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Abstract. A new differential evolution (DE) algorithm is presented in this paper. The 

proposed algorithm monitors the evolutionary progress of each individual and assigns 

appropriate control parameters depends on whether the individual is successfully 

evolved or not. We conducted the performance evaluation on CEC 2014 benchmark 

problems and confirmed that the proposed algorithm outperformed than the 

conventional DE algorithm. In addition, we apply the proposed DE algorithm as an 

optimization technique of training large scale multilayer perceptron. We conducted the 

performance evaluation on an artificial neural network that has approximately 1,000 

weights and confirmed again that the proposed algorithm performed better than the 

conventional DE algorithm. As a result, we proposed a new DE algorithm that has 

better optimization performance for solving large-scale global optimization problems. 

1. Introduction  

Training artificial neural networks[1,2] is considered as a multimodal continuous optimization 

problem. Generally, Back-propagation algorithm is used for this purpose. However, this algorithm has 

a disadvantage that it has the higher probability to get stuck in local minima. Some researchers attempt 

to devise a method to overcome this problem by using another optimization technique such as 

evolutionary algorithms[3-6]. 

In this paper, we propose a new differential evolution (DE) algorithm and apply this algorithm to 

training large-scale artificial neural networks as an optimization technique. DE algorithm has three 

control parameters and these control parameters affect its optimization performance significantly. 

However, it is the laborious task to apply the trial-and-error approach to find appropriate control 

parameters depends on the structure of artificial neural networks. 

Therefore, the proposed DE algorithm automatically finds and tunes appropriate control parameters. 

More specifically, the proposed algorithm monitors the evolutionary progress of each individual. If an 

individual is successfully evolved to the next generation, then the individual is assigned new control 

parameters tuned by the Gaussian distribution. If an individual is failed to evolve, then the individual 

is assigned new control parameters tuned by the Cauchy distribution. 

We conducted the performance evaluation on CEC 2014 benchmark problems and confirmed that 

the proposed algorithm outperformed than the conventional DE algorithm. In addition, we apply the 

proposed DE algorithm as an optimization technique of training large scale multilayer perceptron. We 

conducted the performance evaluation on an artificial neural network that has approximately 1,000 
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weights and confirmed again that the proposed algorithm performed better than the conventional DE 

algorithm. 

2. Background 

2.1. Artificial Neural Networks 

Generally, Back-propagation algorithm[1,2] is used for training artificial neural networks. First, the 

output value generated from the input layer, the hidden layer, and the output layer is compared with 

the target value. And adjust the weights from the output layer to the hidden layer through the 

differential by the difference that occurs. We then adjust the weights by repeating this process up to 

the input layer. In this process, the chain-rule of the differential is used. Back-propagation algorithm, 

however, has disadvantages. A typical example is that there is a high probability of convergence to 

local optima and cannot escape from the saddle-point. 

There are studies that use evolutionary algorithms as a way to overcome these shortcomings. 

Evolutionary algorithms do not need to consider differentiability and the above mentioned 

disadvantages disappear. For this reason, some researchers have been studying artificial neural 

network training methods using evolutionary algorithms. However, training methods of artificial 

neural networks using evolutionary algorithms also have disadvantages. In particular, it is considered 

that evolutionary algorithms are not suitable for learning artificial neural networks with large-scale 

weights. The reason for this is that it requires a lot of computational cost to apply vast amounts of data 

to existing evolutionary algorithms. 

Recent study has confirmed that evolutionary algorithms can perform well similar to Back-

propagation algorithm through hypothesis that each individual need not use all training data. In other 

words, unlike previous methods in which individuals learn all training data, this condition can be 

mitigated by reducing the computational cost and achieving the same level of performance as Back-

propagation algorithm. 

2.2. Differential Evolution 

DE algorithm [7,8,9] contains 𝑁𝑃 individuals. 𝑋𝑖
𝐺⃗⃗ ⃗⃗  ⃗ = {𝑥𝑖,1

𝐺 , 𝑥𝑖,2
𝐺 , … , 𝑥𝑖,𝐷

𝐺 } denotes a target vector of 𝐷 

components in 𝐺  generation. Target vector acts as a parent individual in evolutionary algorithms. 

