. It should be noted that unambiguous discrimination was
first suggested by Ivanovic [9], the POVM leading to Eq. (23) when η1 = η2 = 1/2 was found by
Dieks [10] and Peres proved its optimality [11], therefore it is called the IDP limit in this case. For
arbitrary prior probabilities Jaeger and Shimony derived Eq. (23) [12].

3.2. Minimum error discrimination of two quantum states
In the previous section we have required that, whenever a definite answer is returned after a measurement
on the system, the result should be unambiguous, at the expense of allowing inconclusive outcomes to
occur. For many applications in quantum communication, however, one wants to have conclusive results
only. This means that errors are unavoidable when the states are non-orthogonal. Based on the outcome
of the measurement, in each single case then a guess has to be made as to what the state of the quantum
system was. In the optimal strategy we want to minimize the probability of making a wrong guess,
hence this procedure is known as minimum error discrimination. The problem is to find the optimum
measurement that minimizes the probability of errors.
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Let us state the optimization problem a little more precisely. In the most general case, we want
to distinguish, with minimum probability of error, among N given states of a quantum system (where
N ≥ 2). The states are given by the density operators ρj (j = 1, 2, . . . , N) and the jth state occurs with
the given a priori probability ηj , such that

∑N
j=1 ηj = 1. The measurement can be formally described

with the help of a POVM, where the POVM elements, Πj , correspond to the possible measurement
outcomes. They are defined in such a way that Tr(ρΠj) is the probability to infer the state of the system
to be ρj if it has been prepared in a state ρ. Since the probability is a real non-negative number, the
detection operators once again have to be positive-semidefinite. In the error-minimizing measurement
scheme the measurement is required to be exhaustive and conclusive in the sense that in each single case
one of the N possible states is identified with certainty and inconclusive results do not occur. This leads
to the requirement

N∑

j=1

Πj = IDS
, (28)

where IDS
denotes the identity operator in the DS-dimensional physical state space of the quantum

system. The overall probability Perr to make an erroneous guess for any of the incoming states is then
given by

Perr = 1− Pcorr = 1−
N∑

j=1

ηjTr(ρjΠj) (29)

with
∑
j ηj = 1. Here we introduced the probability Pcorr that the guess is correct. In order to find the

minimum-error measurement strategy, one has to determine the POVM that minimizes the value of Perr

under the constraint given by Eq. (28). By inserting these optimum detection operators into Eq. (29),
the minimum error probability Pmin

err ≡ PE is determined. The explicit solution to the error-minimizing
problem is not trivial and analytical expressions have been derived only for a few special cases.

For the case that only two states are given, either pure or mixed, the minimum error probability, PE ,
was derived in the mid 70s by Helstrom in the framework of quantum detection and estimation theory.
We find it more instructive to start by analyzing the two-state minimum-error measurement with the
help of an alternative method that allows us to gain immediate insight into the structure of the optimum
detection operators, without applying variational techniques. Starting from Eq. (29) and making use of
the relations η1 + η2 = 1 and Π1 + Π2 = IDS

that have to be fulfilled by the a priori probabilities and
the detection operators, respectively, we see that the total probability to get an erroneous result in the
measurement is given by

Perr = 1−
2∑

j=1

ηjTr(ρjΠj) = η1Tr(ρ1Π2) + η2Tr(ρ2Π1). (30)

This can be alternatively expressed as

Perr = η1 + Tr(ΛΠ1) = η2 − Tr(ΛΠ2), (31)

where we introduced the Hermitian operator

Λ = η2ρ2 − η1ρ1 =
DS∑

k=1

λk|φk〉〈φk|. (32)

Here the states |φk〉 denote the orthonormal eigenstates belonging to the eigenvalues λk of the operator
Λ. The eigenvalues are real, and without loss of generality we can number them in such a way that

λk < 0 for 1 ≤ k < k0,

λk > 0 for k0 ≤ k ≤ D,

λk = 0 for D < k ≤ DS . (33)
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By using the spectral decomposition of Λ, we get the representations

