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Abstract. An analytical method is formulated for the seismic analysis of multi-span continuous 

beams with random structural parameters subjected to spatially varying ground motions. An 

earthquake-induced ground motion is modelled as a stationary random process defined by 

power spectral density function, and the spatial variation is considered. The physical 

parameters of the multi-span beams are random and modelled as continuous random Gaussian 

variables. The stationary random responses are determined as approximate explicit functions of 

the structural parameters. Direct differentiation of these functions with respect to the structural 

parameters provides analytical expressions of the sensitivities of the stationary responses. On 

the basis of Taylor expansion, the statistic moments of the random responses are obtained. 

Taking the four-span beam as an illustrative example, the mean value and standard deviation of 

the random responses are computed and compared with those from Monte Carlo simulation to 

demonstrate the accuracy of the proposed method. Results are illustrated for the influence of 

different structural parameters on the statistic moments of the random responses. It is found 

that randomness in Young’s modulus and the mass per unit length has approximate equivalent 

and significant influence on the random responses, while that of damping is negligible. 

1.  Introduction 

Due to the influences of the wave passage effect, incoherence effect and site-response effect, variations 

can be found during the seismic wave propagation along the length of long-span structures, which 

result differences in amplitude and phase of ground motions at supports of the structures [1]. This 

phenomenon is termed spatially varying ground motions, which have been a fundamental problem of 

interest for decades [1-8]. Harichandran and Vanmarcke [2] investigated the accelerograms recorded 

by the SMART 1 seismograph array in Lotung, Taiwan, using the second-order theory of random 

fields and proposed a frequency-dependent spatial correlation model of earthquake ground motions. 

Der Kiureghian and Neuenhofer [3] proposed a new response spectrum method for seismic analysis of 

linear multi-degree-of-freedom, multiply supported structures subjected to spatially varying ground 

motions, which was based on the fundamental principles of random vibration theory. Lee and Penzien 

[4] developed a stochastic method for seismic analysis of structures and piping systems subjected to 

multiple support excitations in both the time and frequency domains. Zerva [5, 6] analyzed two- and 

three-span beams subjected to different types of spatially varying ground motions. The results 

indicated that the spatially varying effects of the ground motions have complex and remarkable 
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influences on the dynamic responses of long-span structures. On the basis of the pseudo-excitation 

method, Zhang et al. [7] presented a random vibration methodology for the seismic analysis of multi-

supported structures, which had advantage in computation time. In most of the above literatures, based 

on the modal dynamic concept, the quasi-static decomposition method was widely used. Nevertheless, 

as mentioned by Chen and Tsaur [8], the quasi-static solution might still be very difficult to find for a 

continuous system, and in a discrete system, the quasi-static part was obtained at the cost of a large 

matrix inversion. 

On the other hand, the structural parameters may be also random for the reason of inhomogeneity 

of material, or randomness resulting from the assembly process, measurement and manufacturing 

tolerances. It was reported that the uncertainty in parameters of a structural system might have equal 

or even greater influence on the response than the randomness in excitations [9]. Therefore, dynamic 

analysis for structural systems with random parameters under random excitations has been the subject 

of research for many years [9-15]. Jensen and Iwan [10] developed a method in time domain for the 

dynamic analysis of linear systems with uncertain parameters to non-stationary stochastic excitation. 

Gao and Kessissoglou [11] investigated the dynamic characteristics and responses of stochastic truss 

structures under non-stationary random excitations, and a new method called the random factor 

method was put forward. The influences of the randomness of the structural parameters on the 

structural seismic responses were studied. Muscolino et al. [12] presented a semi-analytical approach 

based on the so-called rational series expansion, which could be used for the sensitivity analysis of the 

response of linear discretized structures subjected to stationary multi-correlated Gaussian random 

excitations. Wall and Bucher [13] studied the dynamic effects of uncertainty in structural properties 

when the excitation was random by using the perturbation stochastic finite element method. 

Bhattacharyya and Chakraborty [14] studied the stochastic sensitivity of structures with random 

structural parameters subjected to random earthquake loadings by Neumann Expansion technique. The 

random structural parameters were modeled as homogeneous Gaussian stochastic field and discretized 

by the local averaging method. Li and Liao [15] investigated the use of orthogonal expansion method 

with the pseudo-excitation method for analyzing the dynamic response of structures with uncertain 

parameters under external random excitations. 

