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Abstract. An annular harmonic finite element for the computation of the local modes of a 
pretwisted ship propeller is developed. The elements take into account both the gyroscopic 
effect and centrifugal stiffening of the propeller blades. The displacement field is expressed by 
a truncated Fourier series along the angle and by polynomial shape functions in the radial 
direction. As an example, the dynamic behaviour, i.e. the nature frequency and local modes, of 
a ship propeller is studied, and compared with ANSYS, both of which have good consistency. 

1. Introduction 
Ship propeller shaft can be modelled as composed by a shaft and array of blades. In elementary 
rotordynamics, the propeller is assumed to be rigid body, contributing to the inertia of the rotor but not 
to its compliance, or simplified modelling the propeller as a modal mass and stiffness system attached 
to the shaft [1]. While sometimes, the dynamics behaviour of the blades influences the whole system 
[2], possibly giving way to dangerous phenomenon [3], or exciting the high frequency vibration of the 
shafts and acoustic emission of the ship [4].  

The dynamics of an array of blades can be studied without any problem by using any commercial 
FEM code, which is quite time consuming. If no account is taken for its rotation, the sacrifice of 
computational time is acceptable, but things become more complex when gyroscopic and centrifugal 
stiffening effects due to rotation must be considered [5]. Even in some cases, the centrifugal softening 
effect can be found in classical finite element rotordynamics, which exists in high speed rotating, 
causes some of the natural frequencies to vanish, which leading to a sort of elastic instability [6]. 

Some improvements are made to overcome these defects. Ruzicka [7] demonstrated that short-
comings exist when performing modal reduction for rotor blades using classical, displacement-based 
finite elements and mixed finite element was instead in such procedure. Carrera [8, 9] defined a 
unified formulation to perform free-vibrational analyses of the rotating structures, which offers a 
procedure to obtain refined structural theories that account for variable kinematic description. A rotor 
with deformable disk and array of blades is considered and the results show the convenience of using 
refined models. Sun [10] developed a novel dynamic model for a pretwisted rotating com-pressor 
blade mounted at an arbitrary stagger angle using general shell theory. The model is validated by 
comparing to the literature and ANSYS results, showing good agreement. Genta [11, 12] used a 
complex coordinates approach to derive the equation of motion of disc and array of blades elements 
that takes into account the blades’ stagger angle, but considered only the zero and first harmonic 
modes that are coupled with those of the rotor as a whole.  

The higher order harmonic modes of the propeller blades are important for they can be excited at a 
resonance, which cause the high acoustic emission of the ship, even compromise the safety of the rotor 
system. The aim of this paper is to develop a generalized higher order harmonic finite element 
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formulation taking into accounts both the gyroscopic effect and centrifugal stiffening to study the 
flexural behaviour in the propeller blades. The propeller blades are assumed to be annular elements 
with displacements developed in Fourier series along the angle. The element matrices are programmed 
in a developed FEM code DYNROT [13,14]. As an example, the dynamic behaviour, i.e. the nature 
frequency and local modes at standstill and different rotating speed, of a ship propeller is studied, and 
compared with ANSYS. 

2. General coordinates and element kinematics 
The main assumptions to analyse the propeller blades are that all blades are equal, aligned along the 
radial direction and their shear centre coincides with the centre of mass of each section. The blades are 
modelled as Euler-Bernoulli beams, i.e. that shear deformations and rotational inertia of the cross-
sections can be neglected. 

A typical cross-section of a blade perpendicular to the radial direction is shown in Figure 1. G is 
the centre of mass of the section, u1, u2, u3 are principal inertial axes while axes u, v and w lie along the 
radial, tangential and axial directions. The twist angle ψ can be varied along the blade radius r. The 
array is modelled as a 2D object, all its properties concentrated in the mid-plane of the blade. 
 

Figure 1. Cross section of blade. 
 