Perr = η1 +
DS∑

k=1

λk〈φk|Π1|φk〉 = η2 −
DS∑

k=1

λk〈φk|Π2|φk〉. (34)

Our optimization task now consists in determining the specific operators Π1, or Π2, respectively, that
minimize the right-hand side of Eq. (34) under the constraint that

0 ≤ 〈φk|Πj |φk〉 ≤ 1 (j = 1, 2) (35)

for all eigenstates |φk〉. The latter requirement is due to the fact that Tr(ρΠj) denotes a probability
for any ρ. From this constraint and from Eq. (34) it immediately follows that the smallest possible
error probability, Pmin

err ≡ PE , is achieved when the detection operators are chosen in such a way that
the equations 〈φk|Π1|φk〉 = 1 and 〈φk|Π2|φk〉 = 0 are fulfilled for eigenstates belonging to negative
eigenvalues, while eigenstates corresponding to positive eigenvalues obey the equations 〈φk|Π1|φk〉 = 0
and 〈φk|Π2|φk〉 = 1. Hence the optimum detection operators can be written as

Π1 =
k0−1∑

k=1

|φk〉〈φk|, Π2 =
DS∑

k=k0

|φk〉〈φk|, (36)

where the expression for Π2 has been supplemented by projection operators onto eigenstates belonging
to the eigenvalue λk = 0, in such a way that Π1 +Π2 = IDS

. Obviously, provided that there are positive
as well as negative eigenvalues in the spectral decomposition of Λ, the minimum-error measurement
for discriminating two quantum states is a von Neumann measurement that consists in performing
projections onto the two orthogonal subspaces spanned by the set of states {|φ1〉, . . . , |φk0−1〉}, on the
one hand, and {|φk0〉, . . . , |φDS

〉}, on the other hand. An interesting special case arises when negative
eigenvalues do not exist. In this case it follows that Π1 = 0 and Π2 = IDS

which means that the
minimum error probability can be achieved by always guessing the quantum system to be in the state ρ2,
without performing any measurement at all. Similar considerations hold true in the absence of positive
eigenvalues so a measurement does not always aid minimum-error discrimination. By inserting the
optimum detection operators into Eq. (31) the minimum error probability is found to be

PE = η1 −
k0−1∑

k=1

|λk| = η2 −
D∑

k=k0

|λk|. (37)

Taking the sum of these two alternative representations and using η1 + η2 = 1, we arrive at

PE =
1
2

(
1−

∑

k

|λk|
)

=
1
2

(1− Tr|Λ|) , (38)

where |Λ| =
√

Λ†Λ. Together with Eq. (29) this immediately yields the well-known Helstrom formula
for the minimum error probability in discriminating ρ1 and ρ2,

PE =
1
2

(1− Tr|η2ρ2 − η1ρ1|) =
1
2

(1− ‖η2ρ2 − η1ρ1‖) . (39)

In the special case that the states to be distinguished are the pure states |ψ1〉 and |ψ2〉, this expression
reduces to

PE =
1
2

(
1−

√
1− 4η1η2|〈ψ1|ψ2〉|2

)
. (40)
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This expression, which is the one found in textbooks, can be cast to the equivalent form,

PE = ηmin

(
1− 2ηmax(1− |〈ψ1|ψ2〉|2)

ηmax − ηmin +
√

1− 4ηminηmax|〈ψ1|ψ2〉|2
)
, (41)

where ηmin (ηmax) is the smaller (greater) of the prior probabilities, η1 and η2. This form lends itself
to a transparent interpretation. The first factor on the right-hand-side is what we would get if we
always guessed the state that is prepared more often, without any measurement at all. Thus, the factor
multiplying ηmin is the result of the optimized measurement.

