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Abstract. This paper presents an analytical solution for the Maximum-Torque-per-Ampere
(MTPA) operation of synchronous machines (SM) with anisotropy and magnetic cross-coupling
for the application in wind turbine systems and airborne wind energy systems. For a given
reference torque, the analytical MTPA solution provides the optimal stator current references
which produce the desired torque while minimizing the stator copper losses. From an
implementation point of view, the proposed analytical method is appealing in terms of its fast
online computation (compared to classical numerical methods) and its efficiency enhancement of
the electrical drive system. The efficiency of the analytical MTPA operation, with and without
consideration of cross-coupling, is compared to the conventional method with zero direct current.

Nomenclature
N,R,C are the sets of natural, real, and complex numbers. x ∈ R or x ∈ C is a real or complex
scalar. x ∈ Rn (bold) is a real valued vector with n ∈ N. X ∈ Rn×m (capital bold) is a real
valued matrix with n ∈ N rows and m ∈ N columns. xks = (xds , x

q
s)
> ∈ Rn×m is a stator space

vector expressed in the synchronously rotating k-coordinate system (with orthogonal axes known
as the direct (d) and quadrature (q) axes) and may represent voltage, current or flux linkage.

1. Introduction
For wind turbine systems (WTS), the optimal choice for the generator (electrical machine)
adopted is still controversially discussed [1]. Doubly-fed induction machines (DFIMs) were
considered one of the favourable choices for WTS, owing to their accompanied cost effective
power converters and simple control of active/reactive power [2]. However, the depletion of
DFIMs with respect to synchronous machines (SMs) became more pronounced due to three
reasons: (i) partially rated power converters of DFIMs offer a rather poor voltage ride through
capability [3, 4], (ii) SMs do not have slip rings (i.e. lower maintenance), eliminate the need
for a gearbox (or allow for a drastic reduction of the gear ratio), have a simpler terminal
wiring, and offer better grid support capabilities, and (iii) the increased calls for energy-efficient
drives discriminates between SMs and DFIMs [5]. Particular interest has been set to permanent
magnet SMs (PMSMs) and PM-excited reluctance SMs (PME-RSMs) [6], since they possess
lower electrical losses than DFIMs due to the absence of the copper losses in the rotor. In
general, for all WTS topologies such as large-scale or small-scale WTSs or airborne wind energy
systems (AWESs), the selected SMs must be robust, cheap, and, most importantly, efficient.
For pumping-mode AWESs [7, Ch. 2 & 3], the SM will operate in generator and also motor
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mode. Albeit PM machines can be controlled to operate at high power factor [5], this does
not necessarily imply that the electrical losses within the adopted SM are minimised [8]. Thus,
an optimal control strategy for the SMs is vital to fully realize its intrinsic efficiency. For
PMSMs or PME-RSMs, the quadrature-axis stator current iqs is proportional to the produced
electromagnetic torque mm if the direct-axis stator current ids is set to zero. However, in
most cases, the electromagnetic torque is a nonlinear function of both stator currents [6, 9–11].

current reference
generation (MTPA)

mm,ref

ids,ref

iqs,ref

Figure 1: Generation of the optimal current refer-
ences with analytical solution (1).

Therefore, for a given reference torque mm,ref ,
optimal stator current references ids,ref and iqs,ref

must be computed (see Fig. 1). These optimal
current references allow for reduced stator copper
losses and higher efficiencies than conventional
methods with ids,ref = 0 [10, 11]. Typically, (i)
magnetic cross-coupling between the d- and q-axes

is neglected (even though it has a direct effect on the machine torque; see (4) or [9, 10]) and (ii)
numerical solutions are employed to compute the optimal references [12].