Considering the reference frames showing in reference [12]. Let uj, vj, and wj be respectively the 

radial, tangential and axial displacement components of a point Pj of a section of the jth blade taken at 
a radius r. Define an inertial frame whose origin is O, Pj is the coordinates in an inertial reference of 
point P expressed as 

 
4

T T

1

( ) ( ) ({ 0 0} { } )j k j j j
k

r u v w


  P - O C - O R ,    (1) 

where C and O are the coordinates of the shaft-blade attachment point and the inertial frame origin O, 

respectively. jP - O  is the displacement between the generic point P and the inertial frame origin O 

and C - O  is the displacement between the shaft center C and the inertial frame origin O, Rk are the 
rotation matrices as function of angle of the rigid body motion as reported in reference [12].  

The zero and first order harmonics describes the torsional and axial vibration of the blades and  the 
displacement field coupled to the flexural behavior of the shaft, in this paper the main purpose is to 
study the local modes of the blades. Thus rigid body motions are neglected and the deformation in the 
initial frame of point can be represented as the equation below. 
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3. Element shape functions 
To define the shape functions approximating the deformations of the array of blades, the latter has 
been subdivided into annular elements. A non-dimensional radius χ, defined in the same way as seen 
for the disc element. A, I2 and I3 are the area of the cross section of each blade and its area moments of 
inertia about the principal inertia axis (2, 3 in Figure 1.) of the cross section. They are, together with 
angle ψ, linear functions of the nondimensional radius χ. The displacements uj, vj, wj are then 
approximated by means of a truncated Fourier’s series in the angular coordinate θj. 

0
1

0
1

0
1

( , , , ) ( cos sin ),

( , , , ) ( cos sin ),
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,         (3) 

The coefficient of the various harmonics displacement uic,s and vic,s refer to the in-plane 
displacement while wic,s are related to the out-of-plane displacement. 

The dynamic behavior of the zero and first order harmonics of array of blades element have already 
been studied in reference [9], and in this paper only the second and higher order harmonics are dealt 
with. Due to the orthogonality of trigonometric functions, all harmonics contributions are decoupled 
with each other, and the use of truncated Fourier’s series expansion will not lead to any major 
approximations. Here the terms for each higher order harmonics are listed. 

2

[ , , ] ( , , ) ([ , , ] cos [ , , ] sin ), 2
n

j j ic j is j
i

u v w t u v w i u v w i i   
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   ,         (4) 

where the coefficient of the various harmonics displacement uic,s and vic,s refer to the in-plane 
displacement while wic,s are related to the out-of-plane displacement, which can be approximated by 
shape functions nu, nv and nw, leading to  

( , ) ( ) ( ), , ) ( ) ( ), ( , ) ( ) ( ),

( , ) ( ) ( ), ( , ) ( ) ( ), ( , ) ( ) ( ).
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The in-plane circumferential and out-of-plane deflections of the blade element are coupled, and 
using shape functions of different order would lead to unacceptable approximations. Moreover, a 
shape function expressed by a cubic polynomial is what is commonly done in beam elements. 

The generalized coordinates used to express the deflections of the array of blades coupled to the 
flexural behavior are: 
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q q
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,        (6) 

Since only second and higher order harmonics are dealt with, the terms for zero and first order 
harmonics are already eliminated in the above Equation (4). 

4. Equations of motion of the element 

4.1. Kinetic energy 
Let Pj,i denoting the displacement of the center of mass of the jth blade at the radius r, relative to the 
inertial reference. The kinetic energy is 

                                                     

0

T
, ,

1

1
( ) d ,

2
i

rN

i j i j i
i r

T A r r


  P P       (7)

 where ρ is the density of the blades and A(r) is the cross section of the blades at radius r. 
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In differentiating with respect to time, angle θj must be considered as a function of time. Owing to 
the orthogonality of the harmonic functions, a decoupling between the modes of the various orders 
occurs. The kinetic energy can be split between in-plane and out-of-plane contributions  

                                                     

, ,i inp i outp iT T T        (8)

