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Abstract. Practical realization of a nonlinearly shunted piezoelectric vibration absorber is
numerically explored in this research. It is widely known that the linear resonant piezoelectric
shunting strategy, acting as a tuned mass damper, is limited by the massive inductance required
in low-frequency cases and sensitivity to drifts in structural frequencies. In order to overcome
this limitation, a nonlinear piezoelectric shunting strategy is proposed based on the nonlinear
energy sink theory. The essential idea is to passively absorb vibrational energy from the host
structure through the intentional use of nonlinearity in piezoelectric shunting. The nonlinearly
shunted piezoelectrics are supposed to work over a broad frequency band with a smaller
inductance requirement compared with the linear resonant shunting. The nonlinearly shunted
piezoelectric vibration absorber is built and applied in a cantilevered beam. Major challenges
coming from the nonlinear tuning design for an effective vibration absorber exempted from high
isolated response curves will be covered in this research. This numerical study is supposed to
pave the way for experimental investigations that are currently in process.

1. Introduction
The piezoelectric shunt damping technique has received sustaining attentions for the purpose of
vibration suppression in recent decades. It exploits the capability of piezoelectric materials
attached onto vibrational structures to transform mechanical (strain) energy into electrical
energy, which is then dissipated in the electrical circuit. In a piezoelectric shunted structure,
this conversion capability highly depends on: 1) the ability to absorber the strain energy of
the structure into the piezoelectric material; 2) the capability of the piezoelectric materials to
transform this strain energy into electrical energy. The former depends on the distribution
of modal strain energy in the structure, which requires that piezoelectric materials should be
located in the proper zone; The latter is determined by the electric shunting design, which
generally aims to maximize the energy dissipation.

The classic resonant shunt circuit has been completely investigated by Hagood and Von
Flotow since 1990 [1]. It exhibits the advantage of simplicity, compactness and high efficiency
when properly tuned with respect to a certain modal frequency of the structure in the way
analogous to the linear tuned mass damper. while at the same time, the use of resonant shunt
circuits is limited by the massive inductance required in low-frequency cases and sensitivity to
drifts in both structural frequencies and optimal electric parameters.
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A nonlinear piezoelectric shunting strategy has been proposed in order to improve the
damping performance in early research efforts [2]. The essential idea is formed in the framework
of Nonlinear Energy Sink (NES) theory [3], which is characterized by essential (strong)
nonlinearity. In NES devices, essential nonlinearity can be achieved by a number of structure
configurations, such as sophisticated wire-based rigs [4], visco-elastic membrane [5], vibro-
impact attachments [6], specially shaped tracks [7] and elastomeric bumpers [8]. The NES
can carry out targeted energy transfer, i.e. an irreversible channelling of vibrational energy
from the host structure to the absorber. This sort of absorber has been developed for various
applications including shock/seismic mitigation [9], aeroelastic instability suppression [10] and
acoustic mitigation [5], etc.

An attempt is undertaken to construct a prototype of a piezoelectric-based NES through
shunting the piezoelectric materials by a so-called essentially nonlinear shunt circuit [11].
Nonlinearity can be readily achieved by proper circuit design in piezoelectric shunting. It
is reported that the intentional introduction of nonlinearity into a resonant shunt circuit
might significantly alters the global dynamics of the resultant piezo-mechanical system. In
particular, when the structure undergoes harmonic forcing, the nonlinear shunt circuit can
resonantly interact with the primary system in a broadband manner. Despite this appealing
benefit, complex dynamical phenomena might arise as by-product due to the presence of
essential nonlinearity. For instance, quasi-periodic regimes of motion and detached resonance
curves are usually encountered in the nonlinear forced response. These potential adverse
effects are always of major concern for real NES designs [12, 13, 14]. Unfortunately, the
energy-dependent nonlinear dynamics of the piezo-mechanical system under harmonic excitation
remains elusive, which may undermine the practical applicability of the nonlinearly shunted
piezoelectric vibration absorber.

The principal purpose of this research is to conduct an in-depth study of the aforementioned
piezoelectric-based NES as an effective vibration absorber. The nonlinearly shunted piezoelectric
vibration absorber is built and applied in a cantilevered beam. The rich dynamics of the linear
mechanical structure coupled with a nonlinear shunted piezoelectric attachment is numerically
investigated. To this end, an efficient modeling of the piezo-mechanical system based on a
finite element description and a modal reduction are presented in Sec. 2; the global dynamics of
the resulting integrated system is fully examined in Sec. 3 and special attention is paid to the
nonlinear forced response when the cantilevered beam is excited by a mono-harmonic forcing;
conclusions are drawn in the end.