In [12], optimal feedforward torque control—known as Maximum-Torque-per-Ampere
(MTPA)—was suggested by formulating an optimisation problem where a reference current
vector with minimal magnitude was computed numerically, which in turn due to the anisotropy
gives a noticeable efficiency increment compared to the conventional ids,ref = 0 approach [13]. For
high speeds, further efficiency enhancements can be achieved by considering the iron losses in the
machine as well [9, 14]. However, modelling of iron losses is not straight forward (e.g. requires
finite element analyses [9]) and, due to the rather low mechanical speeds in WTS, iron losses
can be neglected [10]. Nevertheless, solving the MTPA optimisation problem requires nonlinear
solvers such as the bisection method (known for its numerical stability but its poor convergence
rate [12]) or the Newton-Raphson method (known for its fast convergence but its rather weak
numerical stability depending on the initial condition [12]). Moreover, those solvers impose a
rather high computational burden on the fixed-point processors adopted for such drives. Only
very few results exist which compute an analytical solution to the MTPA optimization problem.
In [8] and [15], an analytical expressions for the optimal d-axis reference current (the q-axis
reference current comes from the outer speed control loop) has been presented, but magnetic
cross-coupling and its impact on the electromagnetic torque were neglected.

In this paper, an analytical solution for the MTPA optimization problem considering magnetic
cross-coupling (i.e. a non-zero mutual inductance Lm 6= 0) is presented which allows to compute
the optimal d- and q-axis current references

iks,ref = (ids,ref , i
q
s,ref)

> = MTPA(mm,ref , Lm, . . . , other machine parameters) (1)

online based on the machine parameters and a given (feasible1) reference torque mm,ref . The
presented method, derived from Lagrangian optimization, is applicable to PMSMs, PME-RSMs
or electrically-excited SMs (EESMs) with non-negligible anisotropy and magnetic cross-coupling.
Due to space limitations, in the remainder of the paper, only the derivation for permanent-magnet
synchronous machines (PMSMs) is shown and discussed.

2. MTPA with analytical solution for PMSMs with magnetic cross-coupling
In this section, the main result of the paper is derived based on the dynamical model of anisotropic
PMSMs with magnetic cross-coupling. The result emanates from a Lagrangian formalization of
the problem and invoking Ferrari’s method to solve quartic polynomials [16].
1 It is assumed that the currents can actually produce the desired reference torque within the electrical drive
system; e.g. voltage constraints/maximum-torque-per-volt (MPTV) are not considered.
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2.1. Dynamical model of anisotropic PMSMs with magnetic cross-coupling
The generic model of an anisotropic PMSM in the k = (d, q)-reference frame is given by [17]

=:u
k
s (t)︷ ︸︸ ︷(

uds (t)
uqs(t)

)
= Rs

=:i
k
s (t)︷ ︸︸ ︷(

ids (t)
iqs(t)

)
+npωm(t)

=:J︷ ︸︸ ︷[
0 −1
1 0

] =:ψ
k
s (t)︷ ︸︸ ︷(

ψds (t)
ψqs (t)

)
+ d

dtψ
k
s (t), ψks (0) = ψkpm ∈ R2

d
dtωm(t)= 1

Θ

(
mm

(
iks (t)

)
+ mt(t)

gr
− νfωm(t)

)
, ωm(0) = ω0

m ∈ R
d
dtφm(t)= ωm(t), φm(0) = φ0

m ∈ R


(2)

with stator voltages uks = (uds , u
q
s)> (in V2; e.g. applied by a voltage source inverter), stator

currents iks = (ids , i
q
s)> (in A2), flux linkages ψks = (ψds , ψ

q
s )> (in Wb2), stator resistance Rs (in

Ω), number of pole pairs np, mechanical angle φm (in rad) and speed ωm (in rad
s ), inertia Θ

(in kg m2), machine torque mm and turbine torque mt (both in N m), gear ratio gr and viscous
friction coefficient νf (in N m s

rad ). The stator flux linkage vector

ψks (t) =

[
Lds Lm

Lm Lqs

]
︸ ︷︷ ︸

=:L
k
s =(L

k
s )

>
>0

iks (t)+

(
ψpm

0

)
︸ ︷︷ ︸

=:ψ
k
pm

(3)

is assumed to be an affine2 function of the stator current vector iks and the permanent-magnet
flux linkage vector ψkpm (in Wb2). The inductance matrix Lks with stator inductances Lds > 0,
Lqs > 0 and mutual (cross-coupling) inductance Lm 6= 0 is symmetric and positive-definite
(i.e. LdsL

q
s − L

2
m > 0 [17]). If the anti-diagonal elements Lm of the inductance matrix Lks are

non-zero, a change in the d-axis current ids imposes a change in the q-axis flux linkage ψqs and
vice versa. This effect is referred to as magnetic cross-coupling. Moreover, if the main-diagonal
elements Lds and Lqs have different values, i.e. Lds − Lqs 6= 0 H, the (three-phase) stator flux
linkage depends on the actual rotor position/angle, and the machine is said to be anisotropic.
Fig. 2 illustrates the third quadrant (generator mode) of the flux linkage (3) of the simulated
PMSM (see Sec. 3). Due to magnetic cross-coupling, the flux maps are slightly tilted. The
electro-mechanical torque for such an anisotropic machine is given by3

mm(iks ) = 3
2np (iks )>Jψks i

k
s = 3

2np ψpmi
q
s︸ ︷︷ ︸

(i)

