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Abstract. Counterfeiting is an increasing concern for businesses and governments as 
greater numbers of counterfeit integrated circuits (IC) infiltrate the global market. 
There is an ongoing effort in experimental and national labs inside the United States to 
detect and prevent such counterfeits in the most efficient time period. However, there 
is still a missing piece to automatically detect and properly keep record of detected 
counterfeit ICs. Here, we introduce a web application database that allows users to 
share previous examples of counterfeits through an online database and to obtain 
statistics regarding the prevalence of known defects. We also investigate automated 
techniques based on image processing and machine learning to detect different 
physical defects and to determine whether or not an IC is counterfeit. 

1. Introduction 
Counterfeit ICs are a growing issue in the global market, with some counterfeit ICs infiltrating high-
risk applications such as those in the military or medical sectors [1], [2]. Counterfeit ICs may feature a 
reduced lifespan, fail under conditions mandated by the manufacturer’s specification, leak secure data 
from the system to a remote location (i.e., hardware Trojans [3]), and more. In some cases, the 
adversary copies the design and labels counterfeit ICs with his own brand name or with the original 
equipment manufacturer’s name using reverse-engineering techniques [4], [5], [6]. Since the adversary 
does not incur the engineering research and development costs, his products are priced lower, thereby 
resulting in a loss for authentic products.  

The taxonomy of counterfeit component types and defects in electronic components have been 
discussed in [7]–[8], where the two main classes of defects are classified as physical and electrical 
defects. Here we will study the physical defects and try to expedite and facilitate the detection and 
recordkeeping of such physical defects. With the help of high-precision microscopes, most of the 
physical defects can be identified by a subject matter expert (SME). The SME has to carefully test the 
entire IC for each defect. This is a labor-intensive and timely process. For a modern electronics 
manufacturer, it is not feasible for an SME to analyze all the chips and components manually because 
a single US company can import tens of millions of chips annually. Some examples of these defects 
focused in this proposal are presented in Fig. 1 [9]. 

The US Chamber of Commerce has identified 11 issues in the current state of the global electronic 
supply chain in regard to counterfeiting [10]. In this paper we begin to address the need for stricter 
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testing protocols and quality control practices. We will develop preliminary algorithms that analyze 
optical images and automatically extract defects using artificial neural networks and image processing  
algorithms. 
 

 

2. Automated Defect Detection  
We investigate two techniques for detecting defects on ICs are presented: 1) image processing and 2) 
artificial neural network (ANN)–based algorithms.  

2.1. Defect Detection Using Image Processing  
There are many image processing algorithms and filters used to detect features on different images. 
These algorithms are designed in a way to highlight one specific property of a feature based on its 
histogram. These features can be defects on ICs such as scratches, color variations, ghost marking, etc. 
It is very important to select the right algorithm and right threshold in order to better highlight the 
defect. Figure 2a shows top view of an IC with scratches. We have applied image processing 
techniques on this image including Hough transform, an edge-enhanced maximally stable filter, and 
Sobel filter to detect these scratches [11]-[13] as shown in Fig. 2b.  

 Although filters are widely used for detection, the results are not accurate enough to make a 
decision on the authenticity of a chip. Many defects cannot be identified through this method alone. 
For example, many counterfeits display variations in color that can be identified based on the intensity 
of grayscale pixels rather than the placement of binary pixels within the image. To determine whether 
color variations exist on a given IC, an entirely different image processing method is needed in 
addition to the scratch detection algorithm.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      

Figure 1. Physical defects seen on electronic components. 

 
                 (a)                                          (b) 

Figure 2. The counterfeit IC with scratch defect a) 
original image b) after image processing. 

Broken bond wire 
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Such cases increase the complexity of developing a human independent platform to determine the 
authenticity of an IC based on filters. Ideally, one single algorithm should be used to identify a wide 
variety of defects under various imaging conditions. This will not be possible without getting help 
from machine learning. Artificial neural networks are one of the most popular machine learning 
techniques which we have identified as a promising candidate to achieve this goal. Considering the 
fact that such an algorithm can train itself and become smarter as more samples are tested, this is a 
huge advantage to other algorithms and filters.       

2.2. Defect Detection Using ANN 
ANN is a machine-learning technique that is modeled similarly to the structure of the human brain. A 
typical ANN consists of neurons in different layers, such as input, hidden, and output layers. The 
information is stored in the interconnections between neurons across the adjacent layers [14]. The 
number of hidden layers should be at least one, and the number can be increased depending on the 
application. The output of a neuron is calculated by using an appropriate activation function for the 
input value. Step function, tanh, and arctan are some of the examples of activation functions that will 
be used in this proposal. 

In the structure of a typical ANN each neuron from the input layer is connected to each neuron in 
the first hidden layer. The input value at a node of a hidden layer is the weighted summation of all the 
input nodes. The factor by which each node contributes to the value of the input of the next node will 
decide the weight matrix between the two layers. Thus, the weight matrix stores crucial information 
which is unique for each class of inputs. The output of the neuron is computed using the activation 
function. This weighted summation of adjacent layers continues until the output layer. During the 
training phase, the expected output is compared with the output obtained by the computations. The 
error is then sent back to the network layers to update the weights.  

The backpropagation algorithm (i.e., propagating the error in the backward direction of the network) 
is a popular artificial neural network algorithm used for training the network. The basic idea behind 
backpropagation algorithm is to reduce the error energy of a neuron in the neural network. In general, 
backpropagation method requires a known or desired output for each input value, therefore calculating 
the error will help to quantify this step. Differentiating the error energy functions with respect to the 
weights gives the condition for minimum error energy. These error values will be used to adjust the 
weights associated with input values for each node. This learning phase will be iterated until the error 
meets an accepted value. The neural network is then trained for more iterations for the same image 
until the error level is less than the accepted tolerance level.  