 
The in-plane and out-of-plane contributions can be considered separately, therefore the in-plane 
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Thus matrices minp,i  and moutp,i are given by integrals  
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4.2. Potential energy 
According to reference [11], contributions to the potential energy due both to the elastic strain-stress 
natural of the material (Ue,i) and to the geometric effect (Ug,i) have been considered as 

, ,i e i g iU U U  .     (11)

 
Shear deformation in the blade is neglected, since each single blade is modeled as an Euler-

Bernoulli’s beam. The elastic energy is thus related to the radial extension and flexural deflections 
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 The prime indicates the partial derivative relative to the radial coordinates r and E is the Young’s 
modulus. The displacements s along the inertial axes is linked to the axial, tangential and radial 
directions by angle ψ, which is a function of the radial coordinate only 
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Therefore, the contributions to the elastic potential energy are expressed in terms of element 

generalized coordinates as 
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The stiffness matrices are obtained from the shape functions by the following integrals 
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where Iv and Iw are the area moments of inertia of the cross section in circumferential and axial 
direction v and w in Figure. 1. 

The geometric potential energy is caused by the centrifugal forces Fr,i. Assuming that the blades are 
free to expand radially at its tip, the thermal effect do not induce any radial load along the axis of 
blades and force Fr can be expressed as 
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 And the geometric contribution to the potential energy can be split into two independent 
contributions and can be express as 
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 Integrating the equations, the geometric potential energy is 
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The stiffness matrices are given by the integrals of the shape functions 

 

0

0

T
, 2

T
, 2

' ' d ,

' ' d .

i

i

r

ginp i r v v

r

r

goutp i r w w

r

N
P r

r

N
P r

r

 

 











k n n

k n n

    (19)

 

4.3. Element matrices 
Higher order harmonics are uncoupled from the flexural behavior of rotor. If no external force acts on 
the element, the equations of motion for the higher order harmonics of the array of blades can be 
expressed as 
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 The in-plane and out-of-plane coordinates can be assembled in vectors as 
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The element mass, gyroscopic, centrifugal and thermal stiffening and stiffness matrices are 

obtained by using Lagrange’s equations 
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The stresses in the radial and tangential directions can be computed from centrifugal and thermal 
loading. The stiffness matrices can be written as 
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As already mentioned in disc element matrices, rigid body displacements X0+iY0 and Φy0-iΦx0 are 
the rigid body motions of the array of blades. For second and higher order harmonics array of blades 
element, they should not be considered.  

5. Example 

5.1. Analyzed model 
A ship propeller with six blades is studied here, the material and key stats of the propeller shaft are 
listed in Table 1 and Table 2. The propeller is modeled with commercial CAD/CAE software 
Solidworks as shown in Figure 2.  
 

Table 1. Propeller shaft material property. 

 Material Young’s Modulus (Gpa)  Density (kg/m3) 
Propeller Ni-Al-Bronze Cu3 1.86 7590 

Shaft Steel 2.05 7850 
 

Table 2. Key stats of the propeller. 

No. Blades 6 Inner Radius 0.245m Outer Radius 2.35m 
Expanded Area Ratio 0.72 Pretwist Angle 30° Mean Spacing 1.86m 

Each Blade Mass 110kg Blade Moment 40.6kg.m3   
 

 

Figure 2. Ship propeller CAD/CAE model. a) Isometric view; b) Side view; 
c) blade model; d) cross sections and splines of a single blade. 

 
Since the number of blades are even and the geometry of the blades are the same, the array is 

axisymmetric and ten higher order harmonic blade elements are used to model the propeller array of 
blades. For each blade element, the geometric centre, the moment of inertia and the twist angle ψ of all 
the cross sections of the blades are needed as shown in Figure 2d). Some of the cross sections along 
the non-dimensional radius χ are extracted and plotted, while the propeller array of blade high order 
harmonic finite element model (DYNROT model) are shown in Figure 3. 
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Figure 3. Some of the cross sections along the radius (non-dimensional radii χ=0.15, 0.25, 0.5, 0.9) 
and propeller DYNROT model. 