From the above literatures, it can be found that the random seismic responses of the long-span 

structures are greatly affected by (i) the spatial variation of ground motions, (ii) the randomness in 

excitations, and the (iii) uncertainties in structural parameters. However, the research which includes 

the influences of all the above three factors is very little. This provides the initial motivation for the 

present work, in which the seismic responses of multi-span continuous beams with random structural 

parameters subjected to spatially varying ground motions are investigated. A new analytical method is 

presented for the dynamic analysis of multi-span continuous beams in frequency domain. Since the 

present method is not a mode-based method, the solutions for normal modes and the quasi-static 

displacements are avoided, which may be difficult for a continuous system. The influences of the 

random structural parameters on the statistic moments of the random responses are converted to a 

sensitivity problem through the second order Taylor expansion. 

2.  Problem formulation 

The schematic of the multi-span beam subjected to the spatially varying ground motions is shown in 

figure 1. The beam is modeled based on Bernoulli-Euler beam theory and the transverse deformation 

is considered. The governing equation and boundary conditions can be written as 

 {
𝑚

𝜕2𝑦(𝑥,𝑡)

𝜕𝑡2 + 𝑐
𝜕𝑦(𝑥,𝑡)

𝜕𝑡
+ 𝐸𝐼

𝜕4𝑦(𝑥,𝑡)

𝜕𝑥4 = 0

𝑦(𝑥𝑖, 𝑡) = 𝑢𝑖(𝑡)
 (1) 

where 𝑦(𝑥, 𝑡) is the displacement of beam, 𝑚 is the mass per unit length, 𝑐 is the viscous damping per 

unit length, 𝐸 is Young’s modulus and 𝐼 is the moment of inertia of the cross-section. 𝑥𝑖 and 𝑢𝑖(𝑡) is 

the location and displacement of the i-th support, respectively. 𝑁 is the total number of supports. 
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The arbitrary parameter of beam, 𝑏, is assumed to be an random variable and expressed as 

 

 

Figure 1. Schematic of a multi-span beam. 

 

 𝑏 = 𝑏0(1 + 𝜖) (2) 

where 𝑏0  is the mean value, 𝜖  is the zero mean Gaussian and dimensionless fluctuation. As the 

physical parameters, such as Young’s modulus and mass, must be strictly positive, 𝜖 is required to 

satisfy the condition 𝑃[(1 + 𝜖) ≤ 0] = 0. This requirement, strictly speaking, rules out the use of 

Gaussian models for the random variables. However, for small 𝜖, it is expected that Gaussian models 

can still be used if the primary interest in the analysis is on finding the first few response moments and 

not on the response behavior near the tails of the probability distributions. For brevity, all the 

fluctuations of the random physical parameters of the multi-span beams can be expressed as the 

following vector 

 𝝐 = [𝜖1 𝜖2 ⋯ 𝜖𝑟]T (3) 

where 𝑟 is the total number of random parameters. 

The seismic ground motion is assumed to be a normal stationary random process, and the spatial 

effects are considered. Therefore, the random displacements of supports are characterized by the 

power spectral density function (PSD) matrix [1] 

 𝑺𝑢𝑢 =

[
 
 
 
𝑆𝑢1𝑢1

𝑆𝑢1𝑢2
⋯ 𝑆𝑢1𝑢𝑁

𝑆𝑢2𝑢1
𝑆𝑢2𝑢2

⋯ 𝑆𝑢2𝑢𝑁

⋮ ⋮ ⋱ ⋮
𝑆𝑢𝑁𝑢1

𝑆𝑢𝑁𝑢2
⋯ 𝑆𝑢𝑁𝑢𝑁]

 
 
 

 (4) 

where 𝑆𝑢𝑖𝑢𝑗
= 𝛾𝑖𝑗√𝑆𝑢𝑖𝑢𝑖

𝑆𝑢𝑗𝑢𝑗
 and 𝛾𝑖𝑗 are the cross-PSD and coherency function of the displacements 

at the i-th and j-th supports, respectively; and 𝑆𝑢𝑖𝑢𝑖
 is the auto-PSD of the displacement at the i-th 

support. 

