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Abstract. Dynamical Energy Analysis (DEA) combined with the Discrete Flow Mapping
technique (DFM) has recently been introduced as a mesh-based high frequency method
modelling structure borne sound for complex built-up structures. This has proven to enhance
vibro-acoustic simulations considerably by making it possible to work directly on existing finite
element meshes circumventing time-consuming and costly re-modelling strategies. In addition,
DFM provides detailed spatial information about the vibrational energy distribution within a
complex structure in the mid-to-high frequency range. We will present here progress in the
development of the DEA method towards handling complex FEM-meshes including Rigid Body
Elements. In addition, structure borne transmission paths due to spot welds are considered.
We will present applications for a car floor structure.

1. Introduction
Simulations of the vibro-acoustic performance of automobiles are routinely carried out in various
design stages. To understand the transmission of structure-borne sound in cars, it is necessary
to have effective and efficient modelling tools to support the structural design process ideally
before a prototype vehicle is built. The major difficulty in modelling structure-borne sound
lies in the complex geometry of the car structure. The Finite Element Method (FEM) can
describe geometric details of the car structure with sufficient accuracy in the low frequency
region, typically below 500 Hz. High frequency analysis using FEM requires extremely fine
meshes of the body structure to capture the shorter wavelengths and, at the current time, such
analysis poses significant computational challenges.

The impractical computational cost of FEM for a high frequency analysis is perhaps less
of a limitation (considering recent advances in CPU power) than the fact that the structural
response at high frequencies is very sensitive to small variations in material properties, boundary
conditions etc. This will result in considerable scatter in the dynamic characteristics of real
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vehicles. Therefore, results from the analysis of an FE model become less meaningful at high
frequencies and a statistical representation is necessary. The Statistical Energy Analysis (SEA)
[1] has been developed to deal with high frequency problems and leads to relatively small and
simple models in comparison with FEM. As such SEA has found widespread applications in
the automotive and aviation industry, as well as in architectural acoustics. However, SEA is
based on a set of often hard to verify assumptions, which effectively require diffuse wave fields
and quasi-equilibrium of wave energy within sub-systems. The gap in frequency range between
the FEM and SEA is usually referred as the mid-frequency gap, in which neither FEM or SEA
provides a satisfactory solution.

The mid-frequency problem has been extensively investigated in recent decades and many
different approaches have been proposed. Among them, the hybrid FEM/SEA method [2]
has been arguably the most successful and most popular approach and applications of the
hybrid method for a full car structure have been reported in [3, 4, 5]. The hybrid method
requires partitioning the whole structure into deterministic and statistical parts. With academic
structures [2, 6], this partitioning procedure is relatively simple and the hybrid method has been
demonstrated to give very good predictions of ensemble averages of the mid-frequency response
of uncertain structures. However, for real engineering structures such as cars, the separation
between the deterministic and statistical parts is not a trivial task. Furthermore, within the
statistical parts of the structure there is also the challenge of designing a partition into sub-
systems that satisfy the assumptions required for an SEA treatment.

One alternative to SEA is to instead consider the original vibrational wave problem in the
high frequency limit, leading to a ray tracing model of the structural vibrations. Tracking
rays including multiple reflections on boundaries can become highly computationally intensive,
in particular on curved surfaces and including mode conversion at interfaces. As a result, ray
tracing has not yet been widely adopted for mechanical engineering problems. Tracking densities
of rays propagated by a transfer operator, instead of tracing the rays themselves, leads to a model
for the mean energy density which forms the basis of the Dynamical Energy Analysis (DEA)
method introduced in [7]. DEA includes SEA as special case via a low order representation of
the transfer operator. Higher order implementations enrich the SEA model with information
from the underlying ray dynamics, leading to a relaxation of the stringent SEA assumptions.
In particular, in DEA we have much more freedom in sub-structuring the total system and
variations of the energy density across sub-structures can be modelled [8].

An efficient implementation of DEA on meshes called Discrete Flow Mapping (DFM) has
been presented in [8, 9]. In DFM it is possible to compute vibro-acoustic energy densities in
complex structures at high frequencies, including multi-modal propagation and curved surfaces.
Coupling at material interfaces is described in terms of reflection/transmission matrices. These
matrices are obtained by solving the wave equation locally in the coupling region. It is this last
property that also allows DFM to be extended as a hybrid method of the form detailed in Ref.
[10]. That is, in the deterministic parts of a hybrid model we may apply FEM, or any other full
wave simulation method, as we would in a hybrid FEM/SEA approach. Once we have local wave
solutions in the deterministic substructures, then we can form reflection/ transmission matrices,
see for example [11]. A DFM model in the statistical part of the structure will then couple
to these matrices in the same way as the coupling at material interfaces is incorporated in [8].
The main advantage of a hybrid DFM approach is that we do not have any restrictions on the
sub-structuring in the statistical region, and we are able to compute a full geometry-dependent
solution, and resolve this solution within sub-structures.