+ 3
2np (Lds − L

q
s)ids i

q
s︸ ︷︷ ︸

(ii)

+ 3
2np Lm

(
(iqs)2 − (ids )2)︸ ︷︷ ︸
(iii)

, (4)

and can be split into three components: (i) permanent magnet torque, (ii) reluctance torque, and
(iii) torque due to magnetic cross coupling (which is usually neglected [10]). Clearly, there exist
infinitely many current vectors iks to produce the same torque (see (4) and/or Fig. 3).

2.2. Problem formulation
The MTPA optimization problem can be formulated as: Find the minimum current magnitude
‖iks ‖

2 = (iks )>iks for a given reference torque mm,ref (see e.g. mm,ref as in (17) in regime II), i.e.

iks,ref = MTPA(mm,ref , L
d
s , L

q
s , Lm, ψpm, . . . ) := arg min

i
k
s
‖iks ‖

2 such that mm(iks ) = mm,ref .

2 Note that a constant matrix L
k
s is considered. Most publications deal with constant inductances Ld

s and L
q
s

while the cross-coupling inductance Lm is neglected [9, 10, 12]. Future work will consider nonlinear flux linkages.
3 For the sake of readability, the time-dependency will be omitted in the following. The factor 3/2 is due to an
amplitude-correct Clarke transformation [18].
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Figure 2: Flux linkage maps (3) of an anisotropic PMSM with parameters as in (16).

Due to the equality constraint, the optimization problem can be rewritten as Lagrangian

max
(i

k
s ,κ)

L(iks , κ) where L(iks , κ) := −(iks )>iks + κ
[
mm(iks )−mm,ref

]
(5)

with Lagrangian multiplier κ ∈ C \ {0}. Clearly, (iks )>JLks i
k
s

(3),(2)
= (iks )>

[
1
2(JLks + LksJ

>)
]
iks

and (iks )>Jψkpm = (ψkpm)>J>iks . Then, by defining I2 :=
[
1 0
0 1

]
,

T := 3
4np(JLks +LksJ

>) = 3
2np

[
−Lm

L
d
s−L

q
s

2
L
d
s−L

q
s

2 Lm

]
= T> and t := 3

4npJψ
k
pm =

(
0

3npψpm

4

)
, (6)

the machine torque can be expressed as mm(iks )
(4),(6)

= (iks )>T iks + 2t>iks and the Lagrangian
in (5) can be rewritten as quadric as follows

L(iks , κ)
(4)
= −(iks )>I2i

k
s + κ

[
3
2np (iks )>Jψks i

k
s −mm,ref

]
= (iks )>

[
−I2 + κ 3

4np(JLks +LksJ
>)
]
iks + κ 3

2np(ψkpm)>J>iks − κmm,ref

(6)
= (iks )>

[
− I2 + κT

]
iks + κ 2t>iks − κmm,ref . (7)

2.3. Analytical solution for the current references
To find the maximum of (5), it is sufficient to (i) set the gradient of (7) to zero and find its
(optimal) solutions in ik,?s and κ? and (ii) check negative definiteness of the Hessian of (7). The
gradient and the Hessian of (7) are given by

gL(iks , κ) :=

(
dL(iks , κ)

d(iks , κ)

)>
=

(
d

diks
L(iks , κ)

d
dκ L(iks , κ)

)
=

(
2
[
− I2 + κT

]
iks + κ 2t

(iks )>T iks + 2t>iks −mm,ref

)
∈ R3 (8)

and

HL(iks , κ) :=

(
d2L(iks , κ)

d(iks , κ)2

)>
= 2

[[
− I2 + κT

]
, T iks + t

(iks )>T> + t>, 0

]
= HL(iks , κ)> ∈ R3×3, (9)

respectively.
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(i) Setting the gradient (8) to zero, i.e. gL(ik,?s , κ) = 03, and solving the first two rows for
ik,?s = iks yields

ik,?s (κ) = −
[
− I2 + κT

]−1
κt = −

[
−1− κ 3

2Lmnp κ 3
4np(Lds − L

q
s)

