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Abstract.
Dynamic loads play an important roll in the design of wind turbines, but

establishing the life-time aerodynamic loads (e.g. extreme and fatigue loads) is a
computationally expensive task. Conventional (deterministic) methods to analyze
long term loads, which rely on the repeated analysis of multiple different wind
samples, are usually too expensive to be included in optimization routines. We
present a new stochastic approach, which solves the aerodynamic system equations
(Lagrangian vortex model) in the stochastic space, and thus arrive directly at a
stochastic description of the coupled loads along a turbine blade. This new approach
removes the requirement of analyzing multiple different realizations. Instead, long term
loads can be extracted from a single stochastic solution, a procedure that is obviously
significantly faster. Despite the reduced analysis time, results obtained from the
stochastic approach match deterministic result well for a simple test-case (a stationary
blade). In future work, the stochastic method will be extended to rotating blades, thus
opening up new avenues to include long term loads into turbine optimization.

1. Introduction
Today, aerodynamic optimization of wind turbines faces two major challenges. First,
the computational tools commonly at hand (BEM solvers) are inherently limited to pla-
nar rotor designs [1], while more flexible simulations, based on the full time-domain
solution of the discretized Reynolds Averaged Navier Stokes equations (CFD methods),
are too expensive to be viable for optimization [2]. Second, it is computationally dif-
ficult to include long term (fatigue and extreme) loads into the optimization loop [3],
because this kind of analysis requires the simulation of long load samples in order to
be able to extract consistent statistics and thus reliably extrapolate to long term loads.
IEC 61400-1, Ed. 3 [4], for example, bases the long term analysis of every load case on
ten minute simulations, run at different mean wind speeds, each repeated six times with
different random seeds for the turbulent inflow field. Obviously this results in a large
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number of ten-minute simulations. Still, it has been shown[5, 1] that even with this
many simulations, extrapolation to extreme loads is a delicate exercise and results may
vary significantly. Zwick and Muskulus [6] for example showed recently that when basing
a wind turbine analysis on six ten-minute wind speed realizations a difference of up to
34% occurs in the ultimate load results for the most extreme 1% of seed combinations.
Other recent research [7] indicates that turbine loads extracted even from 20 different ten
minute wind fields generated from 20 different random seeds for each wind speed vary
greatly. Moreover, often load variations from different random seeds dominate effects
from design parameter changes, obviously a severe problem, especially when concerned
with gradient-based optimization where obtaining reliable design variable gradients is
vital.

As a result of these two challenges, current wind turbine optimization is inherently
limited, as it a) cannot explore unconventional, but potentially beneficial designs such as
winglets, swept or downwind coning rotors, etc., and b) is blind to the important[8] cost
savings of modified long term loads and power production from different blade designs
operating in unsteady conditions. For example, Zhou et al. [9] show that the peak power
fluctuation for wind turbines can reach 22% of its average. A steady state optimization
potentially fails to find a solution close to the ‘real’ (unsteady) optimum.

Lagrangian vortex models (LVM)[10, 11, 12, 13] based on Prandtl’s lifting line theory
[14, 15] are an attractive solution to the first challenge. They are relatively fast to solve,
but flexible enough for unconventional geometries, see e.g. [16]. However, time stepping
through multiple LVM solutions to obtain data for extrapolation to long term loads
is not an option within the time budget of optimization. To tackle this dilemma, the
available model has to be extended, such that the full set of unsteady inflow conditions
with all extreme loads can be modeled, while keeping the computational cost down. To
do so, we present a stochastic lifting line model to obtain long term loads and power
output relatively quickly from a single stochastic solution. Besides a faster solution, the
stochastic formulation potentially captures true extreme loads better than relying on the
extrapolation of limited short term loads from short term time stepping simulations.

In this paper we present a stochastic blade load model, resolved with several span-
wise lifting line elements in a stochastic unsteady (coherent) three dimensional wind
field. Section 2 will give an introduction to the approach. Starting from a basic aerody-
namic LVM blade model in its deterministic formulation (2.1) and the stochastic inflow
formulation (section 2.2), the transition to the stochastic blade model with correlated
wing blade sections will be presented (section 2.3). For clarity of the method and its
presentation we direct our focus to a stationary blade. In section 3 we will compare
the load time series as well as the statistics from a deterministic lifting line solution to
the results from the proposed stochastic method. Moreover, the reduction of the com-
putational cost will be discussed. Future steps will extended the model to stochastic
unsteady aerodynamics simulations of a full wind turbine in operation.
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2. Approach and methods
When dealing with wind turbine optimization, the driving wind inflow is usually
represented by a stochastic model, typically specified in the frequency domain. However,
instead of dealing with the notion of stochasticity during system modeling, several
realizations of the stochastic input wind are usually generated prior to the simulation
procedure [17]. For wind turbine analysis several ten minutes wind speed samples
(deterministic blocks of frozen wind) are generated and then each analyzed consecutively
[1]. This means that instead of using the abstract stochastic equations, several
deterministic time-series are obtained (see Figure 1, upper path). While the benefit
of this approach is its ability to use standard (and more intuitive) deterministic,
generally nonlinear, time-marching simulation codes, it discards the advantages of a
direct stochastic description during the system modeling phase.