The set-up of the detectors that achieve the optimum error probabilities is particularly simple for the
case of equal a priori probabilities. Two orthogonal detectors, placed symmetrically around the two pure
states, will do the task. The simplicity is particularly striking when one compares this set-up to the
corresponding POVM set-up for optimal unambiguous discrimination.

As we mentioned already in the introduction, the result Eq. (39) was obtained independently by
Helstrom [5] and Holevo [6] and is commonly referred to as the Helstrom bound. The derivation
presented here follows that of Ref. [13].

Finally, we present an interesting relation, without proof, that is always satisfied between the
minimum-error probability of the minimum-error detection and the optimal failure probability of
unambiguous detection [13]. It reads as

PE ≤ 1
2
Qopt . (42)

This means that for two arbitrary states (mixed or pure), prepared with arbitrary a priori probabilities,
the smallest possible failure probability in unambiguous discrimination is at least twice as large as the
smallest probability of errors in minimum-error discrimination of the same states.

3.3. The B92 quantum key distribution protocol
Both of the state discrimination strategies discussed in the previous subsections come very nicely together
in the so called B92 quantum key distribution (QKD) protocol.

In cryptography the sender is often called Alice and the receiver Bob. We will use this nomenclature
in what follows. The basic task in cryptography can then be formulated as this. Alice wants to send a
message to Bob, and keep it secret from everybody else. To accomplish this, she uses a code to encrypt
the message. A possible code is to shift each letter of the message by a different amount. In this case
Alice and Bob must share a sequence of numbers telling them the shifts. This is the key. If the key is
random and is used only once the code is unbreakable. The question is, then, how to generate a secret
key?

In 1992 Bennett proposed using the unambiguous discrimination of two nonorthogonal states as the
basis of a form of quantum cryptography [7]. Quantum cryptography is a method of generating a secure
shared key by quantum mechanical means that is discarded after being used only once. So, it is the
quantum version of the one-time pad cipher and here is how it works.

(i) Alice sends a system that is prepared with equal probability either in the state |ψ0〉 = |0〉, which
corresponds to the logical 0, or in the state |ψ1〉 = 1√

2
(|0〉+ |1〉), which corresponds to the logical

1.
(ii) Bob applies optimum unambiguous state discrimination strategy to the state he receives. Using Eq.

(23), the success probability for Bob’s measurement is P = 1−QPOVM = 1− 1√
2
.

(iii) Bob tells Alice, over a public classical channel, whether the discrimination succeeded or failed.
They keep the bit if the discrimination was successful, throw it away if it failed.

After repeating this procedure many times Alice and Bob share a sequence of 0’s and 1’s that they can
use for a key.
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Why is this procedure secure? Suppose an eavesdropper, called Eve, has intercepted the particle.
She cannot determine whether it is in |ψ0〉 or |ψ1〉. One thing she can do is to apply the optimum
unambiguous state discrimination procedure. Then she will fail with a probability of 1√

2
≈ 71%. When

she does, she has no idea what state was sent, so she must guess which one to send to Bob. Since the
two states are prepared with equal probability, Eve will guess half the time right and half the time wrong.
This means that the probability that Bob will receive a wrong bit is 1

2
√

2
≈ 35.5%. These errors can

easily be detected if Alice and Bob add one more step to their protocol.

(iv) Alice and Bob publicly compare some of their bits. If there are no errors there is no eavesdropper
and they keep the remaining bits. If there are errors, in the range of 35%, there is likely to be an
eavesdropper. They then simply throw out all bits and try again.

However, Eve can do better. Her goal, besides learning as much as possible about the key, is also to
introduce as few errors as possible. There are unavoidable errors in any communication scheme, partly
due to the imperfections of the communication channel and partly due to the imperfect detection. Eve’s
goal is to remain below this unavoidable noise level in order to avoid being detected. So, suppose she
has intercepted the particle but she now chooses the minimum error strategy to determine which state
was sent. Using Eq. (40), her error rate will now be 1

2(1 − 1√
2
) ≈ 14.6% which is much less than the

error rate that she introduces if she uses the unambiguous discrimination strategy. In addition, she still
learns the key with a fidelity of about 85%. However, even this rather low error rate can still be detected
if Alice and Bob modify the last step of their protocol.