κ 3
4np(Lds − L

q
s) −1 + κ 3

2Lmnp

]−1

κ

(
0

3
4npψpm

)
. (10)

Inserting ik,?s (κ) into the last row of the gradient (8) gives a fourth-order polynomial

a4κ
4 + a3κ

3 + a2κ
2 + a1κ+ a0 = 0 (11)

in κ with five coefficients a0, a1, . . . , a4 ∈ R. The coefficients of (11) for the considered anisotropic
PMSM model (2) depend on the machine parameters and are given by (details are omitted)

a0 = −16mm,ref , a1 = −18n2
p(ψpm)2,

a2 = mm,ref

[
36L2

mn
2
p +

(
3np

(
Lds − L

q
s

))2
+

81

2
Lmn

3
p(ψpm)2

]
, a3 = 0, and

a4 = −81

32
n4

p

[
2mm,ref

(
4L2

m + (Lds − L
q
s)2
)2

+ 3np(ψpm)2
(

4L2
m + (Lds − L

q
s)2
)]
.

Note that the resulting quartic is a depressed quartic (since a3 = 0), which simplifies the
calculation of its four roots κ?1, . . . , κ

?
4. The four roots depend on the coefficients ai, i = 0, . . . , 4

only (and, hence, on machine parameters and reference torque only) and can be computed
analytically e.g. by invoking Ferrari’s method [16].

(ii) To obtain the optimal solution (ik,?s (κ?), κ?) of the optimization (maximization)
problem (5), the Hessian matrix (9) must be negative definite. The root κ? ∈ {κ?1, . . . , κ

?
4}, which

renders the Hessian HL(ik,?s (κ?), κ?) negative definite, is the optimal Lagrangian multiplier.
Therefore, the Hessian matrix must be evaluated for all κ?i , i = 1, . . . , 4 and checked for negative
definiteness. This can be done by employing Sylvester’s criterion [19, Prop. 8.2.8]: All leading
principle minors of (9) must be negative, which is the case if (for details see the Appendix)

(a) κ?i > − 1
3
2npLm

=⇒ −1− 3
2npLmκ

?
i < 0

(b) |κ?i | > 1

3
2np

√
1
4

(
L
d
s−L

q
s

)2
+L

2
m

=⇒ det
[
− I2 + κ?i T

]
< 0.

 (12)

Both conditions (a) and (b) must be satisfied simultaneously, hence the following must hold

∃κ?i ∈ {κ
?
1, . . . , κ

?
4} : − 1

3
2npLm

< κ? := κ?i < − 1

3
2np

√
1
4

(
L
d
s−L

q
s

)2
+L

2
m

< 0. (13)

For generator (or motor mode) only one κ? = κ?i solves the optimization problem;
which, finally, allows to compute the unique reference currents iks,ref := ik,?s (κ?) =

MTPA(mm,ref , L
d
s , L

q
s , Lm, ψpm, . . . ) with ik,?s as in (10) and κ? as in (13).

Remark 1: As an alternative to evaluating the Hessian matrix, (10) can be evaluated for all
four roots κ?1, . . . , κ

?
4. The vector ik,?s (κ?i ) with the smallest magnitude is the optimal solution.
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2.4. Torque and MTPA hyperbolas (implicit and explicit expressions)
To illustrate the effect of anisotropy and magnetic cross-coupling on the current reference
computation, the plots of the torque hyperbola and the MTPA hyperbola in the current loci
are helpful (see Fig. 3). For reference torque mm,ref , the torque hyperbola is implicitly given by

TRQ(mm,ref) :=
{
iks ∈ R2

∣∣∣ (iks )>T iks + 2 t>iks = 0
}

where T and t are as in (6). Solving this quadric for iqs yields the explicit formula

TRQ(ids ,mm,ref) =



− (L
d
s−L

q
s )i

d
s +ψpm

2Lm
+

+

√
[(L

d
s−L

q
s )

2
+4L

2
m](i

d
s )

2
+2ψpm(L

d
s−L

q
s )i

d
s +4Lm

2mm,ref
3p

+ψ
2
pm

2Lm
, Lm 6= 0

mm,ref

3
2np

[
ψpm+(L

d
s−L

q
s )i

d
s

] , , Lm = 0

(14)

as function of ids which holds for all ids 6= ψpm/(L
d
s − Lqs). Exemplary torque hyperbolas are

plotted in Fig. 3 (see green lines). Note that, for Lm = 0 and Lds = Lqs (isotropic case), the
torque hyperbola becomes a horizontal line (see Fig. 3a).