  

stochastic 
input process solve system 

equations

several realizations
(only if needed)

analyze  
results 

Γξ i(t)=f (uξ i(t))

Γ(t ,ξ)=f (u(t ,ξ))

several realizations

one stochastic 
solution

several deterministic 
solutions

Figure 1: Alternate solution
methods. Upper path: con-
ventional with realizations
generated before solution;
Lower path: the new pro-
cess with a stochastic solu-
tion.

In [18, 19] we demonstrated two ways of conducting the system model analysis
directly in the stochastic space, thus eliminating the need for multiple realizations of the
inflow. Instead of the common practice of repeatedly solving the aerodynamic equations
for multiple deterministic realizations (Figure 1, upper path) one single stochastic
solution is sought (Figure 1, lower path). This stochastic solution will contain all
possible realizations. Thus long term loads can either be extracted quickly from several
realizations of the stochastic solution, or directly from the statistics of the solution’s
random variables. For the case of a very simple horseshoe vortex lifting line model of
a stationary rectangular wing, resolved with a single spanwise lifting line element, we
were able to retain stochastic properties and thus the effects captured with different
random seeds within one stochastic solution. Obviously, the single spanwise element
misses significant effects from the spatial variability and cross-correlation of the wind
field and hence it omits the spacial coupling of the blade loads. In the remainder of
this section we will introduce the necessary model components to arrive at a stochastic
lifting line model for the coupled loads along wind turbine blades.

2.1. Aerodynamic model
For the blade load calculations, a LVM in unsteady lifting line formulation[14, 15] will
be used.1 The vortex system is set up as indicated in Figure 2 with an arbitrary number
Nb of bound (linearly spaced) elements. Trailing and shed elements of variable strength
are included to capture shed vorticity and the resulting time lagged variation of the

1 For a detailed introduction to lifting line models see Prandtl’s original publications [14, 15] or one of
the many more recent works, e.g. [20, 21, 22].
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induced velocity from the inflow changes at the wing as well as the delayed vortex shed-
ding downstream. The wake length Nt can be chosen freely. For the time being, wake
element positions are assumed fixed and in the x-y-plane.

At each station I along the blade we assume small angles of attack αg,I , small induced
velocities wI , and thus use linear airfoil properties (cl,I = 2π(αg,I + wI/u∞)) to arrive
at the well known unsteady lifting line equation:

ΓI(tn) = AI · u∞,I(tn) +
∑
i

∑
j

HI,ij · Γi(tn−j) (1)

With this equation we calculate the bound circulation (and thus load) ΓI(tn) at each
station I for each time step tn = n ·∆t implicitly from the current free stream wind at
the respective station u∞,I(tn) and the previous blade loads Γi(tn−j) at all wake stations
i; here AI = cIπαg,I . The tensor HI,ij contains the Biot-Savart influence from each wake
element ij onto the blade element I, as well as the coupling of the current wake strength
and blade load history: Γt,ij = γij − γ(i−1)j and Γs,ij = γij − γi(j−1) respectively, with
γij = Γi(tn−j) (see Figure 2).

With a known, deterministic inflow u∞ equation 1 can readily be solved with the
common methods.

2.2. Stochastic wind model
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Figure 2: Illustration of the vortex
system used to model blades loads.

