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Abstract. We analyze the impact of extrinsic and intrinsic curvature on positions of 

topological defects (TDs) in two-dimensional (2D) nematic films. We demonstrate that both 

these curvature contributions are commonly present and are expected to be weighted by 

comparable elastic constants. A simple Landau-de Gennes approach in terms of tensor nematic 

order parameter is used to numerically demonstrate impact of the curvatures on position of 

TDs on 2D ellipsoidal nematic shells. In particular, in oblate ellipsoids the extrinsic and 

intrinsic elastic terms enforce conflicting tendencies to positions of TDs. 

1.  Introduction 

Topological defects [1] (TDs) represent a popular intersciplinary subfield of science. For years, they 

are of hot interest in particle physics, condensed matter physics and even cosmology [2,3]. The reason 

for their popularity in all fields of science is their topological origin [1], which is blind for systems’ 

microscopic details. In particular, there is growing evidence that fields represent basic entities of 

nature [4], and not “fundamental particles” as pictured by the Standard Model of nature. If this is the 

correct view than “fundamental particles” are emergent and correspond to relatively stable localized 

structures in a relevant field. Possible candidates for them are TDs as pioneering work of Skyrme 

suggests [5]. He has shown that pions, nuclear particles belonging to the meson family, could be 

represented as TDs in a relevant field. In the following years, mathematically related TDs, which are 

referred to as Skyrmions, have been detected and studied in more details in numerous different 

condensed matter systems [6,7,8] (e.g. in magnetism, liquid crystals…). Namely, due to 

interdisciplinary nature of TDs it is convenient to find experimentally adequate systems where static 

and dynamic fundamental properties of TDs could be relatively easily accessed [2]. 

The key property of TDs is their discrete topological charge q [2,3]. In general, topological charges 

play analogous role to electric charges: i.e., q of an isolated TD is conserved and a pair of TDs bearing 

opposite charge attract each other. Pairs of TDs bearing {q>0,-q} are referred to as {defect,antidefect} 

and have tendency to annihilate into a defect-less state. By contrast, TDs bearing the same sign of 
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topological charges in general repel. In two-dimensions (2D) the topological charge is equivalent to 

the so called winding number m [3]. It quantifies the total rotation of the relevant orientational field 

divided by 2π on encircling the core of defect counterclockwise. 

An adequate experimental testing bed to study TDs are liquid crystal (LC) phases [9]. In general, 

LC phases could be formed if they consist of relatively weakly interacting anisotropic molecules. For 

simplicity we henceforth restrict to thermotropic rod-like LC molecules, where LC ordering is 

stabilized in an adequate temperature interval. LC owe their experimental accessibility to unique 

combination of fluidity, softness, and optic anisotropy. Due to rich diversity of their configurations 

they can possess any topological defect configuration [2]. For instance, their structure could be 

relatively easily studied using optic polarizing microscopy. Nematic configurations represent simplest 

LC structures. In the nematic bulk phase LC molecules tend to be homogeneously aligned along a 

single symmetry breaking axis, while centers of masses of molecules flow roughly like in a fluid.      

Effectively two-dimensional nematic LC structures are of particular interest. First of all, they are 

relatively easily accessible for mathematical and numerical  investigations. Secondly, such structures 

are of interest for various applications, in particular those exhibiting TDs. For instance, nematic shells 

[10,11] consisting of supra micron-sized colloids covered with relatively thin LC films are of interest 

for various photonic applications. Furthermore, biological membranes are essentially thin LC films 

[12,13]. So far, in almost all theoretical attempts, covariant derivatives [13,14,15] were employed in 

expressing free energy elastic terms of 2D ordered systems. Such approaches took into account only 

the so called intrinsic curvature [16] elasticity which is associated with spatial variations of a relevant 

orientational field within the curved surface. It has been shown that in this case surface regions with 

high absolute value of the Gaussian curvature attract TDs [14,15,17,18]. Furthermore, electrostatic 

analogy works well where positive (negative) Gaussian curvature plays similar role as spread negative 

(positive) topological charge of TDs [14,18].  However, recently it has been demonstrated that 

extrinsic curvature [16,19,20] elasticity terms are in general also present and could have important 

impact on resulting structures. This elasticity takes into account that a curved 2D manifold is 

embedded in 3D geometry. In some cases a structure could simultaneously maximize and minimize 

intrinsic and extrinsic free energy costs contributions and vice versa [16,19]. 

In the present paper we demonstrate relative importance of intrinsic and extrinsic terms on 

orientational ordering within nematic shells exhibiting spherical topology. For simplicity we restrict to 

structures displaying cylindrical symmetry. We first demonstrate using a minimal model that both 

contributions are in general present. Then we numerically demonstrate cases, where extrinsic elasticity 

could play significant role. 