The complexity of the operations in the ANN depends on factors such as the number of nodes in 
each layer, the learning rate, the number of iterations done for training, and the number of hidden 
layers. The artificial neural network is an extremely useful tool for pattern recognition applications. 
The ANN has been studied extensively for applications such as character recognition, face recognition, 
etc. We have used backpropagation algorithm to Train ANN.  In the next section, we will discuss our 
implementation of ANN using backpropagation on a chip with scratches. 

2.2.1. ANN Implementation. The implementation of the counterfeit IC detection using artificial neural 
network can be divided into two parts: 1) training phase; and 2) testing phase. In our experiments, 
we divide the available set of images into 2 samples for training and 4 for testing. In the future, this 
proportion can be varied to check the efficiency of the system. In addition, while we focus on 
scratches only, we can train for multiple defects at once.  

Training Phase: We utilized backpropagation algorithm discussed earlier to train the artificial 
neural network, using tanh, the hyperbolic tangent function, as the activation function. Only one 
hidden layer was used to reduce the complexity of the ANN, but two and three layers will be 
investigated in this work to optimize the results.  

 Figure 3 shows the flowchart for the counterfeit IC detection procedure. The input image is read 
using the MATLAB function imread, which gives a matrix consisting all pixels of the image. The 
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image is then converted to a column matrix by arranging the columns of the input image matrix one 
below the other. If the input image is of size M × N, the new column matrix will have a size of MN × 
1. This can be reduced by resizing the image using various preprocessing techniques such as binning. 
However, resizing will decrease the quality of the image and resolution of the features to be detected.    

Other preprocessing techniques such as filters to remove pixels over or below a threshold, edge 
detection, normalizing the image, and converting RGB images to gray scale can be used for 
preprocessing images and make images ready for ANN analysis. The input image is normalized by 
dividing pixel values by 255 for grayscale images. The techniques applied for the processing of the 
image are the same for training and testing till this step. However, during training the output for a 
particular input image is known.  

The weight matrices between input, hidden, and output layers are initialized with random values 
between −0.5 and +0.5. After preprocessing the images, expected output layer is initialized with its 
corresponding class. The linear combination of the initial column matrix and the first weight matrix 
gives the input for the hidden layer. Using the activation function tanh, we get the output of hidden 
layer. Since the linear combination of input with weight matrix can be very expensive computationally, 
activation function helps keeping them in the range of −1 to 1. This output will then be multiplied by 
weight matrix between the hidden and output layer to calculate the input.  

Similar to nodes in the hidden layer, the output of output layer is calculated using the activation 
function. The error at the output is calculated by comparing activation function with the expected 
output given at the start of training. The error is propagated back to the network. This loop can be 
continued until we reach a point where the error is within an expected range. 

Testing Phase: During testing, we do not use backpropagation algorithm, as the ANN is already 
trained with error corrections for the weights. In fact, we do not know the output value prior to the 
computations in ANN.   

 ANN will then determine if the IC is defected or not depending on its output. We apply the same 
preprocessing methods that were employed during the training phase for the images. In order to test 
this technique, we compare the output of the ANN during testing with the expected output and 
calculate the efficiency of the system. The flow of training and testing of the ANN is explained in 
Figures 3 and 4.  

The output classes considered for this experiment were 0 and 1. The output value 0 represents no 
defect condition, and the output value 1 indicates that the IC under consideration is defected.  

 

  

Figure 3. Logical flowchart for artificial 
neural network testing. 

Figure 4. Logical flowchart for artificial 
neural network training. 
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2.2.2. Preliminary Detection Results Using ANN. The backpropagation ANN was implemented using 
MATLAB platform to detect scratches on chips. Standard images were taken from 6 different WSI-
PSD813F1 chips with and without scratches. The training was done using two images with and 
without defects for 10 iterations each. Figure 5 shows the images used for training and ANN was 
tested for detecting counterfeit ICs. The original image had more than 4 million pixels. This means we 
need 4 million input nodes, where we have only two output nodes. This was resolved by reducing the 
size of the images to a resolution of 512×512 during preprocessing stage. The number of hidden nodes 
were kept as a variable to be adjusted depending on the results. One hundred hidden nodes gave us 
good results. As we increase the number of nodes, the computational time rises. For our experiments, 
we set the number of hidden nodes as 100. The number of IC images used for testing were four, out of 
which two were counterfeit. The weight matrices were initialized using random functions available in 
MATLAB between −0.5 to 0.5. The images used for testing is shown in Fig. 6. ICs (a) and (c) have 
scratch defects and are correctly detected by the ANN.  
 

       
(a)                                   (b) 

 
 

Figure 5.  Images used for training a) IC without 
defect b) IC with highlighted scratches. 

Figure 6. IC images with scratch defect used for 
testing. 

 

3. Conclusion and Future Work 
In this paper, we described a counterfeit database that has been developed to improve recordkeeping of 
counterfeit incidents, support education and increase awareness about counterfeit ICs/defects, and 
provide resources for research in automated counterfeit IC and defect detection. As an exemplary 
instance, data was used to investigate image processing and neural network algorithms for scratch 
detection. Image processing can successfully detect ICs with scratches, but fails when the scratches are 
not highly visible or their color is not significantly different from that of the IC surface. Another 
current limitation is that the exact same algorithm will not apply for other defects. However, the 
artificial neural network should be more amenable to other types of defects in the future. In future 
work, we will extend the existing ANN technique to detect other physical defects and to data from 
additional sources (X-ray, SEM, etc.).  
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