3.  Random responses of deterministic structures subjected to random excitations 

3.1.  Stationary random responses 

According to the superposition principle of linear system, an arbitrary response of the structure, 

𝑧(𝑥, 𝑡), can be expressed as [16] 
 

 𝑧(𝑥, 𝑡) = ∑∫ 𝐺𝑖(𝑥, 𝑡, 𝜃𝑖)𝑢𝑖(𝑡 − 𝜃𝑖)
+∞

−∞

d𝜃𝑖

𝑁

𝑖=1

 (5) 

 
where 𝐺𝑖(𝑥, 𝑡, 𝜃𝑖) is the Green’s function corresponding to the i-th support. As 𝑢𝑖(𝑡) is a stationary 

random process, 𝑧(𝑥, 𝑡) is also stationary. Accordingly, the autocorrelation of 𝑧(𝑥, 𝑡) can be given by 
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𝑅𝑧𝑧(𝑥, 𝜏) = 𝐸[𝑧(𝑥, 𝑡)𝑧(𝑥, 𝑡 + 𝜏)]

    = 𝐸 [∑∑∫ ∫ 𝐺𝑖(𝑥, 𝑡, 𝜃𝑖)𝐺𝑗(𝑥, 𝑡, 𝜃𝑗)𝑢𝑖(𝑡 − 𝜃𝑖)𝑢𝑗(𝑡 − 𝜃𝑗 + 𝜏)
+∞

−∞

+∞

−∞

𝑁

𝑗=1

𝑁

𝑖=1

d𝜃𝑖d𝜃𝑗]

    = ∑∑∫ ∫ 𝐺𝑖(𝑥, 𝑡, 𝜃𝑖)𝐺𝑗(𝑥, 𝑡, 𝜃𝑗)𝑅𝑖𝑗(𝜏 + 𝜃𝑖 − 𝜃𝑗)d𝜃𝑖d𝜃𝑗

+∞

−∞

+∞

−∞

𝑁

𝑗=1

𝑁

𝑖=1

 (6) 

 
where E[ ] represents the expectation operator. By applying the Wiener-Khinchin theorem, the PSD 

at the angular frequency 𝜔 of 𝑧(𝑥, 𝑡) can be obtained as 
 

 

𝑆𝑧𝑧(𝑥, 𝜔) =
1

2𝜋
∫ 𝑅𝑧𝑧(𝑥, 𝜏)

+∞

−∞

e−i𝜔𝜏d𝜏

    =
1

2𝜋
∑∑∫ ∫ 𝐺𝑖(𝑥, 𝑡, 𝜃𝑖)𝐺𝑗(𝑥, 𝑡, 𝜃𝑗)

+∞

−∞

+∞

−∞

∫ 𝑅𝑖𝑗(𝜏 + 𝜃𝑖 − 𝜃𝑗)
+∞

−∞

e−i𝜔𝜏d𝜏d𝜃𝑖d𝜃𝑗

𝑁

𝑗=1

𝑁

𝑖=1

    = ∑∑𝑆𝑢𝑖𝑢𝑗
(𝜔)∫ 𝐺𝑖(𝑥, 𝑡, 𝜃𝑖)e

i𝜔𝜃𝑖d𝜃𝑖

+∞

−∞

∫ 𝐺𝑗(𝑥, 𝑡, 𝜃𝑗)e
−i𝜔𝜃𝑗d𝜃𝑗

+∞

−∞

𝑁

𝑗=1

𝑁

𝑖=1

 (7) 

 
where 𝑅𝑖𝑗(𝜏) is the cross-correlation function of the displacements of the i-th and j-th supports. The 

frequency response function, 𝐻𝑖(𝑥, 𝜔), corresponding to the 𝑖th support, can be written as 
 

 𝐻𝑖 = ∫ 𝐺𝑖(𝑥, 𝑡, 𝜃𝑖)e
−i𝜔𝜃𝑖d𝜃𝑖

+∞

−∞

= e−i𝜔𝑡 ∫ 𝐺𝑖(𝑥, 𝑡, 𝜃𝑖)e
−i𝜔(𝜃𝑖−𝑡)d𝜃𝑖

+∞

−∞

 (8) 

 
Equations (7) and (8) may be combined to yield the PSD of 𝑧(𝑥, 𝑡) in the form 

 𝑆𝑧𝑧(𝑥, 𝜔) = [𝐻1
∗ 𝐻2

∗ ⋯ 𝐻𝑁
∗ ]

[
 
 
 
𝑆𝑢1𝑢1

𝑆𝑢1𝑢2
⋯ 𝑆𝑢1𝑢𝑁

𝑆𝑢2𝑢1
𝑆𝑢2𝑢2

⋯ 𝑆𝑢2𝑢𝑁

⋮ ⋮ ⋱ ⋮
𝑆𝑢𝑁𝑢1

𝑆𝑢𝑁𝑢2
⋯ 𝑆𝑢𝑁𝑢𝑁]

 
 
 