2.  Intrinsic and extrinsic curvature 

We consider a thin nematic LC film and describe local orientation of LC molecules by the unit vector 

field     lying within a curved 2D film. We consider rod-like LC molecules, therefore the orientations  

     are equivalent. For illustration purpose we chose the simplest possible free energy density 

expression           
  [9]. Here k is the positive elastic constant, the operator                is 

the surface gradient [17],   is the 3D identity tensor,   is the convential 3D gradient operator,    is the 

surface normal, and   is the tensorial product. 

It is convenient to parametrize     in the surface principal curvature frame (       ) in which the 

curvature tensor                       is diagonal, {        are the corresponding principal 

curvatures, and             . Therefore 

                    . (1) 

Taking into account equations [21] 
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                                                   , (2a) 

                                     , (2b) 

                                      , (2c) 

it follows  

        
          

 
          , (3a) 

                 . (3b) 

Here           are geodesic curvatures along {       },    is the spin connection [22], which can be 

expressed in terms of the Gaussian curvature        as         . 
Therefore, the free energy density could be expressed as the sum f= f

(int)
 +f

(ext)
 of intrinsic (f

(int)
)

 
and 

extrinsic (f
(ext)

) elastic contributions, where  

                 
 
, (4a) 

                                     . (4b) 

The intrinsic term enforces homogeneous orientational ordering for surfaces characterized by K=0. By 

contrast, surface patches with nonzero Gaussian curvature are geometrically frustrated. Consequently, 

spatially nonhomogenous ordering mimimizes       . More exactly, a local orientational structure 

obeys the so called parallel transport condition [21]: 

             )    . (5) 

It originates from the incompatibility of straight-parallel direction on surfaces with      . Using the 

parametrization Eq.(1) the condition yields                         , and consequently 

          Note that the approaches emplying covariant derivatives yield only the intrinsic 

contribution. 

The extrinsic term acts as an effective external field. Namely, it tends to align     along the principal 

direction exhibiting minimal curvature. 

3.  Numerical simulation 

In order to demonstrate impact of extrinsic curvature we employ a simple Landau-de Gennes type 

model, where nematic orientational order is represented by the tensor order parameter   [17,21]. 

3.1.  Model 

In the diagonal form it can be expressed as 

                      ). (6) 

Here           and –   are eigenvalues of eigenvectors     and     , respectively. Localised points on 

2D menifolds exhibiting nematic ordering in general reveal presence of TDs.  We calculate the degree 

of nematic ordering by minimizing the relevant free energy of a system. We express the relevant 

dimensionless free energy density as [17,19,20] 
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    . (7) 

Here R is a geometrically imposed length characterizing a system,    estimates the order parameter 

length deep in the nematic phase, the quantity t=( T-Tc)/ Tc is the reduced temperature, Tc is the critical 

temperature below which spatially homogeneous nematic ordering is stable on a flat surface. The 

relative strength of {intrinsic,extrinsic} elastic contribution is weighted by dimensionless constants 

{ki,ke}, where we set ki=1. 

In simulations we consider ellipsoidal shapes which we parametrize in the Cartezian system (x,y,z) 

determined by the unit vectors (           ) as 

                      +                             . (8) 

The position vector    determines a point on an ellipsoidal surface,                   and R in 

Eq.(7) corresponds to the minimal length of the pair {a,b}. The ellipsoidal shells are prolate for a/b>1 

and oblate for a/b<1. More details are given in [17]. 

3.2.  Nematic textures 

In figures 1 we plot a typical nematic structure on a spherical shell (a/b=1). In figure 1a we plot 

superimposed scalar order parameter   and the orientational field    , where states       are equivalent. 

The corresponding scalar order parameter graph in the (u,v) plane, which clearly reveals position of 

four TDs bearing topological charge m=1/2, is shown in figure 1b. The quantity ηc determines the 

equilibrium value of η in a flat film. In this case the extrinsic term is absent because both principal 

curvatures are equal. The TDs are placed in such a way to maximize their mutual separation, because 

TDs repeal each other. 

 

 

Figure 1. Typical nematic ordering on a spherical shell. The color code represents the      ratio. The 

panel (a) also shows the directions of molecules on a sphere. The panel (b) represents the calculated 

nematic texture in the      -plane. Parameters:      ,        ,      ,     ,        . 

 

Next we deform spheres to form oblate and prolate ellipsoids. In figures 2 (nematic textures 

depicted on ellipsoidal shapes) and figures 3 (nematic textures in the (u,v) plane) we demonstrate 

impact of shape and extrinsic curvature on position of TDs. We first consider cases for ke =0 for which 
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the extrinsic elasticity is absent. A typical nematic texture for a prolate structure for is shown in figure 

2a and figure 3a. TDs are pushed towards the poles because they are attracted by the positive Gaussian 

curvature, which exhibits  maximum at the poles, see figure 4a. This attraction of TDs bearing positive 

topological charges with regions exhibiting K>0 competes with the mutual repulsion among TDs. Note 

that for strong enough prolateness pairs of m=1/2 TDs merge into m=1 TDs localized at poles of 

ellipsoids [17]. In oblate structures K exhibits maximum at the equatorial great circle as figure 4a 

demonstrates. In figure 2b and figure 3b we show a case where attraction between K>0 and TDs is 

strong enough to localize TDs at the equatorial circle.  

