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Abstract. The maximum speed of China’s high-speed trains currently is 300km/h and expected 

to increase to 350-400km/h. As a wheel travels along the rail at such a high speed, it is subject 

to a force rotating at the same speed along its periphery. This fast moving force contains not 

only the axle load component, but also many components of high frequencies generated from 

wheel-rail interactions. Rotation of the wheel also introduces centrifugal and gyroscopic 

effects. How the wheel responds is fundamental to many issues, including wheel-rail contact, 

traction, wear and noise. In this paper, by making use of its axial symmetry, a special finite 

element scheme is developed for responses of a train wheel subject to a vertical and harmonic 

wheel-rail force. This FE scheme only requires a 2D mesh over a cross-section containing the 

wheel axis but includes all the effects induced by wheel rotation. Nodal displacements, as a 

periodic function of the cross-section angle θ, can be decomposed, using Fourier series, into a 

number of components at different circumferential orders. The derived FE equation is solved 

for each circumferential order. The sum of responses at all circumferential orders gives the 

actual response of the wheel.  

1. Introduction 

Nowadays more and more countries are building, extending, or planning to develop, high-speed 

railway networks. In China, more than 19000km high-speed railways are already in operation at a 

maximum speed of 300km/h. By high-speed train it takes about 5 hours from Shanghai to Beijing, but 

travellers are still feeling too long. Train speeds are expected to increase even higher, e.g. to 350-

400km/h, to suit for big countries such as China and Russia, and to gain competition advantages over 

airways. 

As a wheel travels along the rail at such a high speed, it is subject to a force moving at the same 

speed along its periphery. This fast moving force contains not only a static component, i.e. the axle 

load, but also many components of high frequencies generated from wheel-rail interactions. The 

rotation of the wheel also introduces centrifugal and gyroscopic effects. It can be expected that the 

dynamics of a rotating wheel is much more complicated than that of a non-rotating wheel.      

Issues concerning the railway industry, such as generation and radiation of rail-wheel rolling noise, 

initiation and growth of rail-wheel roughness, rail corrugation and wheel out-of-round, are 

fundamentally the result of wheel-rail interactions of high frequency. When dealing with wheel-rail 

high-frequency interactions in the frequency domain, the receptance of the wheel at the wheel-rail 

contact point is normally required. Most of researchers compute the receptance from a stationary 
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wheel without any rotation, even treat the wheel as a rigid body, and only few researchers have taken 

into account the rotation of the wheel but with some sorts of simplification.  

In References [1, 2], Thompson et al replace the rotation of the wheel with a rotating load. This 

simplification enables the use of the modal superposition method to construct the response of the 

wheel to a moving load. The normal modes are computed using the finite element (FE) method for the 

wheel being at stationary and the wheel centre being fixed, with all the structural effect of rotation, 

such as centrifugal stiffening or softening and Coriolis forces, being excluded.  

Reference [3] presents a technique for analysing the structural vibrations of a solid of revolution 

rotating about its main axis. The method is based on two treatments: 1) the displacement of the solid is 

split into two parts, one associated with the rigid motion of the solid (that is the rotation about the 

main axis) and the other associated with the deformation of the solid; 2) any deformed shape of the 

solid can be calculated as a linear combination of its non-rotating modes. It can be seen in the paper 

that, the axis of rotation is fixed. This technique is applied in Reference [4] to model a rotating flexible 

wheelset which is coupled with a flexible track model and a non-Hertzian/non-steady contact model to 

investigate rail corrugation initiation, although in dealing with wheel-rail interaction, allowing the axis 

of rotation to vibrate vertically is essential. 