[

𝐻1

𝐻2

⋮
𝐻𝑁

] (9) 

in which * denotes complex conjugate. According to equation (5), equation (9) may be rewritten as 

 𝑆𝑧𝑧(𝑥, 𝜔) = [𝑯(𝑥, 𝜔)]∗𝑺𝑢𝑢(𝜔)[𝑯(𝑥, 𝜔)]T (10) 

where 𝑯(𝑥,𝜔) = [𝐻1 𝐻2 ⋯ 𝐻𝑁]  is a 1 × 𝑁  frequency response function matrix. After 

integrating 𝑆𝑧𝑧(𝑥, 𝜔) within the frequency domain, the mean square value 𝜎𝑧
2(𝑥) can be obtained as 

 

 𝜎𝑧
2(𝑥) = 2∫ 𝑆𝑧𝑧(𝑥, 𝜔)d𝜔

+∞

0

 (11) 

 
To summarize the present subsection, it has been shown that the stationary random response 

analysis of multi-span beams may reduce to the solution of the deterministic frequency response 

function matrix 𝑯(𝑥, 𝜔). 

3.2.  Frequency response function of multi-span beams 

The middle supports of the multi-span beam can be replaced by the unknown reaction forces 𝑝𝑖(𝑡), as 

shown in figure 2. Then, the original problem is converted to the forced vibration analysis of a single 

span beam subjected to the external forces. The equation of motion may be written as 
 

 𝑚
𝜕2𝑦(𝑥, 𝑡)

𝜕𝑡2
+ 𝑐

𝜕𝑦(𝑥, 𝑡)

𝜕𝑡
+ 𝐸𝐼

𝜕4𝑦(𝑥, 𝑡)

𝜕𝑥4
= ∑ 𝑝𝑖(𝑡)𝛿(𝑥 − 𝑥𝑖)

𝑁−2

𝑖=2

 (12) 
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Figure 2. Schematic of a single span beam subjected to the external forces. 

 

in which 𝛿( ) is the Kronecker delta function. Assuming that the external forces and motions of the 

extreme supports are harmonic, i.e., 𝑝𝑖(𝑡) = 𝑃𝑖e
i𝜔𝑡, 𝑢1(𝑡) = 𝑈1e

i𝜔𝑡, 𝑢𝑁(𝑡) = 𝑈𝑁ei𝜔𝑡, the solution to 

the equation of motion can be expressed in the form  

 𝑦(𝑥, 𝑡) = 𝑌(𝑥)𝑒𝑖𝜔𝑡 (13) 

where 𝑌(𝑥) is the displacements amplitude along the beam. 

Substituting equation (13) into equation (12) and eliminating the terms related to time 𝑡, results in 

an ordinary differential equation as 
 

 𝐸𝐼
𝑑4𝑌(𝑥)

𝑑𝑥4
− (𝑚𝜔2 − 𝑖𝑐𝜔)𝑌(𝑥) = ∑ 𝑃𝑖𝛿(𝑥 − 𝑥𝑖)

𝑁−2

𝑖=2

 (14) 

 
By performing a Laplace transformation, equation (14) may be written as  

 

 

(𝑠4 − 𝑘4)ℒ[𝑌(𝑥)]
= 𝑠3𝑌(0) + 𝑠2𝑌′(0) + 𝑠𝑌′′(0) + 𝑌′′′(0)

+ ∑
𝑃𝑖

𝐸𝐼
[cosh(𝑠𝑥𝑖) − sinh(𝑠𝑥𝑖)]

𝑁−2

𝑖=2

 

(15) 

 
where 𝑘4 = (𝑚𝜔2 − i𝑐𝜔) 𝐸𝐼⁄ ,  ℒ[ ] denotes the Laplace transformation. After inversing equation 

(15), the general solutions to equation (14) can be written as 
 

 

𝑌(𝑥) = 𝐴sinh(𝑘𝑥) + 𝐵sin(𝑘𝑥) + 𝐶cosh(𝑘𝑥) + 𝐷cos(𝑘𝑥)

+ ∑
𝑃𝑖

2𝑘3𝐸𝐼
{sinh[𝑘(𝑥 − 𝑥𝑖)] − sin[𝑘(𝑥 − 𝑥𝑖)]}ℎ(𝑥 − 𝑥𝑖)

𝑁−2

𝑖=2

 
(16) 

 
in which ℎ(𝑥 − 𝑥𝑖)  is the Heaviside function, 𝐴 , 𝐵 , 𝐶 , 𝐷  and 𝑃𝑖  are undetermined coefficients. 