In this paper, we apply the DFM method for to modelling a car floor structure including
stiffeners and spot-welds. We briefly describe the structure - the car floor structure also
considered in [5]. We will then discuss the simulation method - DFM - itself and explain
then how it can be extended to include details of the structure. We focus here on the particular
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Figure 1. Floor structure, containing rails numbered from 1 to 8 and a panel 9.

problem, namely, that different parts of the FE mesh are coupled together via spot weld models
or via so-called Rigid Body Elements (RBEs) [12]. Such a treatment - common in FE modelling
- needs to be adapted for DFM. In the last section, we present numerical results both for a
plate-like car-floor panel not including the stiffeners as well as the full structure and compare
with FEM calculations.

2. Description of the floor structure
A floor structure from a caravan car [5] is considered in this study. The floor structure consists
of a floor panel, two longitudinal rails and six transverse rails, as illustrated in Figure 1. The
floor panel is connected to the rails through a number of spot-welds and additional reinforcement
plates are placed between the floor panel and rails. The structural material is steel, the total
mass is 82.3 kilograms. Material properties and dimensions are listed in Table 1. The FE
representation of the floor structure containing approximately 340,000 degrees of freedom is
obtained from the complete vehicle body model. The floor panel, rails and reinforcements are
modelled using quadrilateral and triangular shell elements. The average element size is 12 mm.
In the following, we will consider this structure in two steps. In a first step, we will only
consider the floor panel itself - component 9 (in blue) in Fig. 1. This structure is given here
as one mesh consisting of FE shell elements. In a second step, we will then describe the full
structure including the rails. Note that, as is typically done in FE treatments, the rails are
meshed separately from the panel component 9 and from each other. The rails are physically
connected to the panel and to each other in terms of spot welds. They are modelled in terms of
RBE elements, see Fig. 2. These elements are well suited for an FE treatment, where interaction
can be modelled in terms of vertex (force) connections; however, DFM is based on an energy flow
model where flow is measured across interfaces, here the edges of mesh cells. Point connections
in terms of RBE elements thus need to be reinterpreted in a DFM setting. In this study here,
we propose a way forward, which will make it possible to determine DFM solutions for the full
structure. Note that we model the rails as well as the panel using the DFM method.

3. Discrete flow mapping
We will here briefly describe the idea behind DFM, for details see [9]. We will focus here on 2D
meshes - an extension of DFM to 3D volume and solid elements is discussed in [13]. We will
first consider the case of FE meshes consisting solely of 2D shell and plate elements such as the
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Table 1. Floor properties

Material properties
Youngs modulus 2.1× 1011N/m2

Poisson ratio 0.3
Density 7850 kg/m3

Damping loss factor 0.04 or 0.005
Thickness
Floor panel 0.8mm
Longitudinal rails 1,2 1.95mm
Transverse rail 3 1.35mm
Transverse rail 4 1.35mm
Transverse rail 5 1.5mm
Transverse rail 6 1.5mm
Transverse rail 7 1.71mm
Transverse rail 8 1.49mm
Various reinforcements 2.34mm
Mass
Total mass 82.3 kg
Floor panel 28.5 kg

panel component 9 in Fig. 1 - an extension to modelling connections between different meshes
via spot welds and RBE’s will be discussed in the next section.

3.1. DFM on 2D surfaces
DFM is a mesh based technique where a transfer operator is used to describe the flow of energy
through boundaries of subsystems of the structure; the energy flow is represented in terms of a
density of rays ρ, that is, the energy flux through a given surface is given through the density of
rays passing through the surface at point s with direction p. Here, s parametrises the surface
and p is the direction component tangential to the surface. In what follows, the surfaces is
represented by the union of all boundaries of the mesh cells of the FE mesh describing the car
floor. The density ρ(s, p) = ρ(Xs), with Xs = (s, p), is transported from one boundary to the
next boundary intersection via the boundary integral operator [9]

B[ρ](X ′s) :=

∫
w(X ′s)δ(X

′
s − φ(Xs))ρ(Xs) dXs. (1)

where φ(Xs) is the map determining where a ray starting on a boundary segment at point s
with direction ps passes through another boundary segment, and w(Xs) is a factor containing
damping and reflection/transmission coefficients (akin to the coupling loss factors in SEA). As
described in [9], the method can be generalised to work efficiently on meshes where the boundary
segments are now given by the edges of the mesh cells. Ray densities are transported from a mesh
element j to a mesh element i, including reflection when i = j. The energy flow is determined as
a flow through the edges of the mesh cells, the mapping from one edge to the next is described
in terms of straight-line ray-segments with wave-speeds given by the local material parameters
and plate thickness. In a next step, the transfer operator (1) is now discretised and represented
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as a matrix with entries of the form [9]