To derive an expression for the MTPA hyperbola, in the first two rows of the gradient (8)
(i.e. 2

[
− I2 + κT

]
iks + κ 2t = 02), the Lagrangian multiplier κ can be eliminated. Solving this

for κ and rearranging gives the implicit expression of the MTPA hyperbola as follows

MTPA :=

{
iks ∈ R2

∣∣∣∣∣ (iks )>
[

3
4np(Lds − L

q
s) 3

2npLm
3
2npLm −3

4np(Lds − L
q
s)

]
iks +

(
3
4npψpm, 0

)
iks = 0

}
.

Solving this quadric for iqs yields the explicit expression of the MTPA hyperbola

MTPA(ids ) =


2Lmi

d
s±
√

[(L
d
s−L

q
s )

2
+4L

2
m](i

d
s )

2
+(L

d
s−L

q
s )ψpmi

d
s

L
d
s−L

q
s

, Lds 6= Lqs

(ids = 0) , Lm = 0 ∧ Lds = Lqs .

(15)

In Fig. 3b, it can be clearly seen that, for a machine with Lm 6= 0, neglecting the magnetic
cross-coupling will have a significant effect on the shape of the MTPA hyperbola and, hence, on
the current reference computation. The computed reference will not have a minimal magnitude.

3. Simulation results
For the upcoming simulations, a small-scale wind turbine system (SS-WTS) with a 17.7 kW
PMSM is considered. The PMSM has rated torque mm,rated = 49.3 N m, rated speed ωm,rated =

360 rad
s and the following electrical parameters

Lds = 3.5 mH, Lqs = 1.5Lds , Lm = 0.15Lds , ψpm = 0.2 Wb, np = 3 and Rs = 0.12 Ω. (16)

Three different MTPA strategies are implemented:

• the proposed MTPA considering anisotropy and cross-coupling (i.e. Lds 6= Lqs and Lm 6= 0,
see solid blue line ( ) in Fig. 4 and 5),

• the standard MTPA(Lm =0) considering anisotropy but neglecting cross-coupling (i.e. Lds 6=
Lqs and Lm = 0, see dashed blue line ( ) in Fig. 4 and 5) [10], and
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Figure 3: Generator mode current loci of an isotropic machine (with Ld
s = L

q
s and Lm = 0) and an anisotropic

machine with parameters as in (16). The axes are normalized with respect to the maximal admissible
current imax (in A).

• the simple MTPA(ids =0) usually used for isotropic machines with ids,ref = ids = 0 neglecting
anisotropy and cross-coupling (i.e. Lds = Lqs and Lm = 0, see dotted red line ( ) in
Fig. 4 and 5) [13].

Simulations have been conducted in Matlab/Simulink (R2016a) to compare the performance and
the effects of the MTPA strategies on the efficiency of the electrical drive system and the overall
small-scale wind turbine system. Moreover, the proposed MTPA considering anisotropy and
cross-coupling was implemented by using the analytical solution and a conventional numerical
solution (Newton-Raphson). Both solutions match with high accuracy (deviation < 10−26), but
the analytical solution was obtained 20 times faster than the numerical one. In the remainder,
only the analytical solutions for the three MTPA strategies are implemented and discussed.

Remark 2: Note that the proposed algorithm is applicable to any PMSM, PME-RSM or
EESM with non-negligible anisotropy and magnetic cross-coupling independently of the machine’s
power rating. Small-scale machines tend to have a higher ratio of reluctance torque to permanent
magnet torque (represented by (i) and (ii) in (4), respectively) and, therefore, the application to
small-scale wind turbine systems is discussed, since it illustrates better the efficiency gain of the
proposed analytical MTPA strategy.