Equation (16) can be written in the vector form 

 𝑌(𝑥) = 𝑸(𝑥)𝑽 (17) 

where 𝑸(𝑥)  is a 1 × (2 + 𝑁)  row vector related to 𝑥 ; 𝑽 = {𝐴 𝐵 𝐶 𝐷 𝑃2 ⋯ 𝑃𝑁−1}
T  is a 

(2 + 𝑁) × 1 column vector of the undetermined coefficients, which can be determined by satisfying 

the boundary conditions at the supports. For the sake of clarity, brief derivations are provided only for 

the case of simply supported at both extreme supports. The corresponding boundary conditions are 

 
𝑑2𝑌(0)

𝑑𝑥2 = 0,   
𝑑2𝑌(𝑥𝑁)

𝑑𝑥2 = 0,   𝑌(𝑥𝑖) = 𝑈𝑖 (18) 

Combining equation (17) with the conditions (18) yields 

 𝑻𝑽 = 𝑾 (19) 

in which 𝑻 is a (2 + 𝑁) × (2 + 𝑁) constant matrix related to 2 bending moment and 𝑁 displacement 

boundary conditions, 𝑾 = {0 0 𝑈1 ⋯ 𝑈𝑁}T is a (2 + 𝑁) × 1 vector. By using equation (19), 

equation (17) can also be written in the form 

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012199 doi:10.1088/1742-6596/744/1/012199

5



 

 

 

 

 

 

 𝑌(𝑥) = 𝑸(𝑥)𝑻−𝟏𝑾 (20) 

Setting the displacement of the 𝑖th support equal to 1, and those of the other supports equal to 0, let 

𝑾𝑖  be the displacement vector of the supports in this case. Substituting it into equation (18), the 

frequency response function corresponding to the i-th support can be written as 

 𝐻𝑖(𝑥, 𝜔) = 𝑸(𝑥)𝑻−1𝑾𝑖 (21) 

The frequency response functions corresponding to the other supports can be obtained by repeating 

the above procedure for the remaining supports. Thereafter, rearranging those functions as the form of 

N-dimensional row vector, the frequency response functions matrix may be expressed as 

 𝑯(𝑥,𝜔) = 𝑸(𝑥)𝑻−1𝜰 (22) 

where 𝜰 = [𝑾1 𝑾2 ⋯ 𝑾𝑁] = [
𝟎2×𝑁

𝑰𝑁×𝑁
] is a (𝑁 + 2) × 𝑁 matrix indicating the displacements of 

the supports, in which 𝟎2×𝑁 is a 2 × 𝑁 zero matrix, 𝑰𝑁×𝑁 is a 𝑁 × 𝑁 identity matrix. 

The relationship between the arbitrary response and displacement PSD of the supports is derived in 

this section, following which the stationary random response analysis of the multi-span beam 

subjected to the spatially varying ground motions reduces to the solution of the deterministic 

frequency response function matrix. Finally, an analytical expression is introduced to obtain the 

frequency response function. It should be cautioned that most of the expressions during the above 

derivation are explicit, which provides great convenience for the subsequent solution of the sensitivity. 

4.  Influences of random parameters on random responses 

The derivation that follows will be specific to the influences of the randomness of structural 

parameters, which are not included in the previous section. The sensitivities of the random responses 

with respect to random structural parameters can be evaluated by using the above explicit expressions. 

Subsequently, the mean values and variances of random responses are obtained from the second order 

Taylor expansion of center 𝝐̅. 

4.1.  Sensitivity of random responses 

The first and second order sensitivities of the displacement PSD 𝑆𝑦𝑦(𝑥, 𝜔) corresponding to the i-th 

structural parameter 𝜖𝑖 are expressed, by the definition given in [17], as the first and second partial 

derivatives of 𝑆𝑌𝑌(𝑥, 𝜔) with respect to 𝜖𝑖, i.e. 