𝑈𝑖
𝐺⃗⃗ ⃗⃗  ⃗ = {𝑢𝑖,1

𝐺 , 𝑢𝑖,2
𝐺 , … , 𝑢𝑖,𝐷

𝐺 } denotes a trial vector. Trial vector acts as a child individual. And, 𝑉𝑖
𝐺⃗⃗⃗⃗  ⃗ =

{𝑣𝑖,1
𝐺 , 𝑣𝑖,2

𝐺 , … , 𝑣𝑖,𝐷
𝐺 } denotes a mutant vector. Mutant vectors are used to generate trial vectors with 

target vectors. 

The DE algorithm consists of mutation, crossover, and selection operators. The mutant operator 

generates a mutant vector based on three donor vectors selected randomly in the population. This is as 

follows. 

𝑉𝑖
𝐺⃗⃗⃗⃗  ⃗ = 𝑋𝑟1

𝐺⃗⃗ ⃗⃗  ⃗ + 𝐹 ∙ (𝑋𝑟2
𝐺⃗⃗ ⃗⃗  ⃗ − 𝑋𝑟3

𝐺⃗⃗ ⃗⃗  ⃗) (1) 

where 𝑟1, 𝑟2, 𝑟3 ∈ {1,2,… , 𝑁𝑃}, 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖. 𝐹 is scaling factor, which is one of the control 

parameters of DE algorithm. In the crossover operator, a trial vector is generated based on a target 

vector and a mutant vector. This is as follows. 

𝑢𝑖,𝑗
𝐺 = {

𝑣𝑖,𝑗
𝐺 ,   𝑖𝑓 𝑟𝑎𝑛𝑑𝑗[0,1) ≤ 𝐶𝑅 𝑜𝑟 𝑗 ≡ 𝑗𝑟𝑎𝑛𝑑𝑖

𝑥𝑖,𝑗
𝐺 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2) 

where 𝑗𝑟𝑎𝑛𝑑𝑖 ∈ {1,2,… , 𝐷}. 𝑗𝑟𝑎𝑛𝑑𝑖 ensures that at least one of the components of the trial vector 

is composed of the components of the mutant vector. 𝐶𝑅 is crossover rate, which is one of the control 

parameters of DE algorithm. Selection operator selectes the individuals to be populated in the 𝐺 + 1 

generation population This is as follows. 
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𝑋𝑖
𝐺+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = {

𝑈𝑖
𝐺⃗⃗ ⃗⃗  ⃗,   𝑖𝑓 𝑓 (𝑈𝑖

𝐺⃗⃗ ⃗⃗  ⃗) ≤ 𝑓 (𝑋𝑖
𝐺⃗⃗ ⃗⃗  ⃗)

𝑋𝑖
𝐺⃗⃗ ⃗⃗  ⃗,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3) 

where 𝑓 is an objective function. The DE algorithm executes these operators until the termination 

condition is satisfied. 

3. Improved Differential Evolution 

In DE algorithm, the more likely an individual has the appropriate control parameters, the more likely 

the individual is to evolve successfully. In other words, successfully evolved individuals are likely to 

have the appropriate control parameters. Using this observation, we propose a new adaptive parameter 

control method. The proposed method monitors the selection operator that which individuals 

succeeded in evolution and which individuals failed. The successfully evolved individuals tunes their 

control parameters using the Gaussian distribution, a short tailed distribution, and the failed 

individuals tunes their control parameters using the Cauchy distribution, a long tailed distribution. 

Through this process, the following effects can be obtained. First, even if an individual has been 

successfully evolved, it searches for a new value in the neighbor of its control parameters and applies 

it. This helps to find a new value that are better than the current control parameters. Next, an 

individual that has failed to evolve uses a large step to find and apply a new value that is far from its 

control parameters. This helps individuals which fail to evolve to find a new control parameter. The 

adaptive parameter control method of the proposed algorithm is as follows. 