3.1. Current loci and efficiency improvement of the electrical drive system
Fig. 3 shows the current loci (third quadrant/generator mode) of an isotropic PMSM (see Fig. 3a)
and an anisotropic PMSM with parameters as in (16) (see Fig. 3b). Anisotropy and magnetic
cross-coupling are not negligible and should be considered in the MTPA strategy. Neglecting Lm

leads to an incorrect computation of the reference currents (see Fig. 3b) and, hence, higher
losses (see Fig. 4b). For copper losses PCu = 3

2Rs‖i
k
s ‖

2, friction losses Pfric = νfω
2
m and

mechanical power Pmech = mm(iks )ωm, the efficiencies4 η = (Pmech − PCu − Pfric)/Pmech =
1 − (PCu + Pfric)/Pmech are compared in generator mode for different speeds ωm using the
simple MTPA(ids = 0), the conventional MTPA(Lm = 0) and the proposed MTPA (considering
cross-coupling). As illustrated in Fig. 4, considering anisotropy and cross-coupling allows for a
significant efficiency improvement differing for different machine speeds. The efficiency increase
compared to the simple MTPA(ids =0) is measured by the relative efficiency gain (see Fig. 4c)

∆η := η(X)− η(MTPA(ids =0)) = PCu(MTPA(i
d
s =0))−PCu(X)

Pmech
with X ∈ {MTPA,MTPA(Lm =0)}.

4 Iron losses are not considered. For WTS, the angular speed will (in most cases) not exceed the rated speed.
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Figure 4: Comparison of MTPA, MTPA(Lm = 0) and MTPA(i
d
s = 0) for parameters as in (16) (generator mode).

The horizontal axes are normalized with respect to the rated machine torque mm,rated (in N m).

3.2. Overall small-scale wind turbine system (SS-WTS) with anisotropic PMSM
Now, three identical SS-WTSs with anisotropic PMSM (2) parametrized as in (16), gear ratio
gr = 14.7, inertia Θ = 0.199 kg

m
2 and viscous friction coefficient νf = 5 · 10−3 N m s

rad are implemented
in Matlab/Simulink. The SS-WTS has turbine power Pt = cp(λ)Pw (in W) and turbine torque
mt = Pt

gr
ωm

[18] where Pw = 1
2%πr

2
t v

3
w (in W), % = 1.293 kg

m
3 , rt = 3.38 m and vw (in m

s ) are
wind power, air density, turbine radius and wind speed, respectively. The power coefficient
cp(·) from [20, Example III.2] with maximum c?p := cp(λ?) = maxλ cp(λ) = 0.441 and optimal
tip speed ratio λ? = 6.91 is used. For maximum power point tracking (MPPT) in region II
(i.e. vw ∈ [5, 12]m

s for the simulations), the nonlinear turbine speed controller [18, 21]

mm,ref = −k?pω
2
m + νfωm −

Θv−Θ
Tv

ξ where k?p := %r
5
t π

2g
3
r

cp(λ
?
)

(λ
?
)
3 and ξ(s) =

[
1− 1

1+s Tv

]
ωm(s) (17)

with inertia compensation5 [21, p. 482] and (viscous) friction feedforward compensation is
implemented for all three SS-WTS. The underlying current control loops [17] are identical for
all three SS-WTS. The only difference between the three SS-WTS is that the reference torque
mm,ref (controller output) is fed to one of the three introduced MTPA strategies (see above).

The simulation results are depicted in Fig. 5 (line colors are as introduced above). The
wind speed vw(·) varies within the interval [7, 12]m

s . Only the SS-WTS with the proposed
MTPA (considering cross-coupling) achieves maximum power point tracking (MPPT) at steady
state, since λ → λ? for all wind speeds (see second subplot in Fig. 5). For the SS-WTS with
MTPA(ids = 0) and MTPA(Lm = 0), the speed controller (17) does not guarantee MPPT;
not even at steady state. Due to the incorrect current reference computation, the produced
machine torque mm 6= mm,ref differs from the reference torque (17) (see also [22]) and λ → λ?

can not be established. Hence, the maximum turbine power c?pPw can not be extracted,
i.e. Pt = cp(λ)Pw < c?pPw. The relative extracted power ∆Pext (normalized with respect to
the maximum turbine power c?pPw) and the relative torque deviation ∆mm (normalized with
respect to the reference torque (17)) of each SS-WTS can be computed by