To calculate blade loads, deterministic models use
random, but correlated wind speed data uI(tn, ξI)
generated in advance at many locations PI over the
rotor disc from adequately correlated realizations
of the random vectors ξI . In Veers’ model [23],
which is widely used in industry (e.g. NREL’s
TurbSim [24] tool), the wind speed time series at
each location PI is generated though an inverse
Fourier transform

uI(tn) =
∑
m

VmI e
i(ωmtn) (2)

Here each (complex) Fourier coefficients VmI for
each frequency ωm at each location PI is initially
generated from the wind speed spectrum and an
independent random variable ξmI (i.e. a random
phase angle), uniformly distributed in [0, 1]. To

correctly model the coherence of the random wind field correlation of the Fourier
coefficients at different locations is subsequently enforced via the coherence matrix (for
details see e.g. Veers original publication [23]). With this procedure Veers’ approach
requires NR = NI ·Nf independent random variables for NI locations and Nf frequencies.
Since the computational cost of our stochastic method is highly sensitive to the number
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of random variables NR, we first split Veers’ complex Fourier coefficients into amplitude
and phase, VmI =

√
Sm e

iθmI , with θmI = 2πξmI the (correlated) phases at each point
and each frequency and the amplitude prescribed by the discrete wind speed power
spectrum Sm. Next we split the phase angles into the phases at one arbitrary base
point P0 and a set of correlated phase increments: θmI = θm0 + ∆θmI . Thus equation 2
becomes:

uI(tn) =
∑
m

√
Sm e

i(2πξm+∆θmI) eiωmtn (3)

Now ξ = [ξm] is a single vector of uncorrelated random variables specified at one (arbi-
trary) base point P0. The phase (and thus wind speed) correlation between the points
PI and P0 is contained in the correlated phase increment vectors ∆θI = [∆θm]I . Details
of this reduced order wind model will be given in a forthcoming publication. In the
following, we focus on the aerodynamic blade model and its stochastic solution.

With Veers’ model one wind field realization is obtained from first generating inde-
pendent phase vector realizations for all points and subsequently correlating the phase
angles. Equation 3, on the other hand, finds one wind field realization with one random
phase vector ξ at one base point P0 only and a set of random phase increments ∆θI for
each other point. For a stochastic analysis equation 3 has a major advantage: the gener-
ation of random phases angles and the correlation between two points is now separated
into ξ and ∆θI respectively. While all ξm are independent, ∆θI are correlated, which
provides the opportunity to establish a reduced order model. If we assume that the ran-
dom dimension of the wind field is sufficiently approximated by ξ only, than ∆θI can be
considered a deterministic variable. This reduces the number of necessary random vari-
ables by several orders of magnitude. A detailed discussion of the consequences of this
split between stochastic phases and deterministic phase increments is beyond the scope
of this paper. A comprehensive study is currently underway and will be available shortly.

Figure 3 shows a comparison of the input wind obtained from TurbSim and two
realizations of the reduced order model for the wind speed at four points with the
coordinates (horizontal, vertical): P1 (1,0) m; P5 (1,90) m; P6 (0,0) m; P10 (0,90) m.
By inspection, it can be seen that the properties of the wind seem to be reproduced
well. Note that the reduced order model of equation 3 does not result in a complete
determination of the spatial relation between wind speeds at different points, as the
samples still contain different constructive/ destructive phase interference and thus
gusts/ lulls at different instances in time. Both the theoretical details of this model
as well as a comprehensive discussion of the resulting wind speed time series are beyond
the scope of the present paper and will be discussed in a separate publication. Here,
Figure 3 and the wing load results presented later shall suffice as justification to use this
model.

2.3. Stochastic blade load model
For the stochastic solution we follow the process of stochastic projection (Fourier-
Galerkin method) presented in [19], expanded to the multi-element lifting line equation 1.
We directly use equation 3 in the reduced order stochastic formulation with ∆θI
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Figure 3: Samples of wind speed time series at four points generated from TurbSim and
two different realizations of the reduced order model.

understood as deterministic phase increments and ξ a random phase angle vector to
represent the correlated random wind field. Similar as in [19] the wing load can be
expressed in terms of the same complex Fourier series as the inflow:

ΓI(tn) =
∑
l

glIΦl(tn)ei·2πξl (4)

with Φl(tn) = eiωltn . Recognizing that l = m, equations 3 and 4 can be inserted into
equation 1. With tn = n∆t and basic algebra we can write Φl(tn−j) = Φl(tn)Φl(−j∆t).
Thus, after truncating the series to a reasonable number of frequencies Nf and projecting
onto the basis functions Φl(tn), we arrive at a system of equations in the stochastic space
I = 1...Nf (for a detailed derivation and a discussion of this method refer to [19]):

gIl =
√
Sl ·AIei∆θIl +

∑
i

∑
j

HI,ij gIl Φl(−j∆t) (5)

Note that although equation 5 yields the coefficients gIl of the stochastic solution
(equation 4), it is a deterministic equation itself. Hence it can be solved with common
(deterministic) approaches in the same way as equation 1. However, since the stochastic
solution (equation 4) still contains the random vector ξ, it contains all possible real-
izations. Hence this one solution contains all possible long term blade loads that can
possibly result from any phase combination in the inflow wind (lower path in Figure 1).