5.2. Local modes of the propeller at standstill 
In this example, ANSYS is used to compute and compare the dynamics of the propeller. A series 
model with different mesh density is first structured to find the appropriate element number for the 
analyzing of propeller nature frequency and local modes of blades. The smart size mesh control tool 
integrated in ANSYS is used, the element number are varied from 8105 to 530715 (Smart size form 
Coarse 10 to Fine 1), the first four order nature frequencies related to the local modes of the propeller 
blades at standstill are compared in Figure 4. It is clear that with the increasing of element number, the 
nature frequencies approaching to a constant value. Since if the smart size is smaller than 6, the 
frequencies tend to be stable, while the element number increases dramatically, the smart size 5 is 
chosen for the following studying, i.e. 47473 ten node tet-element Solid 187 is used for the ANSYS 
propeller model. 
 

Figure 4. Compare of the nature frequencies and the number of elements with different mesh density.
 

As mentioned, ten higher order harmonic array of blades elements are used for the dynamic 
studying of the propeller blades. The computation is performed both by using all generalized 
coordinates and using Guyan reduction. Only the first four natural frequencies for the 2nd order 
harmonics at standstill are computed and compared with ANSYS as reported in Table 3. The first two 
local mode shapes for the 2nd order harmonics element and ANSYS model are compared in Figure 5. 
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Table 3. Propeller array of blades: comparison between the first four order natural frequencies for the 
2nd order harmonics (local modes), ω=0. 

2nd order harmonics array of blades 
Freq. (Hz) No red. Guyan red. ANSYS Min Error (%) Max Error (%) 
#1 mode 71.19 70.06 76.271 6.66 8.14 
#2 mode 182.47 180.26 199.19 8.39 9.50 
#3 mode 271.42 269.25 302.80 10.36 11.07 
#4 mode 357.26 355.14 406.97 12.21 12.74 

Figure 5. First two order local modes of 2nd order harmonics of ANSYS and DYNROT models, ω
=0; (a), (b): first-, second -order modes of ANSYS model; (c), (d) first-, second -order modes of 
DYNROT model; solid black line with *: un-deformed blades; solid red line with *: deformed blades. 

From all the data above it follows that whatever the reduction method is used or not, the 
frequencies for the 2nd order harmonics fits well with the maximum error no more than 13%. It is also 
noticed that the modes for higher order harmonics of DYNROT model are in good agreement with that 
of ANSYS.  

5.3. Local modes of the rotating propeller 
When considering rotation, DYNROT model still agrees with ANSYS model if the gyroscopic effect 
is neglected. This means that in both models only centrifugal stiffening is taken into consideration. If 
all the contributions in DYNROT model are accounted for, ANSYS code underestimates the whirl 
frequency of forward modes, and this error increases with increasing speed. The comparison of the 1# 
nature frequency of the 2nd order harmonics at different rotating speed are plotted in Figure. 6. But as 
for ship propellers, generally the roating speed is lower than 10Hz, which means the centrifugal 
stiffening and gyroscopic effect does not highly affect the rotating nature frequency of the propeller. 
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Figure 6. First forward and backward frequencies as functions of the speed for the propeller array of 
baldes in DYNROT and ANSYS model. 

6. Conclusion 
A finite elements aimed at modeling the propeller blades for the study of the flexural behavior have 
been developed. The displacement field within the array of blades are approximated by 
trigonometrical expansion along the tangential direction and a polynomial expansion along the radius. 
Only the second and higher order harmonics have been taken into account as they are uncoupled from 
the dynamic behavior of the rotor.  

The formulation for the element have been obtained using complex coordinates following a 
Lagrangian approach which accounts for gyroscopic effects and stress stiffening. The elements have 
been implemented in the existing FEM code DYNROT.  

An example has been carried out to verify the accuracy of the element. The mesh density is first 
studied with ANSYS, the natural frequencies related to the local modes of the propeller blades at 
standstill and different rotating speed are compared with ANSYS and 2nd order harmonic model. The 
results show the element performs with a good accuracy, even when using a small number of degrees 
of freedom.  
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