∆Pext :=
(cp(λ)Pw−PCu−Pfric)−c?pPw

c
?
pPw

and ∆mm :=
mm−mm,ref

mm,ref
,

respectively. ∆mm and ∆Pext are shown in the third and fourth subplot of Fig. 5, respectively.
For example, for the SS-WTS with MTPA(ids = 0) at vw = 12 m

s , the relative torque deviation
can reach more than 15% with a relative loss in extracted power of almost 8.5% .
5 Note that ξ ≈ Tv

d
dt
ωm approximates the time derivative of the machine speed and Θv < Θ (in kg m

2) is the
desired reduced (virtual) inertia of the WTS. For the simulations, Θv = Θ/4 and Tv = 0.2 s were chosen.
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Figure 5: Simulation results for a SS-WTS with anisotropic PMSM (parametrized as in (16)) operated in region II
(maximum power point tracking) under (step-like) varying wind speeds vw(·) ∈ [7, 12]m

s
.

4. Conclusion
In this paper, an analytical solution for the Maximum-Torque-per-Ampere (MTPA) optimization
problem has been derived for permanent-magnet synchronous machines with anisotropy and
magnetic cross-coupling. The proposed MTPA strategy has been applied to a small-scale wind
turbine system. The main contributions of this paper have been (i) the derivation of the analytical
solution considering magnetic cross-coupling (which has not been done in literature before) and
(ii) performance and efficiency comparisons with both, the conventional method (with zero direct
current) and the state of the art MTPA strategy (neglecting magnetic cross-coupling). It has been
shown that including the magnetic cross-coupling into the optimization problem can significantly
increase the efficiency of the system (copper losses are reduced). Moreover, the analytical solution
allows for an almost instantaneous computation of the optimal reference currents. Compared
to the numerical Newton-Raphson method, the analytical solution converged to the correct
solution 20 times faster. The proposed analytical MTPA strategy and its reference current
computation can be adopted within already existing small-scale or large-scale wind turbine
systems (WTSs) without any further modifications. Independently of the machine’s power rating,
the proposed solution can be applied to any permanent-magnet synchronous machine (PMSM),
permanent-magnet-excited reluctance synchronous machine (PME-RSM) or electrically-excited
synchronous machine (EESM) with non-negligible anisotropy and magnetic cross-coupling (see
also Remark 2). Future work will focus on the extension of the analytical solution to nonlinear
flux maps (i.e., when the inductances are functions of the stator currents).
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Appendix
Note that, by defining

M(iks ) :=

[
I2,

[
− I2 + κT

]−1
(T iks + t)

0>2 , 1

]
∈ R3×3 with detM(iks ) = 1

and by invoking [19, Fact 2.16.2], the Hessian matrix

HL(iks , κ) = 2M(iks )>
[[
− I2 + κT

]
, 02

0>2 , −
(
(iks )>T> + t>

)[
− I2 + κT

]−1(
T iks + t

)]M(iks )

can be written as product of three matrices. Hence,

det
[
HL(iks , κ)

]
= −2

(
(iks )>T> + t>

)[
− I2 + κT

]−1(
T iks + t

)︸ ︷︷ ︸
=:α∈R

· det
[
− I2 + κT

]
,

which, with detM(iks ) = detM(iks )> = 1 and det
[
− I2 + κT

] (12)
< 0, implies that α =

‖T iks + t‖2Q < 0 (a weighted norm with negative definite Q :=
[
− I2 + κT

]
< 0) is negative for

all non-zero vectors T iks + t 6= 02. Inserting i
k
s = ik,?s (κ) with ik,?s (κ) as in (10) yields

T ik,?s (κ) + t
(10)
= −κT

[
− I2 + κT

]−1
t+ t = −

(
− I2 + κT

[
− I2 + κT

]−1)
t

= −
(
−
[
− I2 + κT

][
− I2 + κT

]−1
+ κT

[
− I2 + κT

]−1)
t

= −
([
I2 ���−κT

]
+��κT

)[
− I2 + κT

]−1
t

= −
[
− I2 + κT

]−1
t

(12)
6= 02 for all κ = κ? with κ? as in (12).
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