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Abstract. We consider a family of nonlinear diffusion equations with nonlinear sources. We
assume that all nonlinearities are polynomials with respect to a dependent variable. The
traveling wave reduction of this family of equations is an equation of the Lienard–type. Applying
recently obtained criteria for integrability of Lienard–type equations we find some new integrable
families of traveling wave reductions of nonlinear diffusion equations as well as their general
analytical solutions.

1. Introduction

In this work we consider the following family of equations

ut = (umux)x + a1u
k + a2u

l + a3u
p, (1)

where x, t and u(x, t) are independent and dependent variables correspondingly, ai, i = 1, 2, 3,
a21 + a22 + a23 6= 0 and m,k, l, p, m2 + k2 + l2 + p2 6= 0 are arbitrary real parameters.

Equation (1) can be considered as a nonlinear diffusion or nonlinear heat equation with
polynomial sources, which are both frequent in many applications (see, e.g. [1]). For example, the
generalized Fisher equation, the Newell–Whitehead equation and Zeldovich equation belong to
family (1) [1–3]. It is known (see, e.g. [1,2,4] and references therein) that traveling wave solutions
of equations like (1) are very important for understanding of both underlying phenomenon and
solutions’ behaviour. Therefore, a problem of constructing general analytical traveling wave
solutions of equations from family (1) is worth studying.

Assuming that u(x, t) = y(z), z = x− C0t in (1) we obtain its traveling wave reduction

yzz +
m

y
y2z + C0y

−myz + a1y
k−m + a2y

l−m + a3y
p−m = 0, (2)

where C0 6= 0 is traveling waves speed. Equation (2) is a nonlinear ordinary differential equation
of the Lienard type. Some approaches for finding integrable cases of such equations have recently
been proposed (see, e.g. [5–14] and references therein). In work [14] several new integrability
conditions for the Lienard–type equations were found. In this work we apply these conditions
for finding integrable cases of (2). As a result, we find four subcases of (2) for which the closed–
from general analytical solution can be constructed. We believe that these families of integrable
traveling wave reductions of (1) have not been reported previously.
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2. Integrable traveling wave reductions of nonlinear diffusion equation (1)
In this section we apply integrability criteria obtained in [14] for finding integrable cases of (2).
The approach of work [14] is based on using of the following nonlocal transformations

w = F (y), dζ = G(y)dz, FyG 6= 0, (3)

where w and ζ are new dependent and independent variables. Connections between the Lienard–
type equations and Painleve–Gambier equations (see, e.g. [15])of type III via (3) were studied
in [14] and four integrability criteria were found. Below we apply these integrability criteria for
finding general analytical solutions for some members of equations family (2). Let us remark
that throughout this work we assume that the parameter κ is equal to 0 in all criteria from
work [14]. Note also that below we use Ince’s notation for the Painleve–Gambier equations [15].

We start with the criterion for integrability of (2) that connects Lienard–type equations with
Painleve–Gambier equation XXIII (see Theorem 1, [14]). It can be shown that equation (2)
satisfies this criterion when k = 5 −m, l = 1 −m, a2 = 3C2

0/16 and a3 = 0. As a result, we
obtain that the following integrable equation from family (2)

yzz +
m

y
y2z + C0y

−myz + a1y
5−2m +

3C2
0

16
y1−2m = 0, (4)

can be transformed into Painleve–Gambier equation XXIII

wζζ −
3

4w
w2
ζ + 2αwζ + w2 + 3α2w = 0, (5)

via transformations (3) with F = 16α2a1C
−2
0 y4 and G = (C0/2α)y

−m. Here α 6= 0 is an
arbitrary parameter.

Figure 1. Solution (6) at m = −2, ζ0 = 1.1 and α = C0 = g3 = a1 = 1.

Taking into account the general solution of equation (5) we find the general solution of (4)

y =

[

3C0g3
16a1

e−2α(ζ−ζ0)℘−2{e−α(ζ−ζ0), 0, g3}

]1/4

, z =
2α

C0

∫

ymdζ, (6)

where ℘ is the Weierstrass elliptic function, g3 6= 0 and ζ0 are arbitrary constants. We
demonstrate a plot of solution (6) for certain values of the parameters in Fig.1. One can see
that in this case solution (6) describes a pulse–type structure.