This paper offers an alternative approach to modelling the dynamic response of a spinning solid of 

revolution, in particular a railway wheel. At the moment the axis of rotation is allowed to vibrate 

vertically only. By making use of its axial symmetry, a special finite element scheme, combined with 

application of the momentum law to the wheel, is developed for responses of a train wheel subject to a 

vertical and harmonic wheel-rail force. This FE scheme only requires a 2D mesh over a cross-section 

containing the wheel axis but includes all the effects induced by wheel rotation. Unknowns include 

vertical displacement of the wheel axis, and nodal displacements, as a function of the cross-section 

angle θ, of the cross-section observed from the rotating wheel. Since the nodal displacements are a 

periodic function of θ, they can be decomposed, using Fourier series, into a number of components at 

different circumferential orders. The derived FE equation is solved for each circumferential order. The 

sum of responses at all circumferential orders gives the actual response of the wheel observed from the 

rotating wheel.  

The development of the FEM equation is presented in Section 2. Section 3 is devoted to a more 

specific situation, the response of a rotating wheel to a vertical harmonic wheel-rail force which is 

stationary if observed from the train but rotating if from the wheel. Some example results and 

discussions are presented in Section 4. Conclusions are summarised in Section 5.  

2. Differential equations of motion 

2.1. Coordinate systems 

 
 

Figure 1. Coordinate systems. 
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As shown in Figure 1, coordinate system oxyz is rigidly attached on the wheel with the y-axis 

coincides with the wheel axis. It rotates uniformly about the y-axis at the wheel rotation speed 
y

  in 

the direction shown. Observed from an inertial frame of reference, OXYZ, which moves uniformly 

with the train in the track direction, the y-axis is allowed to vibrate in the vertical direction only, and 

the vibrational displacement is denoted by
0
( )w t , directed downwards. 

A point defined by coordinates (x, y, z) with respect to oxyz, may be expressed alternatively using 

cylindrical coordinates (r, y, θ), where
2/122 )( zxr  , and cosx r  , sinz r  . Angle θ defines a 

cross-section of the wheel which contains that point and the y-axis, see Figure 1. This cross-section is 

termed the θ-plane.   

2.2. Definition of nodal displacements of an element 

Two-dimensional finite elements are created on the θ-plane (Figure 2). The same discretisation is also 

made on the θ+dθ -plane. An element on the θ-plane and its counterpart on the θ+dθ -plane define an 

element volume. Nodal displacements, observed from oxyz, of an element on the θ-plane are denoted 

by a 3n vector. 

 
T

222111 ),,,,,,,,,(),( nnn wuwuwut  q , (1) 

 

Figure 2. An finite element on the θ-plane. 

 

where, n is the number of nodes, and wu ,, are displacement components in the r- (radial), y- (axial) 

and θ- (circumferential) directions. The corresponding externally applied nodal force vector is denoted 

by ),(0 tf , which is of order 13 n . The units of a nodal force are N/rad. The area of the element is 

denoted by A. 

A shape function matrix of order 3 3n is defined and denoted by ),( yrΦ , so that the 

displacements of the element at any point within the element may be approximated as 

),(),(),,,( tyrtyr  qΦv  , and the velocity vector at (r, y, θ) is given by 

 ),(),()),,,(),,,,(),,,,((),,,( T tyrtyrwtyrtyrutyr  qΦv   . (2) 

2.3. Kinetic and potential energy of the element volume 

The kinetic energy of the element volume, observed from the oxyz system, is given by  
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ΦΦM  , (4) 

is termed the mass matrix of the element. 

The potential energy of the element volume is given by [5, Page 39-40] 

 dd
2
1 T


A

ArU Dεε , (5) 

where,  
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is the strain vector, given by 
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and D is the stress-strain matrix, given by  
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where, E is Young’s modulus of the material and ν is Poisson ratio. The strain vector may be written 

as 
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Thus, Equation (5) becomes 
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2.4. Differential equation of motion 

According to the Lagrange’s equation of the second kind 

f
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the differential equation of motion of the element volume is given by:  
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where, ),(0 tf  is nodal force vector associated with externally applied loads, ),(1 tf  is nodal force 

vector associated with stresses on the θ and θ+dθ cross-sections of the element volume (see Appendix 

A), and ),(2 tf  is nodal force vector associated with the motion of the oxyz system (see Appendix B). 