𝐹𝑖
𝐺+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = {

𝑟𝑎𝑛𝑑𝐺𝑖
(𝐹𝑖

𝐺⃗⃗⃗⃗  ⃗, 0.1) ,   𝑖𝑓 𝑋𝑖
𝐺+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ≠ 𝑋𝑖

𝐺⃗⃗ ⃗⃗  ⃗

𝑟𝑎𝑛𝑑𝐶𝑖
(𝐹𝑖

𝐺⃗⃗⃗⃗  ⃗, 0.1) ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

𝐶𝑅𝑖
𝐺+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = {

𝑟𝑎𝑛𝑑𝐺𝑖
(𝐶𝑅𝑖

𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 0.1) ,   𝑖𝑓 𝑋𝑖
𝐺+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ≠ 𝑋𝑖

𝐺⃗⃗ ⃗⃗  ⃗

𝑟𝑎𝑛𝑑𝐶𝑖
(𝐶𝑅𝑖

𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 0.1) ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5) 

where 𝑟𝑎𝑛𝑑𝐺(𝜇, 𝜎2)  and 𝑟𝑎𝑛𝑑𝐶(𝑥0, 𝛾)  denote the Gaussian distribution and the Cauchy 

distribution, respectively. Then, truncate the control parameters as follows. If 𝐹𝑖
𝐺+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is lower than 0.1, 

𝐹𝑖
𝐺+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 0.1, else if 𝐹𝑖

𝐺+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is bigger than 1.0, 𝐹𝑖
𝐺+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 1.0. If 𝐶𝑅𝑖

𝐺+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is lower than 0, 𝐶𝑅𝑖
𝐺+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 0, if 

𝐶𝑅𝑖
𝐺+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is bigger than 1.0, 𝐶𝑅𝑖

𝐺+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 1.0. Due to page limitation, we omit the analysis of the proposed 

algorithm. 

4. Experiment and Result 

4.1. CEC2014 Benchmark Problems 
We performed the performance evaluation of the proposed algorithm in the CEC 2014 benchmark 

problems [10] with the conventional DE algorithm. Here, the control parameters of the conventional 

DE algorithm are: 𝐹 = 0.5 , 𝐶𝑅 = 0.5 . A total of 50 performance evaluations were performed 

independently. We used the following settings. 
 Population Size: 𝑁𝑃 = 100 

 Function Evaluation Counter: 10000 × 𝐷 × 𝑁𝑃 = 3.0E7 

Table 1 shows the experimental results. The algorithms that perform better in this table are shown 

in bold. As we can see in this table, we can confirm that the proposed algorithm has better 

optimization performance than the conventional DE algorithm. The proposed algorithm outperformed 

or exceeded the conventional DE algorithm with the exception of 5 problems for a total of 30 

problems. Therefore, it is experimentally confirmed that the adaptive parameter control of the 

proposed algorithm can improve the performance of the DE algorithm. 
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Table 1. The result of performance evaluation in CEC2014 benchmark problems, 𝐷 = 30 

 
Func. F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

IDE Avg. 2.21E+05 0.00E+00 0.00E+00 4.48E+01 2.04E+01 5.44E+02 1.28E-03 0.00E+00 3.70E+01 8.96E-01 

 

Std. 

Dev. 
1.69E+05 0.00E+00 0.00E+00 3.64E+01 5.66E-02 2.13E+00 3.28E-03 0.00E+00 1.56E+01 1.20E+00 

DE Avg. 9.42E+07 1.58E-09 6.71E-05 7.07E+01 2.09E+01 5.71E+02 3.19E-14 9.27E+01 1.78E+02 2.74E+03 

 

Std. 

Dev. 
1.91E+07 6.80E-10 2.64E-05 5.06E-01 5.12E-02 1.60E+00 5.12E-14 7.85E+00 9.26E+00 2.00E+02 

 
Func. F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 

IDE Avg. 3.66E+03 6.58E-01 2.77E-01 3.13E-01 6.89E+00 1.09E+01 3.16E+03 6.85E+01 4.71E+00 2.48E+01 

 

Std. 
Dev. 