(iv′) Alice and Bob publicly compare some of their bits. If there are no errors there is no eavesdropper
and they keep the remaining bits. If there are errors, in the range of 14%, there is likely to be an
eavesdropper. They then simply throw out all bits and try again.

This requirement is much more stringent than the one in Step (iv) of the original protocol. It is
still possible to detect the presence of an eavesdropper but the requirements on the channel quality and
detector efficiency are much more demanding than in the case when Eve uses the same strategy as Bob.
So, here we had an example where one state discrimination strategy is optimal for the intended recipient
and the other for the eavesdropper and to analyze the worst case scenario for Alice and Bob we have
to consider all of their possibilities. There are many other QKD protocols but this one is perhaps the
clearest example of how important optimal detection strategies are for quantum communication.

4. Recent developments
It is interesting to note that the two main discrimination strategies have evolved very differently from the
beginning. Minimum error discrimination (also known as hypothesis testing or best guess discrimination)
considered pure and mixed states on equal footing from its introduction. However, it is very difficult
to generalize this strategy to more than two states, except for some very special highly symmetrical
cases. Unambiguous discrimination, on the other hand, dealt with pure states for a long time after it was
introduced. It is precisely the area of the unambiguous discrimination of mixed states that has seen a
significant amount of progress recently.

Optimum unambiguous discrimination between two mixed states is an issue of ongoing theoretical
research [14–20]. In contrast to minimum-error discrimination, there does not exist a compact formula
expressing the minimum probability of inconclusive results, i. e. the minimum failure probability,
for unambiguously discriminating two mixed states that are completely arbitrary. However, analytical
solutions can be obtained for certain special classes of density operators, including the cases that are
of interest for this paper. In a seminal paper Rudolph, Spekkens and Turner [14] clearly established
the principles behind the unambiguous discrimination of mixed states. In order to understand their
reasoning, we need to introduce some terminology. We call the support of a mixed state density operator
the subspace spanned by its eigenvectors belonging to nonzero eigenvalues. The kernel of the mixed
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state density operator is the orthogonal complement to its the support. Any measurement in the kernel of
a state with a positive outcome unambiguously identifies the other state. Of course, this is not necessarily
optimal. In the same paper it has also been shown that the fidelity of the two density operators represents
an absolute lower bound for the failure probability of the unambiguous discrimination. Built on these
results we have presented exact analytical expressions for an important special case in [20] and found
conditions for when the fidelity bound can be saturated.

These results can be directly applied to a novel Quantum Key Distribution (QKD) scheme that can
be regarded as a generalization of the B92 protocol, discussed in Sec. 3.3. We have recently proposed
such a scheme [21]. It is a QKD scheme based on communicating via quantum patterns rather than via
known pure sates. In this scheme Bob’s ability to distill a noise-free string of qubits, shared also by
Alice, is virtually unaffected but the ability of the eavesdropper, Eve, to learn the proper sequence is
vastly diminished as compared to the B92 protocol. In particular, the minimum amount of noise that
Eve is bound to introduce goes from the 14.7% of the B92 protocol to about 35.5% in the present one,
providing a dramatic increase in security. Although this figure of merit is still coming short of that of the
theoretical optimum of 50%, the scheme offers additional advantages. For example, it does not require
a shared reference frame between Alice and Bob as it uses only the symmetry features of the patterns
for communication and, furthermore, is robust against unitary errors. QKD protocols that similarly do
not require a shared reference frame between Alice and Bob and are robust against unitary errors have
been proposed recently but they require much more resources and offer a lower figure of merit [22]. The
obvious advantages make our scheme secure and attractive from a practical point of view.