B(i,l′,m′)(j,l,m) =
2m+ 1

2
√
A′lAl

∫ c−1
j

−c−1
j

Pm(pj)

∫ smax(pj)

smin(pj)
wrt(p

′
i)e
−ηL(sj ,s′i)Pm′(p

′
i)dsjdpj , (2)

where Pm is a scaled Legendre polynomial of order m as detailed in [9], and the energy
is propagated along a trajectory through mesh element j with propagation speed cj . This
trajectory starts at position sj on edge l of element j and is transported to position s′i on the
common edge l′ of the boundary of element i. The tangential component of the momentum (or
slowness) of the trajectory at sj is denoted pj and likewise for p′i at s′i. Note, that p′i and s′i are
uniquely determined by pj at sj . Also L(sj , s

′
i) is the length of the trajectory from sj to s′i, η

is a (viscous) damping parameter, Al is the length of edge l from element j, and likewise Al′ is
the length of edge l′ from element i. The integration range in space depends on the momentum,
since the admissible range of starting points on edge l that are transported to edge l′ must
depend on the direction in which the trajectory leaves edge l.

The weight function wrt gives the reflection probability when i = j or the transmission
probability otherwise. Note that transmission or reflection at boundaries depends in general on
the angle of incidence of the incoming/outgoing ray. DFM incorporates directed transmission
through interfaces, in contrast to SEA, which assumes diffusive wave fields in each subsystem.
This weight function also governs the mode conversion probabilities in the case of both in-
plane and flexural waves, which are derived from wave scattering theory [14]. For modelling
the vibrations of the thin shell floor panel we need to consider ray tracing on curved surfaces.
Applying thin shell theory in the high frequency limit, as in [15], curved rays follow the geodesics
of the surface. This approximation is valid for wavelengths shorter than the radii of curvature of
the shell, but larger than the thickness. Mimicking geodesic paths on the corresponding meshed
surface, we employ the theory outlined in [16] and [17]. Corrections need to be considered if
the radius of curvature is of the order of the wavelength, such as constructing modified ray
paths from the governing thin shell theory [15]. However, such corrections require a detailed
knowledge of the local curvature and so we will follow a simplified approach here. We treat the
meshed structure as a set of plate-like elements and estimate reflection/transmission properties
due to the finite angle between mesh elements using the plate-junction theory detailed in [14],
see [9, 8] for details.

Once the matrix B has been constructed, the energy density on the boundary phase-space of
each element is given by the solution of a linear system of the form

(I−B)ρ = ρ0, (3)

where I is the identity matrix and B has entries as defined by equation (2). Here, ρ0 and ρ are
the vectors corresponding to the initial and final boundary densities. Once ρ has been computed,
the energy density at any location inside the structure may be computed as a post-processing
step, see Ref. [18]. In section 4.1, we compare the results of the above described methodologies
for simulating vibrations for the car floor panel, component 9, in Fig. 1.

3.2. Coupled FE meshes
The integral in (2) can be adapted to incorporate further complexity and refinement in a DFM
model. The vehicle floor in Fig. 1 contains spot welds fixing the stiff rails to the floor panel.
This is modelled in the FE model with the connections shown in Fig. 2, here in terms of a set
of RBE’s (red lines in Fig. 1) together with solid element modelling extra mass and stiffness of
the spot weld. The RBEs describe here constraint conditions and make it possible to transfer
forces directly from one mesh to another. Such a set-up can not be used in a DFM treatment
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Figure 2. Rail (green) fixed to car floor (purple; component 9 in Fig. 1); the fixtures - spot
welds - are modelled with the help of RBEs (red line) and a solid element (orange) mimicking
the mass and stiffness properties of the spot weld connection.

which is based on modelling energy flow through surfaces and mesh boundaries. In order to
avoid costly remodelling of the structure, we suggest a treatment using the RBEs as coupling
elements directly. To describe the energy transfer across spot weld connections as shown in Fig.
2, we keep the form of (1), but introduce coupling between edges connected to the mesh cells
next to the spot welds both in the ’upper’ and ’lower’ sheet connected by the spot weld. In
addition, we calculate the weight function (representing transmission probabilities) via a transfer
function.This parameter can be obtained from FE calculations treating single spot welds in
isolation or is estimated by analytical calculations. In this treatment, a simplified approach is
taken where energy arriving at an edge connected to a spot weld is distributed uniformly among
neighbouring edges (ie edges connected by the RBE). In addition, we assume uniform scattering
of transmitted rays in all directions. This is an ad-hoc approach, which needs to be refined, for
example, local FE models or by the spot weld models used as point connections described in [19].
These point connections transfer circular waves in one part of the structure to circular wave in
other parts of the structure. As DFM assumes a plane wave description of the propagation, one
has to include an additional step in (2) transforming plane waves to circular waves and back.