Following Appendices A and B, Equation (17) becomes 
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where, 1K  is an anti-symmetric matrix, 2K  is an symmetric and positive-definite matrix, and h , 1h , 

and 2h are vectors. It is seen that the gyroscopic (the ),(2 ty qG  term) and centrifugal 

( ),(2 tcy qM and h
2

y , but the latter causes no vibration) effects caused by the rotation speed 

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012145 doi:10.1088/1742-6596/744/1/012145

5



 

 

 

 

 

 

appear in the equation. The gyroscopic effect, together with the rotating load, will split a natural 

frequency of the wheel in stationary into two, one being higher and the other being lower (see Section 

4). Since matrix Mc is non-negative, the centrifugal effect will soften the wheel a little bit. 

2.5. The assembled finite element model 

Equation (18) is for an element (internal forces between elements are not included, since they 

disappear in the global FE equation). Similar equation can be established for each and every element 

on the θ-plane. The conventional finite element ‘summation’ of the element matrices in Equation (18) 

can be used to obtain the corresponding matrices of the assembled finite element model and thus the 

global differential equation of motion. This is still represented by Equation (18). In other words,   

),( tq is a vector containing all the degrees of freedom on the θ-plane. 

2.6. A differential equation governing the vertical motion of the wheel  

It can be seen from Equation (18) that the FE equation contains the vertical acceleration, )(0 tw , of the 

mass centre of the wheel, and this is also to be determined. Therefore an extra equation is required. 

This extra equation may be established by applying the momentum law to the wheel in the vertical 

direction. This gives 
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where, mW denotes the total mass of the wheel, and S is a 3×N matrix (where, N is the total dofs on the 

θ-plane), assembled using the FE procedure (in the row direction only) from the following 3×3n 

element matrix 

  A
e Ayrr d),(ΦS  . (20) 

Now ),( tq and )(0 tw can be readily determined via Equations (18) and (19).  

3. Response of a rotating wheel to a vertical harmonic wheel-rail force 

3.1. The associated externally applied nodal force vector 

See Figure 1. At position A, the wheel is subject to a vertical (upwards) dynamic load,
tP i

0e , where, 

1i  , and Ω denotes the angular frequency of the dynamic load. The initial cylindrical coordinates 

of Point A observed from oxyz is ) /2 π, ,( 00 yr . At instant t, the wheel has rotated an angle ty , and 

the coordinates of Point A become )π/2 ,( 00 t, yr y . The nodal force vector corresponding to this 

dynamic load is given by 

 
t

ytt  i

00 e)2/π(),(  pf , (21) 

where, 0p is a constant vector, and δ(θ) is the delta function of θ.  

3.2. Solution for ),( tq  

Now Equation (18) becomes 

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012145 doi:10.1088/1742-6596/744/1/012145

6



 

 

 

 

 

 

 

)cos()()sin()(e)2/π(

),(),(
),()(),(2),(

0201

2i

0

2

2

21

2

0






















 ttwttwt

tt
ttt

yyy

t

y

cyy





hhhp

q
K

q
KqMKqGqM

, (22) 

and Equation (19) becomes 
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Since ),( tq  is periodic function of θ with period 2π, it may be written out 
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and Equation (22) is decomposed into 
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where,  ,1, ,0 ,1,, m  and )(m is a function defined as 
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The integrals in Eq. (25) vanish for 1m . It can be shown that 
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Thus, Eq. (25) reduces to 
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The steady state solution of Eq. (33) is given by 
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Now insertion of Equation (24) into Equation (23), and according to Equations (27)-(30), gives 
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From Equations (31), (32) and (35), )(0 tw , )(~
1 tq and )(~

1 tq may be worked out by  letting 
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Equations (34 and (36) show that,  
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and Equation (24) becomes 
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3.3. Displacement defined for an observation point fixed in the moving inertial reference frame OXYZ 

A cross-section containing the wheel axis and stationary with the moving inertial reference frame 