At the moment linear airfoil properties are assumed. This results in equation 5 being
conveniently decoupled for each frequency. Moving forward to the optimization of wind
turbine blades in turbulent wind conditions two more steps are necessary. First, the
equations need to be applied to a rotating blade. This will be straight forward through
the introduction of a rotating coordinate system. Secondly, nonlinear airfoil properties,
such as (dynamic) stall, need to be included. This will turn equation 5 into a more
complicated set of coupled equations. To proceed we currently see three options:
(i) Deal with the nonlinear, coupled equations in the current framework;

(ii) Find and include a stochastic surrogate model of the nonlinear on-blade effects;
(iii) Move from a Fourier expansion of Eqs. 3 and 4 to a polynomial chaos expansion

(PCE) [19]. Since the PCE retains the time domain through the solution it will
likely be easier to handle non-linear effects in the equations.
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An investigation of these options and advancing to wind turbine blade optimization will
be the subject of future work.

3. Results
In this section we compare lifting line results for blade loads from the stochastic model
(equation 5) to deterministic results (equation 1). We consider a blade of b = 60 m
span with constant chord c = 4 m, stationary 100 m above ground in ū∞ = 10 m/s
mean wind (IEC normal turbulence model, class A[4]). The blade and wake are re-
solved with Nb = 6 spanwise and Nt = 5 trailing elements. Loads are calculated at
∆t = 1 s intervals. Wind is calculated from Nf = 20 frequencies logarithmically spaced
at fm = ωm/(2π) ∈ [1/600, 0.5] Hz. For the deterministic case the usual process was
followed: one wind speed realization was calculated first using Veers’ model [23], then
this wind was fed into equation 1 as inflow u∞,I(tn).

Figure 4 shows the wind speed realization used for the deterministic solution at the
six blade elements together with the resulting deterministic bound circulation and one
realization of the stochastic solution (bottom), as well as the steady state solution for
u = 10 m/s with five snapshots of the stochastic solution (top). Note the transient
start-up period in the deterministic blade loads for t < 5 s (bottom part for Figure 4).
This is due to the wake initialization with ΓI,ij(tn=0) = 0. As a result of the periodic
nature of Φl(tn) this transient phase does not exist in the stochastic solution.

The realization of the stochastic solution is generated from the same random seed
as was used to generate the deterministic wind. Hence the stochastic solution perfectly
reproduces that one particular deterministic solution (after the initial transient phase
t > 5 s). Note, however, that the stochastic solution also contains all other possible
realizations. Hence all other load time series can be calculated directly via equation 4
from only one stochastic solution.

Next we will compare cross-correlation, covariance, and cross-spectrum of the
dynamic blade loads from our stochastic method to the deterministic results. For the
deterministic analysis, blade loads were calculated for 100 realizations of 600 s samples of
turbulent wind synthesized with the commonly used wind simulator TurbSim [24]. For
better comparison the spectrum S in equation 3 and 5 was replaced with the (slightly
different) spectrum extracted from the TurbSim wind data set via Welch’s periodogram
method as implemented in Matlab’s cpsd function [25]. Similarly, phase increments ∆ΘI

were extracted from the Fourier transform of the TurbSim data. To achieve smoother
cross-correlation, covariance, and cross-spectrum curves we used 100 different sets of
phase increments ∆θI . As discussed in section 2.2, most of the stochasticity is contained
in the uncorrelated random variables ξ. The influence of random or deterministic ∆θI is
hence a second order effect. Assessing the implications of only using one (or a few) set(s)
of phase increments remains the subject of further study. As before, we use Nb = 6,
Nt = 5, Nf = 20 with fm ∈ [1/600, 5] Hz, and ∆t = 1 s.
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Figure 4: Wing load (circulation) and wind speed time series.

3.1. Blade loads cross-correlation
Figure 5 shows the cross-correlation function of the circulation on the bound element
pairs Γ1-Γ1, Γ1-Γ3, and Γ1-Γ6. It can be seen that the stochastic model results in a
very similar cross-correlation as the computationally much more expensive deterministic
model. The obvious difference – a much smoother curve in the deterministic cases –
is due to the difference in the number of frequencies contained in the data. While
the deterministic data (provided through TurbSim) is synthesized with well over ten
thousand frequencies, the stochastic data is based on the reduced order model with only
20 frequencies.