 
𝜕𝑆𝑌𝑌(𝑥,𝜔)

𝜕𝜖𝑖
= (

𝜕𝑯∗

𝜕𝜖𝑖
𝑺𝑢𝑢𝑯T + 𝑯∗𝑺𝑢𝑢

𝜕𝑯T

𝜕𝜖𝑖
) |𝝐=𝝐̅ (23a) 

 
𝜕2𝑆𝑌𝑌(𝑥,𝜔)

𝜕𝜖𝑖
2 = (

𝜕2𝑯∗

𝜕𝜖𝑖
2 𝑺𝑢𝑢𝑯T + 2

𝜕𝑯∗

𝜕𝜖𝑖
𝑺𝑢𝑢

𝜕𝑯T

𝜕𝜖𝑖
+ 𝑯∗𝑺𝑢𝑢

𝜕2𝑯T

𝜕𝜖𝑖
2 ) |𝝐=𝝐̅ (23b) 

where 𝝐̅ is the mean value of 𝝐, 
𝜕𝑯

𝜕𝜖𝑖
 and 

𝜕2𝑯

𝜕𝜖𝑖
2  are the first and second order sensitivities of the frequency 

response function matrix 𝑯 , respectively, and satisfy 
𝜕𝑯∗

𝜕𝜖𝑖
= (

𝜕𝑯

𝜕𝜖𝑖
)
∗

, 
𝜕𝑯T

𝜕𝜖𝑖
= (

𝜕𝑯

𝜕𝜖𝑖
)
T

, 
𝜕2𝑯∗

𝜕𝜖𝑖
2 = (

𝜕2𝑯

𝜖𝑖
2 )

∗

, 

𝜕2𝑯T

𝜕𝜖𝑖
2 = (

𝜕2𝑯

𝜖𝑖
2 )

T

. By differentiating equation (22) with respect to 𝜖𝑖, it can be expressed as 

 
𝜕𝑯

𝜕𝜖𝑖
=

𝜕𝑸

𝜕𝜖𝑖
𝑻−1𝜰 − 𝑸𝑻−1 𝜕𝑻

𝜕𝜖𝑖
𝑻−1𝜰 (24a) 

 
𝜕2𝑯

𝜕𝜖𝑖
2 =

𝜕2𝑸

𝜕𝜖𝑖
2 𝑻−1𝜰 − 2

𝜕𝑸

𝜕𝜖𝑖
𝑻−1 𝜕𝑻

𝜕𝜖𝑖
𝑻−1𝜰 + 𝑸𝑻−1 (2

𝜕𝑻

𝜕𝜖𝑖
𝑻−1 𝜕𝑻

𝜕𝜖𝑖
−

𝜕2𝑻

𝜕𝜖𝑖
2)𝑻−1𝜰 (24b) 

Since the expressions of 𝑸 and 𝑻 are already known, the partial derivative terms in equation (24) can 

be determined easily. 
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It is not hard to prove that the mean square value and PSD of the random response have the same 

integral relationship.  

4.2.  Statistical moments of  random responses 

Taylor expanding the PSD of random response 𝑆𝑧𝑧(𝑥, 𝜔) with respect to the random parameters vector 

𝝐 up to the second order and ignoring the cross terms, it can be written as 
 

 𝑆𝑧𝑧(𝑥, 𝜔) ≅ {𝑆𝑧𝑧 + ∑
𝜕𝑆𝑧𝑧

𝜕𝜖𝑖

𝑟

𝑖=1

(𝜖𝑖 − 𝜖𝑖̅) +
1

2
∑

𝜕2𝑆𝑧𝑧

𝜕𝜖𝑖
2

𝑟

𝑖=1

(𝜖𝑖 − 𝜖𝑖̅)
2}

𝝐=𝝐̅

 (25) 

 
where 𝜖𝑖̅  is the mean value of 𝜖𝑖 . On the basis of equation (25), the mean value and variance of 

𝑆𝑧𝑧(𝑥, 𝜔) may be expressed as 
 

 E[𝑆𝑧𝑧(𝑥, 𝜔)] ≅ {𝑆𝑧𝑧 +
1

2
∑

𝜕2𝑆𝑧𝑧

𝜕𝜖𝑖
2

𝑟

𝑖=1

Cov[𝜖𝑖, 𝜖𝑖]}

𝝐=𝝐̅

 (26a) 

 

 

Var[𝑆𝑧𝑧(𝑥, 𝜔)] ≅ {∑(
𝜕𝑆𝑧𝑧

𝜕𝜖𝑖
)
2𝑟

𝑖=1

Cov[𝜖𝑖, 𝜖𝑖]

+
1

4
∑∑

𝜕2𝑆𝑧𝑧

𝜕𝜖𝑖
2

𝜕2𝑆𝑧𝑧

𝜕𝜖𝑗
2 Cov[𝜖𝑖, 𝜖𝑖]Cov[𝜖𝑗, 𝜖𝑗]

𝑟

𝑗=1

𝑟

𝑖=1

}

𝝐=𝝐̅

 

(26b) 

 
in which Var[ ] and Cov[ ] are the variance and covariance operators, respectively. 