OXYZ may be defined by an angle, , measured from the horizontal plane. The displacement, 

observed from OXYZ, of the cross-section consists of two parts. The first part is the vertical 

displacement of the wheel axis, which is harmonic at the wheel-rail force frequency, as indicated in 

Equation (36). For the second part at that cross-section, the radial, axial and circumferential 

displacement components are given by setting ty  in Equation (38) 
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Equation (39) shows that the displacement of the cross-section, observed from the moving inertial 

reference frame OXYZ, is harmonic at the same frequency as the wheel-rail force, and the amplitude, 

as a periodic function of the circumferential angle , is decomposed into an infinite number of spatial 

harmonics. This may be utilised to simplify the calculation of sound radiation from the wheel.  

3.4. Vertical displacement of the wheel at the wheel-rail contact point 

The vertical displacement of the wheel at the wheel-rail contact point, if observed from the moving 

reference frame OXYZ, is given by (directed downwards) setting ty π/2 in Eq. (38) and 

combining Eq. (36) 
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where, m̂  denotes the component in mq̂ corresponding to the radial displacement of the wheel-rail 

contact point. It can be seen that the vertical displacement at the wheel-rail contact point is harmonic 

at the same frequency as the wheel-rail force. Therefore the Fourier series approach to dealing wheel-

rail interactions [6] will still be applicable even the rotation of the wheels are taken into account.   

4. Results  

In this section, vertical responses of a high-speed train wheel subject to a unit vertical harmonic 

wheel-rail force are calculated for the wheel-rail contact point as well as for the wheel axis, using 

equations derived in previous sections. The 2D mesh of the wheel is shown in Figure 3. Material 

parameters are density 7850kg/m3, Young’s modulus 210GPa, Poisson ratio 0.30, and loss factor 

0.005. The rolling radius of the wheel is 0.46m. 

 
Figure 3. Finite element mesh of a high-speed wheel. 

The vertical receptance of the wheel at the wheel-rail contact point is shown in Figure 4 with solid 

lines for the wheel not in rotation and dashed lines for the wheel travelling at 300km/h (83m/s) or 

rotating at 29 Hz. The frequency resolution is 10Hz.  
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Figure 4. Vertical receptance of the wheel at the wheel-rail contact point. ───, wheel not in rotation;     

─ ─ ─, wheel travelling at 300km/h or rotating at 29 Hz. 

 

 
Figure 5. Vertical responses of the wheel rotating at 300km/h. ───, at the wheel-rail contact point;   

─ ─ ─, at the wheel axis. 

 

It can be seen that resonances occur for frequency higher than 1500 Hz. The rotation speed splits a 

peak at a natural frequency into two peaks. This is the combined result of the gyroscopic effect of the 

wheel rotation and the rotating of the wheel-rail force along the periphery of the wheel. Separation of 

the peaks due to the rotating force is given by 2mΩy, depending not only on the wheel spinning speed 

Ωy, but also on the circumferential order, m, to which the original frequency is corresponding.  
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Two other observations can be made according to Figure 4; the first is that the amplitudes of the 

peaks are much reduced by the wheel speed, and the second is that, for frequencies well below the first 

resonance frequency, there is no difference between a stationary wheel and a travelling wheel.   

Comparison between the vertical response of the wheel at the wheel-rail contact point (solid line) 

and that at the wheel axis is shown in Figure 5. The wheel is rotating at 300km/h. It is seen that, the 

response at the wheel axis is almost identical to the response of the wheel as a rigid body apart from 

few small peaks. It can also be seen that, below about 250Hz, the difference in response between the 

wheel-rail contact point and the wheel axis is very small, indicating that the wheel behaves like a rigid 

body.  

The gyroscopic effect of wheel rotation is demonstrated in Figure 6. For easy comparison, the 

original receptance is also shown in this figure in solid lines. It can be seen that, by setting G = 0 in 

Equation (18), the splitting of a peak is slightly wider. The splitting of a peak is just caused by the load 

which rotates around the wheel when G = 0. The heights of the peaks do not change significantly by 

setting G = 0. In other words, the gyroscopic effect of wheel rotation is insignificant. 