 

 

Figure 2. The degree of nematic ordering and the directions of molecules on 

prolate         (a,c) and oblate          (b,d) ellipsoids. The nematic 

textures in panels (c) and (d) show the impact of the extrinsic elastic 

contribution:     , while the configurations in panels (a) and (b) were 

calculated without the extrinsic term:     . Other parameters were set as 

follows:        ,         . 
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Figure 3. Representation in the      -plane of the nematic textures presented in figure 2. 

Parameters are defined in the figure caption of figure 2. 
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Figure 4. Gaussian curvature   (a) and the absolute difference 

between the principal curvatures         (b) as the functions 

of the ellipsoid's zenith angle  . Red dashed lines represent the 

prolate ellipsoid        , while the black lines represent the 

oblate ellipsoid         . 

 

In prolate and oblate structures in general principal curvatures differ, i.e.      . Consequently,  

for a finite value of ke the extrinsic elasticity could play important role. For ke>0 it tends to align 

nematic orientational ordering along principal directions exhibiting minimal curvature. This tendency 

is monotonously increasing with increasing difference        , which is shown in figure 4b.  Note 

that the resulting effective extrinsic field tends to align nematic ordering along its direction. Therefore, 

TDs tend to be expelled from regions where the effective extrinsic field is strong enough. In both 

prolate and oblate structures the difference         exhibits maximum in equatorial region. 

Consequently,  in prolate structure TDs are pushed by the effective extrinsic field towards the poles, 

see figure 2c and figure 3c.  In this case both intrinsic and extrinsic term are pushing TDs towards the 

poles. By contrast, in oblate structure the intrinsic and extrinsic term have competing tendencies. The 

intrinsic elasticity tends to assemble TDs in the equatorial region, while the extrinsic term expels 

them. In figures 2d and figure 3d we demonstrate cases where the effective extrinsic term is strong 

enough to expel TDs from the equatorial region. 
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4.  Conclusions 

We studied impact of curvature on position of topological defects in two-dimensional nematic films. 

For this purpose we employ Landau-de Gennes type description in terms of nematic tensor order 

parameter. In particular, we consider the role of extrinsic curvature [16,19,20], which has been so far 

in most studies neglected, see e.g. [13,14,15]. In the latter approaches covariant derivatives of order 

parameter were employed in expressing elastic free energy compatible with symmetry of systems of 

interest. Equivalently, it was assumed that minimal elastic distortion in a relevant order parameter field 

along a given direction obeyed parallel transport concept [21]. In a parallel transport along a line the 

order parameter experiences the least motion capable accompanying the spatial variation of surface 

normal. In the setting of our model     is parallel transported along a curve if it is seen as immobile in 

the frame             . In such cases it is known that the intrinsic curvature of a surface frustrates the 

order parameter field  within the curved 2D space [13,14,15]. For example, for spherical topology the 

total integrated Gaussian curvature makes defects necessary even in the ground state. Furthermore, 

intrinsic curvature favours localization of TDs in regions of relatively high absolute value of Gaussian 

curvature. 

We showed using a simplest possible modelling that in general both intrinsic and extrinsic 

curvature are expected to be present in elastic free energy density. Furthermore, there are no general 

reasons to claim that extrinsic curvature terms should be negligible with respect to the intrinsic 

contributions. The extrinsic term quantifies elastic costs of out-of-plane gradients in    . Therefore, it is 

sensitive how 2D curved surface is embedded in 3D Euclidian space. The extrinsic coupling generates 

an unavoidable geometrically induced symmetry breaking field on surfaces patches possessing 

different principal curvatures. Its strength increases with increasing difference between the curvatures 

and equals zero in umbilic points, where the principal curvatures are equal.  To illustrate this effect we 

calculated nematic structures on ellipsoidal shells. In the spherical geometry the extrinsic contribution 

is absent because all points are umbilics. However, on increasing prolatness or oblatness of shells 

regions where extrinsic curvature is present emerge. In our cases the effective extrinsic curvature is 

strongest at the equator of ellipsoids. Its ordering tendency is incompatible with TDs and it tends to 

expel them. This effect is most evident in oblate ellipsoids. Namely, the intrinsic curvature tends to 

localize TDs bearing positive topological charge in the equatorial region in order to screen strongly 

localised Gaussian curvature. However, for equally weighted intrinsic and extrinsic free energy 

contributions for strong enough oblateness the TDs are expelled from the equatorial region. 
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