The mean value and variance of the mean square value 𝜎𝑧
2(𝑥) can be similarly derived, the details 

will not be repeated here for simplicity. 

5.  Numerical examples 

A simply supported four-span beam is adopted as an example. The lengths of the spans are 40, 50, 50 

and 40m, respectively, and the moment of inertia of the cross-section is 𝐼 = 8.33 × 10−2m4. Young’s 

modulus, the mass of unit length and damping per unit length are taken to be independent random 

variables, whose mean values are 𝐸0 = 2 × 1011MPa , 𝑚0 = 7800kg m2⁄ , 𝑐0 = 1000N ∙ s m2⁄ , 

respectively. The dimensionless fluctuations are denoted as 𝜖𝐸, 𝜖𝑚, 𝜖𝑐. 

The acceleration PSD used in this study was developed by Kanai and Tajimi, and further extended 

by Clough and Penzien [18]. The expression is 

 𝑆𝑢̈𝑢̈(𝜔) = 𝑆0
1+4𝜉𝑔1

2 (𝜔 𝜔𝑔1⁄ )
2

(1−(𝜔 𝜔𝑔1⁄ )
2
)
2
+4𝜉𝑔1

2 (𝜔 𝜔𝑔1⁄ )
2
×

(𝜔 𝜔𝑔2⁄ )
4

(1−(𝜔 𝜔𝑔2⁄ )
2
)
2
+4𝜉𝑔1

2 (𝜔 𝜔𝑔2⁄ )
2
 (27) 

in which, 𝑆0 = 0.25m2s−3rad−1 is the amplitude of the white-noise bedrock acceleration, 𝜔𝑔1 is the 

resonant angular frequency of the first filter, which can be applied to characterize the site-response 

effect. In this study, the values of 𝜔𝑔1 for the supports are 15, 10, 5, 10 and 15 rad s⁄ , respectively. 

𝜔𝑔2 is the resonant frequency of the second filter, and satisfies  𝜔𝑔2 = 0.1𝜔𝑔1. 𝜉𝑔1 = 𝜉𝑔2 = 0.6 are 

the corresponding damping ratios. Since the ground motion is a stationary random process, PSDs of 

the displacement and acceleration yield 

 𝑆𝑢𝑢(𝜔) =
1

𝜔4 𝑆𝑢̈𝑢̈(𝜔) (28) 

Thus the diagonal terms of PSD matrix 𝑺𝑢𝑢 in equation (3) can be obtained from equation (27) and 

(28), while the cross terms will be determined by using the relationship between the cross-PSD and 

auto-PSD. 
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The apparent velocity of seismic wave is 𝑣𝑠 = 1000m s⁄ . The model developed by Loh and Yeh 

[19] is adopted to account for the incoherence effect, i.e. 

 𝛾𝑖𝑗
(𝑖)(𝜔) = exp [−𝛼

𝜔𝑑𝑖𝑗

2𝜋𝑣𝑠
] (29) 

where 𝑑𝑖𝑗  is the x distance between the 𝑖th  and 𝑗th  supports, the constant 𝛼  used is 0.125. The 

effective frequency region is taken as 𝜔 ∈ [0, 15]Hz and the frequency step-size as ∆𝜔 = 0.01Hz.  

5.1.  Validation of the present method 

A Monte Carlo simulation is performed to assess the accuracy of the propose method. It is assumed 

that the standard deviations of the dimensionless fluctuations 𝜎𝜖𝐸
, 𝜎𝜖𝑚

 and 𝜎𝜖𝑐
 are equal to 0.05. The 

number of samples for each random parameter is 50, which is considered sufficient for an accurate 

estimation of the mean value and the standard deviation; as a result, the total number of samples is 

503 = 125000. The mean values and standard deviations of the PSDs and mean square values are 

computed. As the PSDs of responses change with both the angular frequency and location, only the 

displacement PSD at the midpoint of the second span and the bending moment PSD at the third 

support location are shown in figures for convenience. Comparisons of the mean values and standard 

deviations of PSDs are presented in figure 3 and 4, where 𝑆𝑌𝑌 and 𝑆𝑀𝑀 are the PSDs of displacement 

and bending moment, respectively. Figure 5 and 6 show the comparisons of the mean values and 

standard deviations of 𝜎𝑌
2 and 𝜎𝑀

2 , which are mean square values of the displacement and bending 

moment, respectively. It can be seen that the results of the present method and Monte Carlo simulation 

match very well, and the overall error is less than 10%. The results presented in figure 3 to 6 verify the 

accuracy of the present method numerically. Meanwhile, the computation time for the present method 

is much less than that for the Monte Carlo simulation. 