Our proposal is based on the programmable state discriminator for the unambiguous discrimination
between unknown quantum states [23]. Prior to this device it was widely held that only known states can
be discriminated. In this device the unknown states are provided as program (qubits A and B) and a copy
of one of the unknown states as data (qubit C) at the input. More specifically, Alice prepares one of the
following three-qubit states

|Φ0〉 = |ψ1〉A|ψ2〉B|ψ1〉C ,
|Φ1〉 = |ψ1〉A|ψ2〉B|ψ2〉C , (43)

at random. Here |ψ1〉 and |ψ2〉 can be completely arbitrary qubit states,

|ψ1〉 = cos(θ1/2)|0〉+ eiφ1 sin(θ1/2)|1〉 , (44)
|ψ2〉 = cos(θ2/2)|0〉+ eiφ2 sin(θ2/2)|1〉 , (45)

that remain unknown to both Alice and Bob throughout the entire discrimination process. In fact, they
can even change from one preparation to the next. What matters is that the pattern remains the same:
the state of the last qubit matches the state of the first qubit, as in |Φ0〉, or it matches the state of the
second qubit, as in |Φ1〉. Furthermore, we assume that both inputs, |Φ0〉 and |Φ1〉, are prepared with
probability 1/2. Alice and Bob are never required to learn the states |ψ1〉 and |ψ2〉. For the transmission
and reception all that matters is the comparison of the last qubits to the other two.

The device then performs an optimum unambiguous discrimination of the two inputs given in (43).
Details of how this is done can be found in [23] and [24]. Here we just recall the main results which were
obtained by exploiting obvious symmetry features of the two inputs. Namely, the first one is symmetric
in qubits A and C, while the second one is symmetric in qubits B and C. If we set up a projective
measurement along the antisymmetric subspace of qubits A and C (and the orthogonal subspace) a click
in the detector along the antisymmetric subspace will unambiguously identify the input as |Φ0〉 since |Φ1〉
has no component in this subspace. Similarly, a detector along the antisymmetric subspace of B and C
unambiguously identifies the input as |Φ1〉 since |Φ0〉 has no component in this subspace. These two
antisymmetric subspaces are not orthogonal, therefore one needs again two different detector settings.
One that projects on the antisymmetric subspace of A and C and the orthogonal subspace, and another
that projects on the antisymmetric subspace ofB and C and the orthogonal subspace. Bob again chooses
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randomly between these two detector settings, that is performs a flip-flop measurement. The success
probability of such a measurement is 1/8 when averaged over all possible input states [23]. Once again,
however, the optimum measurement is a POVM with an average probability of success of 1/6 over all
possible qubits |ψ1〉 and |ψ2〉 transmitted by Alice [23].

An eavesdropper, Eve, could, in principle, perform the same measurement as Bob. Her success rate
would then be 1/6 and in the remaining 5/6 of the cases she would have to guess the input pattern. If half
the time she guesses right she will introduce an error rate of (5/6)/2 = 5/12 = 0.417. This is large, so
her presence could be easily detected. However, once again, it is more advantageous for Eve to perform a
minimum error identification. The minimum error probability for these input patterns was found in [24].
In the case when the preparation of the two patterns is equally likely, the minimum error probability is
1
2(1−√3/6) = 0.356. This is much higher than the corresponding figure of merit for the B92 protocol,
by a factor of about 2.5. While it is still below the theoretical optimum of 50%, this figure is high enough
for generating practical interest [25].

The scheme has further advantages over existing protocols. It utilizes symmetry only and a successful
identification of the input patterns corresponds to a successful projection onto one of the antisymmetric
subspaces of the two inputs. This subspace is invariant, it is the same in any basis. Therefore, there is
no need for a shared reference frame between the two communicating parties. The scheme is also robust
against unitary errors that affect the two inputs in such a way that the patterns are still preserved. This
happens, for example, if all qubits undergo the same local unitary transformation as this leaves the input
patterns invariant. In the following Table we summarize the features of the present case and compare
them to the benchmarks of the B92 protocol.