 
Figure 6. Vertical receptance at the wheel-rail contact point of the wheel travelling at 300km/h or 

rotating at 29 Hz. ───, including all the rotation effects; ─ ─ ─, excluding the gyroscopic effect by 

setting G = 0 in Equation (18). 

 

The centrifugal effect of wheel rotation is investigated by setting Mc = 0 in Equation (18). Results 

show that the centrifugal effect is very insignificant. 

5. Conclusions 

In this paper, by making use of axial symmetry, a special finite element scheme, combined with 

application of the momentum law to the wheel, is developed for responses of a train wheel subject to a 

vertical and harmonic wheel-rail force. This FE scheme only requires a 2D mesh over a cross-section 

containing the wheel axis but includes all the effects induced by wheel rotation. Unknowns include 

vertical displacement of the wheel axis, and nodal displacements, as a function of the cross-section 

angle θ, of the cross-section observed from the rotating wheel. Since the nodal displacements are a 

periodic function of θ, they can be decomposed, using Fourier series, into a number of components at 

different circumferential orders. The derived FE equation is solved for each circumferential order. The 

sum of responses at all circumferential orders gives the actual response of the wheel observed from the 

rotating wheel.  
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In case of a vertical harmonic wheel-rail force, it is shown that:  

(1) The vertical vibration of the wheel axis is harmonic at the same frequency as the wheel-rail 

force;  

(2) The displacement of the wheel, if observed from the moving inertial reference frame OXYZ, e.g. 

the vertical displacement of the wheel at the wheel-rail contact point, is also harmonic at the same 

frequency as the wheel-rail force; 

(3) Below about 250Hz, the vertical receptance of the wheel at the wheel-rail contact point is very 

close to that of the wheel as a rigid body. Resonances occur for frequency higher than 1500 Hz.  

(4) The rotation speed splits a natural frequency into two. The amplitudes of the peaks of the 

vertical receptance of the wheel at the wheel-rail contact point are much reduced by the wheel speed if 

compared with those without wheel rotation; 

(5) The effects of wheel rotation listed in (4) are caused mainly by the rotating of the wheel-rail 

force along the periphery of the wheel, and the gyroscopic and centrifugal effects are insignificant. 

Acknowledgement 

This work is funded by China Railway under Project 2015Z003-B, and National Natural Science 

Foundation of China under Project U1434201. 

Appendix A. Virtual work done by stresses on the θ and θ+dθ cross-sections of the element 

volume  

By referring to Figure A.1, it is seen that the virtual work done by stresses on the θ and θ+dθ cross-

sections of the element volume due to a virtual displacement (vector), ),( tq , is given by 

 
Figure A1. Stresses on the θ-plane. 
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According to Hooke’s law and Equation (7), 
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and if define 
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then Equation (A.1) becomes 
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i.e. 

 







 d
),(

)),((d
),(

)),((
2

2

4

T

3

T










t
t

t
tW

q
Rq

q
Rq , (A.8) 

where,  

 A
Ayryr d),()),(( 3

T

3 ΦBΦR ,  (A.9) 

  A
Ayryr

r
d),()),((

1
4

T

4 ΦBΦR . (A.10) 

Therefore the associated generalised force vector is given by (dθ is dropped) 
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Appendix B. Virtual work done by convection inertial forces of the element volume 

 
Figure B1. Various displacements. 

 

The r- (radial), y- (axial) and θ-(circumferential) components of the convection acceleration associated 

with the vertical motion of the y-axis are given by (see Figure B1) 
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The convection acceleration associated with the rotation of the wheel (centrifugal acceleration) is 

given by 
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and those associated with Coriolis acceleration is given by 
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Virtual work done by inertial forces associated with these accelerations is given by  
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Therefore, the associated generalised force vector is given by 

)cos()()sin()(),(2),(),( 0201
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where, 
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