3.2. Blade loads covariance
Table 3.2 shows the covariance of the blade loads for selected bound vortex elements
(cf. figure 2) for the stochastic and deterministic results, and the error between the two
results. This error is small, especially considering that (assuming normal distributed
blade loads) the 90% X 2 confidence bounds of the deterministic variance Var[Γ1,Γ1] are
[-0.94, 0.96]%. Thus it can be seen that the stochastic and deterministic results are in
very good agreement.

3.3. Blade loads cross-spectrum
Figure 6 shows the cross power spectral density functions of the circulation for the same
bound element pairs as before. Both the deterministic and stochastic results were again
obtained from Welch’s spectral estimation from 100 realizations of the resulting blade
loads, binned to the frequencies ωm as used in the reduced model. Again, the stochastic
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Table 1: Covariance of blade loads.

Var[Γ1,Γ1] Var[Γ1,Γ2] Var[Γ1,Γ3] Var[Γ1,Γ5] Var[Γ4,Γ5]

stochastic [m2/s4] 4.06 3.76 2.60 4.17 4.82
deterministic [m2/s4] 4.20 3.77 2.56 4.20 4.91

error [%] 3.27 0.20 -1.37 0.63 1.81

results are very similar to the computationally much more expensive deterministic model.

Note the two zero-power frequencies ω2 and ω3 result from the different frequency
spacing in the TurbSim data (linear spacing) versus the reduced model (logarithmic
spacing). The TurbSim data does not contain frequencies between ω1 and ω4, and
hence there is zero power in the spectrum there. Although these frequencies exist in the
stochastic data, they do not contain any power because we use the TurbSim spectrum
S in equation 5.
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3.4. Numerical Cost
At this point we use a crude Matlab implementation of both the deterministic and
stochastic models. This implementation was designed for experimenting with the
new model, rather than for performance. Hence, only a very rough estimate of
the computational cost can be given. However, the superiority of the stochastic
model becomes apparent nonetheless. On an Intel i5 quad core processor solving 100
realizations of 600 s of the deterministic model takes roughly 10 minutes (upper path
in figure 1). On the other hand, calculating one stochastic solution with one set of
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deterministic phase increments takes less than one second, and realizing 100 samples at
the end (lower path in figure 1) is done in about three seconds, yielding 100 realizations
from the stochastic model in under five seconds. This is less than 1% of the time
originally used for the deterministic solution.

As shown in the preceding subsections, the stochastic solution reproduces the statis-
tics of the (correlated) blade loads well. Through postponing the generation of various
different realizations from before calculating a solution (deterministic approach, upper
path in Figure 1) to generating realizations of a stochastic solution at the end (stochastic
approach, lower path in Figure 1) long term loads can be estimated very quickly and
thus become accessible to be included into an optimization routine.

Besides generating individual solution realizations, a stochastic expression for the
blade loads also holds the possibility of directly extracting load statistics (mean, variance,
possibly peak return periods). Details of such a stochastic load analysis from a stochastic
load solution will presented in a future publication.

4. Conclusions
We extended a stochastic model previously introduced for a single element blade to
model correlated aerodynamic loads on a stationary wind turbine blade in turbulent
atmospheric wind. The blade is now resolved with several spanwise and wake lifting line
elements. A reduced order model for the (stochastic) wind inflow fields, based on phase
angle increments between the wind speed at a base point and any other data point in
the wind field is employed to limit the number of random variables necessary.

Through a comparison to deterministic results (based on several wind field realiza-
tions generated from TurbSim) it was shown that the stochastic model conserves the
stochastic properties of the dynamic blade loads, including coupling of loads on different
stations along the blade (cross-correlation, covariance, cross-spectrum). For a simple La-
grangian vortex model test case (lifting line model), the stochastic formulation yielded
results for 100 blade load samples in less than 1% of the computation time needed by the
deterministic model. This indicates that long term (extreme and fatigue) blade loads,
commonly extracted from the tails of a load probability distribution, can now be assessed
quickly.

Future work will take the currently stationary blade into a rotating reference frame
to model a wind turbine rotor and subsequently include the stochastic formulation into
a multidisciplinary design optimization framework. While the Lagrangian vortex model
allows extension of the design space to unconventional blade geometries, the stochastic
aerodynamic model limits the computational effort required to extract reliable blade
load statistics. The new stochastic model also makes long term loads directly accessible
to optimization. Hence the combination of a Lagrangian vortex model with a stochastic
aerodynamic model might open up new avenues to pursue improved and novel wind
turbine blade designs.
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