2.64E+02 8.91E-02 4.93E-02 7.84E-02 1.12E+00 3.00E-01 3.08E+03 2.49E+02 1.05E+00 3.70E+01 

DE Avg. 6.60E+03 2.06E+00 3.92E-01 2.81E-01 1.62E+01 1.27E+01 2.30E+06 5.22E+03 7.85E+00 1.64E+02 

 

Std. 

Dev. 
1.91E+02 2.43E-01 4.52E-02 4.75E-02 9.51E-01 1.43E-01 7.68E+05 3.04E+03 1.09E+00 1.95E+01 

 
Func. F21 F22 F23 F24 F25 F26 F27 F28 F29 F30 

IDE Avg. 4.35E+02 8.25E+01 3.15E+02 2.28E+02 2.04E+02 1.00E+02 4.03E+02 8.49E+02 9.41E+02 2.48E+03 

 
Std.Dev. 5.11E+02 6.09E+01 0.00E+00 4.56E+00 8.62E-01 0.00E+00 3.55E+01 3.35E+01 1.36E+02 1.08E+03 

DE Avg. 1.14E+05 1.72E+02 3.15E+02 2.23E+02 2.22E+02 1.00E+02 3.35E+02 8.29E+02 2.85E+03 2.86E+03 

 
Std.Dev. 3.95E+04 5.85E+01 0.00E+00 1.24E+00 3.52E+00 0.00E+00 3.65E+01 2.41E+01 5.36E+02 6.33E+02 

 

4.2. Training Multilayer Perceptron 

We performed the performance evaluation of the proposed algorithm in the training of the multilayer 

perceptron with the conventional DE algorithm. The dataset we used is CANCER [11]. The CANCER 

dataset is divided into a total of 30 attributes and two classes. There are 569 instances in CANCER, of 

which 75% is used as training data and the remaining 25% is used as test data. Here, the control 

parameters of the conventional DE algorithm are: 𝐹 = 0.5, 𝐶𝑅 = 0.5. A total of 10 performance 

evaluations were performed independently. We used the following settings. 
 Network Structure: [30-20-10-2], [30-10-2] 
 Population Size: 𝑁𝑃 = 10 for [30-20-10-2], 𝑁𝑃 = 100 for [30-10-2] 

 Function Evaluation Counter: 500 for [30-20-10-2], 1000 for [30-10-2] 
In the network structure of [30-20-10-2], each individual has a total of 620 + 210 + 22 = 852 

chromosomes including bias. In the network structure of [30-10-2], each individual has a total of 310 

+ 22 = 332 chromosomes including bias. Therefore, the training multilayer perceptron problem is a 

large scale optimization problem. Table 2 shows the experimental results. The algorithms that perform 

better in this table are shown in bold. As we can see in this table, we can confirm that the proposed 

algorithm has superior classification performance compared to the conventional DE algorithm. 

Table 2. The result of performance evaluation in the training of the multilayer perceptron 

 Algorithm Network Structure Population Size 
Result 

Avg. Std.Dev. 

CANCER IDE 30-20-10-2 10 3.16.E-01 4.61.E-04 

 DE 30-20-10-2 10 5.00.E-01 1.41.E-01 

CANCER IDE 30-10-2 100 4.08.E-01 1.85.E-05 

 DE 30-10-2 100 4.44.E-01 1.29.E-01 
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5. Conclusion 

In this paper, we propose an improved DE algorithm and conduct the performance evaluation through 

CEC2014 benchmark problems. As a result of the performance evaluation, we confirmed that the 

overall optimization performance was improved compared with the conventional DE algorithm. We 

applied the proposed algorithm to the optimization technique of the training multilayer perceptron. In 

particular, we used a multilayer perceptron with a size of weights approaching 1,000. The performance 

evaluation shows that the classification performance is improved as compared with the conventional 

DE algorithm. As a result, we propose an improved DE algorithm that is useful for large scale 

optimization problems. We extend the proposed algorithm to develop algorithms that can be used to 

the optimization technique of training Deep learning as a future work. 
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