Now we proceed to the next criterion form [14] that connects Lienard–type equations with
equation XXV of the Painleve–Gambier type (see Theorem 2, [14]). This criterion holds for
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equation (2) if k = −m− 3/5, l = −m+ 1, p = −m− 7/5 and a2 = 5C2
0/36. Consequently, the

following equation from family (2) is integrable:

yzz +
m

y
y2z + C0y

−myz + a1y
−2m−3/5 +

5C2
0

36
y1−2m + a3y

−2m−7/5 = 0. (7)

This equation can be transformed into Painleve–Gambier equation XXV

wζζ −
3

4w
w2
ζ +

3

2
wwζ +

1

4
w3 +

9a1
5
w +

18C0a3
10

= 0, (8)

with the help of transformations (3) with F = C0y
4/5 and G = (2/3)y−4/5−m,

Figure 2. Solution (9) at m = a3 = −1 and C0 = 1.

One can obtain the general solution of (7) by virtue of (3) and the general solution of (8) as
follows

y =

(

w

C0

)5/4

, z =
3

2

∫

ym+4/5dζ, w = −
9C0a3

10vζ + 5v2 + 9a1
, v =

Ψζ

ψ
, (9)

where Ψ is the general solution of the equation

Ψζζζ +
9

5
a1Ψζ +

9C0

10
a3Ψ = 0. (10)

A plot of solution (9) for certain values of the parameters is shown in Fig.2. We see that solution
(9) can describe pulse–type structures with oscillations.

Let us consider criterion of equivalence between Lienard–type equations and Painleve–
Gambier equation XXVIII (see Theorem 3 work [14]). Equation (2) satisfies this criterion
at a1 = (n− 1)ǫn2/(n − 2)2, a3 = 0, a2 = −(n− 1)C2

0/(n − 2)2, k = −m− (n+ 1)/(n − 1) and
l = 1−m and in this case it has the form

yzz +
m

y
y2z + C0y

−m +
(n− 1)ǫn2

(n− 2)2
y−2m−

n+1

n−1 −
(n− 1)C2

0

(n− 2)2
y1−2m = 0. (11)

Equation (11) can be transformed into

wζζ −
n− 1

n

w2
ζ

w
+
n− 2

n

wζ

w
+

1

nw
− nǫw = 0, (12)
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Figure 3. Solution (13) at n = 3, m = −2, C0 = 1, C1 = 0, C2 = 1 and C3 = 10000.

where ǫ 6= 0 is an arbitrary parameter, n 6= 0,±1,±2 is an integer number, with the help of

transformations (3) with F = y−
n

n−1/C0, G = ny−m−
n

n−1 /(n − 2).
Therefore, we find the general solution of equation (12)

y = (C0w)
−

n−1

n , z =
n− 2

n

∫

ym+ n

n−1 dζ, (13)

where w is defined by the relation

w = ψn

(

C1 +

∫

ψ−ndζ

)

, ψ = C2e
√

ǫζ + C3e
−

√

ǫζ , (14)

where C1, C2 and C3 are arbitrary constants. We demonstrate a plot of solution (13) for
particular values of the parameters in Fig. 3. We see that this solution can describe kink–type
structures.

Finally, we consider connections via (3) between equation (2) and Painleve–Gambier XVIII
equation. Using Theorem 4 from [14] we find that equation (2) satisfies this criterion in the case
of a3 = 0, a1 = 108β/C2

0 , a2 = −3C2
0/4, k = −m− 5/3 and l = −m− 1. Consequently, we get

the corresponding equation from family (2)

yzz +
m

y
y2z + C0y

−myz +
108β

C2
0

y−2m−5/3 −
3C2

0

4
y−2m+1 = 0, (15)

that can be transformed into

wζζ −
1

2w
w2
ζ + wwζ −

1

2
w3 +

72β

w
= 0 (16)

by virtue of with (3) F = C0y
2/3 and G = y−2/3−m. Here β 6= 0 is an arbitrary parameter.

The general solution of (15) can be found via the general solution of (16) and corresponding
transformations (3)

y =

[

6(℘2{ζ − ζ0, 12β, g3} − β)

C0℘z(ζ − ζ0, 12β, g3)

]3/2

, z =

∫

ym+2/3dζ, (17)

where g3 and ζ0 are arbitrary constants. Solution (17) as long as β 6= 0 and g3 6= 0 is periodic,
although it may be singular on the real line.
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3. Conclusion

In this work we have considered a family of nonlinear diffusion equations with polynomial sources.
Traveling wave reductions of these equations are nonlinear ordinary differential equations
of Lienard type. Applying recently obtained integrability conditions for the Lienard–type
equations, we have found four new integrable families of traveling wave reductions of nonlinear
diffusion equations with polynomial sources. We have also constructed the corresponding general
solutions in the explicit form.
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