Table 1. Comparison of the current proposal to the benchmarks of the B92 protocol.

B92 QKD via patterns

Bob’s success probability 0.29 0.17

Eve’s minimal error rate 0.147 0.355

Shared reference frame Yes No

Robust against unitary errors No Yes

Obviously, in spite of the fact that we use more qubits (three times the number of quantum resources),
the most attractive features of the current proposal are those in lines 3 and 4 of the Table: the high error
rate Eve is bound to introduce even if she uses the minimum error discrimination strategy, and no need
for Alice and Bob to share a reference frame.

Another important consideration is the security of the scheme. To apply known security criteria we
recall that it has been shown in a series of recent papers that the problem of discrimination of unknown
pure quantum states is equivalent to the discrimination of known mixed states [24, 26, 27]. The two
density operators, corresponding to the pure state inputs in (43) averaged over the Bloch spheres of the
independent qubits, i.e. over θ1, φ1 and θ2, φ2 of (45), have been given in Ref. [24] and they satisfy
the security criteria that were introduced in [28] for the case when quantum key distribution in the B92
protocol employs mixed states. Eve can get no information about the patterns without disturbing them in
an essential way. Assuming perfect detectors and noise free environment the scheme is unconditionally
secure. On the experimental side, optimal unambiguous discrimination has been realized optically both
for pure and mixed states, in excellent agreement with the theory [29].

Thus, the scheme represents a dramatic improvement over the original B92 protocol and incorporates
many desirable aspects of existing, more practical protocols. First, the ability of the eavesdropper to
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obtain information is greatly reduced as compared to the original B92 protocol. It is much harder for
Eve to hide in the noise that is inevitably introduced by imperfect detectors and communication channel
losses. Second, the identification of the states is based on symmetry and, therefore, no shared reference
frame is required for Alice and Bob to communicate. Third, the patterns are more robust against unitary
errors than the patterns based on communicating via known states. For example, a simultaneous rotation
of all three qubits carrying the pattern into which the 0 and 1 are encoded still preserves the pattern.
Finally, using the equivalence of the pattern of unknown qubit states to that of known mixed states we
were able to apply the security conditions derived in [28] to our case and show that the current scheme
is unconditionally secure mathematically while it is a practically secure scheme if noise is included.

5. Summary and outlook
In this paper we have given a tutorial introduction to the theory of generalized measurements (Positive
Operator Valued Measures, POVMs). In our treatment the POVM emerges as a natural and for most
practical purposes completely satisfactory generalization of the standard projector valued quantum
measurement, originally introduced by von Neumann. Based on Neumark’s Theorem, we have shown a
general method to implement POVMs experimentally.

Next, we have shown that optimal state discrimination problems are equivalent to finding
measurement strategies that optimize some reasonably chosen figure of merit. The solution often leads
to POVMs. As a first application we have analyzed the performance of the B92 quantum key distribution
protocol and have shown that the optimal measurement strategies for Bob, the intended recipient of the
key and Eve, the eavesdropper, are different.

Finally, based on recent progress in the discrimination of mixed quantum states, we have discussed
an extension of the B92 protocol to communicating the key via symmetry alone. While the proposed
new protocol does not significantly affect Bob’s ability to distill a shared key, it drastically increases the
noise introduced by the eavesdropper, thus making her presence easier to detect.

In summary, state discrimination is a rapidly developing subfield of quantum information theory,
touching the very foundation of quantum mechanics. Perhaps the most immediate open problem is the
unambiguous discrimination of two mixed states. Although the solution is known for many special cases,
no closed form solution is available for two general mixed states. It is fully expected that the optimal
unambiguous discrimination of two rank 2 density matrices will be solved in the near future. However,
no analytical expression is expected for higher rank problems due to the fact that the dependence on
the relevant parameters is highly nonlinear. On the other hand, the general case is an example of a
semidefinite programming problem and as such, very efficient numerical methods can be employed to
find a numerically optimized solution to the underlying measurement problem.
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