 

 

 

 

(a) Mean value  (b) Standard deviation 

Figure 3. The mean value and standard deviation of 𝑆𝑌𝑌 
 

5.2.  Influences of random parameters 

Four representative cases with different random parameters are presented to investigate the influences 

of the randomness in parameters on the random responses. For Case 1 to 3, Young’s modulus, the 

mass and damping of per unit length are selected to be random variables successively, while Case 4 is 

a reference case without any random variables. The details of the cases are shown in table 1. The mean 

value and standard deviation of the mean square of the displacement for the cases are plotted in figure 

7, and the procedure is repeated for the bending moment in figure 8. As shown in figure 7, the results 

for Case 1 and 2 agree quite well, while the results for Case 3 and 4 match almost exactly. The same 

trend is observed in the results shown in figure 8. Since all structural parameters are deterministic, the 

standard deviations of random responses are equal to zero for Case 4. These results indicate that the 
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influences of randomness in Young’s modulus are just as important as that of the mass per unit length. 

On the contrary, the influence of the randomness in the damping is negligible, which can be assumed 

to be a deterministic variable. 

 

 

 

 

(a) Mean value  (b) Standard deviation 

Figure 4. The mean value and standard deviation of 𝑆𝑀𝑀 

 

 

 

 

(a) Mean value  (b) Standard deviation 

Figure 5. The mean value and standard deviation of 𝜎𝑌
2 

 

 

 

 

(a) Mean value  (b) Standard deviation 

Figure 6. The mean value and standard deviation of 𝜎𝑀
2  

 

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012199 doi:10.1088/1742-6596/744/1/012199

9



Table 1. Details of random parameters. 

𝜎𝜖𝐸
𝜎𝜖𝑚

𝜎𝜖𝑐

Case 1 0.05 0 0 

Case 2 0 0.05 0 

Case 3 0 0 0.05 

Case 4 0 0 0 

(a) Mean value (b) Standard deviation 

Figure 7. The mean value and standard deviation of 𝜎𝑌
2

(a) Mean value (b) Standard deviation 

Figure 8. The mean value and standard deviation of 𝜎𝑀
2  

5.3.  Sensitivity of random responses 

The first and second sensitivities of the random responses to the random parameters 𝜖𝐸, 𝜖𝑚 and 𝜖𝑐 are

studied here. Figure 9 and 10 show the sensitivity results of 𝜎𝑦
2 and 𝜎𝑀

2 , respectively. As shown in the

figures, the first order sensitivities with respect to 𝜖𝐸 and 𝜖𝑚 are symmetrical about the horizontal axis,

and the corresponding second order sensitivities match almost exactly. At most part of the beam, the 

first order sensitivities corresponding to Young’s modulus are positive, while the ones corresponding 

to the mass are negative. Meanwhile, the second order sensitivities corresponding to both Young’s 

modulus and the mass are negative. Moreover, both the first and second sensitivities with respect to 𝜖𝑐

are close to zero. This is because the ground motion is a kind of low frequency excitation, and the 

influence of the damping on the response is relatively small. Due to the reason that the motions of the 
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supports are equal to the ground motion, which is independent of the structural parameters, an 

interesting observation in figure 9 is that both the first and second sensitivities of 𝜎𝑌
2 are close to zero

at the supports, i.e. 𝑥 =0, 40, 90, 140 and 180m. 

(a) First order sensitivities (b) Second order sensitivities 

Figure 9. The sensitivities of 𝜎𝑌
2 to the random parameters

6. Conclusions

The seismic analysis of multi-span continuous beams with random structural parameters subjected to 

spatially varying ground motions is investigated in this paper. The explicit form of the random 

response is obtained by using an analytical method. Based on the Taylor expansion and sensitivity 

theory, analytical expressions of mean and standard deviations of the random response are presented. 

Excellent agreement between the results of the proposed method and the ones obtained from Monte 

Carlo simulations is observed. Furthermore, the influences of the randomness in Young’s modulus, 

mass per unit length and damping on the random response are evaluated. The results indicate that the 

influence of randomness in Young’s modulus and the mass are remarkable and approximately equal, 

while the one of the damping is negligible. 

(a) First order sensitivities (b) Second order sensitivities 

𝑀
2Figure 10. The sensitivities of 𝜎 to the random parameters 
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