4. Numerical results
In this section we present the simulation results for modelling the car floor structure with the
DFM method. We will first discuss results for the bending mode in the floor panel only (without
the rails), and compare the results against FEM predictions. In a next step, we will consider
the full floor structure in Fig. 1 including the rails coupled to the floor via the spot welds; again
both DFM and FEM calculations are considered.

4.1. Comparison of DFM and FEM for a car-floor panel
In order to compare the different numerical approaches we have calculated the spatial kinetic
energy distribution originating from a single point excitation on the plain floor panel (shown as
component 9 in Fig. 1). The DFM results are compared to one-third octave band frequency-
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Figure 3. The kinetic energy distribution due to a point source load in the upper left region of
the plain floor panel (without rails). The DFM and FEM results are shown with 4% hysteretic
damping and the excitation is scaled with the point mobility of the loading so that the input
power into the panel from both methods is equal. The results are given on a logarithmic color
scale.

averaged FEM results, with the band average at 2500 Hz. Note that the DFM calculation uses
only the band average frequency. The calculation was done for two hysteretic damping loss
factors η = 0.04 and η = 0.005. The FEM excitation is a unit force load perpendicular to
the panel, which primarily excites bending waves. For DFM the force load is converted to an
injected power flow. This can be done using the Green function of the biharmonic wave equation
describing bending waves in an infinite plate. The results for ν = 0.04 are shown in Fig. 3, and
the results for the less damped case with η = 0.005 are shown in Fig. 4. In both cases, the energy
distribution predicted by FEM and DFM is very non-uniform and would not be well-captured by
an SEA model. In contrast to SEA, DFM gives also the spatial distribution information, which
is in close agreement with the FEM results. In particular, we see the directional dependence of
the energy flow, which is predominantly in the horizontal direction as plotted. This is caused
by several horizontally extended out-of-plane bulges. It is only in the lower right part of the
panel, with negligible energy content, that deviations between the FEM and DFM predictions
are visible. The results shown in Figs. 3 and 4 also show a good quantitative agreement. In
particular, the total kinetic energy given by the DFM prediction is within 6% of the FEM
prediction for η = 0.005, or 12% for η = 0.04.

Note, that the spatial dependence and directionality of the vibrational energy in the floor
panel cannot be obtained from an SEA model. Detailed information about the vibrational
energy distribution is, however, very desirable, especially for a component such as the car floor
panel stretching across the full vehicle without an obvious way for sub-structuring into smaller
SEA subsystems. In the automobile industry, excitations are typically well defined and the
associated operational shape is of interest. The results clearly show that modelling bending
modes in this panel with DFM captures the full spatial dependence and directionality of the
vibrational energy.
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Figure 4. The kinetic energy distribution due to a point source load in the upper left region
of the plain floor panel (without the rails). The DFM and FEM results are shown with 0.5%
hysteretic damping and the excitation is scaled with the point mobility of the loading so that the
input power into the panel from both methods is equal. The results are given on a logarithmic
color scale.

4.2. Comparison of DFM and FEM for the full car-floor structure
In a next step, we apply the method described in Sec. 3.2 to perform a DEA calculation for the
full car floor model shown in Fig. 1. This includes the coupling of the rails to the floor panel and
between different rails via the spot-weld models depicted in Fig. 2. In the DEA calculation, only
coupling via RBEs is included and the influence of the solid element is ignored. The results are
shown in Fig. 5, here for η = 0.04 and a frequency band average at 2500 Hz. In contrast to the
situation in the previous section, the point loading is now applied on top of a rail, but otherwise
equivalent to the situation described in Sec. 4.1. The deviations between the FE result and the
DEA result are within 18% when integrated over the total area of the car floor. A detailed
analysis shows, that the energy is less pronounced in the DEA calculation compared to the FE
calculation when moving away from the source. This suggest that the modelling of the coupling
between different components is currently too weak in the DEA model, which calls for a more
refined DEA modelling of the RBE connections

5. Conclusions
We have tested the DFM method for a car-floor structure at mid- and high- frequencies. The
combination of the thin shell floor panel connected to a number of stiffer rails via spot welds
posses challenges for a DFM calculations. We have developed a method for treating the coupling
of different FE meshes via RBEs in a DFM simulation. The results compare well with (frequency-
band averaged) FE calculations both for the floor panel alone and for the full car floor structure.
Improvements of the coupling in the DEA set-up needs to be considered.
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Figure 5. The velocity distribution due to a point source load applied to rail 1 in the full car
floor model shown in Fig. 1. The DFM and FEM results are shown with 4% hysteretic damping
and the excitation is scaled with the point mobility of the loading so that the input power into
the panel from both methods is equal. The results are given on a logarithmic color scale.
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