2. Modeling of mechanical structures with piezoelectrics
In this section, the shunted piezoelectric’s interaction with the mechanical structure is modeled.
The classic resonant shunt circuit will be briefly revisited. The derivation of resonant shunt
circuit will also benefit the non-dimensionalization of the following nonlinear shunt circuit. The
adopted modeling methodology in this research is a general finite element description with a
modal reduction put forward by M Neubauer and J Wallaschek [15].

2.1. Finite element description
Each node of a piezoelectric element has an extra electric degree of freedom (electrical potential).
For a general structure with piezoelectric materials, the discretized coupled piezoelectric and
structural field equations are given in term of nodal displacement u and nodal electrical potential
v in commercial finite element programs as:[

Mmm 0
0 0

] [
ü
v̈

]
+

[
Kmm Kme

KT
me Kee

] [
u
v

]
=

[
fext
q

]
(1)
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where Mmm and Kmm are the global mass matrix and stiffness matrix of the integrated
piezo-mechanical system, respectively; piezoelectric coupling matrix Kme couples the structural
degrees of freedom (dofs) and electric dofs; Kee relates the electric charge q and electrical
potential v at each node; the external force is given by fext.

Condensation of electric dofs is then performed due to the presence of electrodes. Internal
electric dofs inside piezoelectric materials can be statically condensed since internal electric
charges are null. All the nodes on each electrode surface can be coupled together to define a
unique master electrical dof as a result of the equipotential physical constraint. Two electric dofs
are accordingly left for each piezoceramic covered by a pair of electrodes with charges denoted
by +qp and −qp, respectively. One electrode is grounded (zero electrical potential) so that the
attached electric dof can be neglected. Electrical potential of the remaining electrode is vp.

Subsequently, the mechanical subsystem can be transformed into modal coordinates z with
mass-normalized eigenvectors Φ. They are derived by solving the eigenvalue problem in the case
of short-circuit electrodes (vp = 0) so that:

ΦTMmmΦ = I, ΦTKmmΦ = Λ = diag(ω2
sc,i), i = 1, 2, · · · (2)

Φ may consist of a reduced set of eigenvectors, which implies a modal truncation. Λ is a
diagonal matrix so that the structural dofs are decoupled. After a static condensation of electric
dofs and modal truncation, Eq. (1) reads[

I 0
0 0

] [
z̈
v̈p

]
+

[
Λ κ
κT −Cp

] [
z
vp

]
=

[
fmod

−qp

]
, κ = ΦTKme, fmod = ΦTfext (3)

where Cp is also a diagonal matrix of the capacitance of the individual piezoceramics; the modal
coupling matrix κ relates the generalized mechanical modal dofs with the electric dof, namely,
the electrical voltage across distributed electrodes vp.

When the electrodes are isolated, the electric charge load vector qp becomes null. With
vp = C−1

p κTz extracted from the second relation, Eq. (3) reduces to

z̈+Λiso = 0 with Λiso = Λ+ κC−1
p κT (4)

Diagonal elements of Λiso typically give good approximations of the natural frequencies in
the case of isolated electrodes, i.e., ω2

iso ≈ ω2
sc + diag(κC−1

p κT). Their deviations from short
circuit frequencies indicate the piezoelectric coupling strength. A generalized Electro-Mechanical
Coupling Coefficient (EMCC) [16] is therefore defined for the i-th structural mode:

K2
i =

ω2
iso,i − ω2

sc,i

ω2
iso,i

≈ κ2i
ω2
sc,iCp + κ2i

(5)

In essence, the EMCC is a measure of the effectiveness of piezoceramics to convert mechanical
strain energy into electrical energy and vice versa. It can be calculated by means of finite element
analysis or measured experimentally. Modal reduction is a very useful technique to tackle large
size finite element models. Next, the configuration of a nonlinear piezoelectric shunt circuit will
be described.

2.2. Nonlinear shunt circuit
Before proceeding into the construction of a nonlinear shunt circuit, the classic resonant shunt
circuit will be preliminarily revisited. When an inductance L and resistance R are connected in
series with the electrodes of piezoceramics (see Fig. 1(a)), the governing equation of the resonant
shunt circuit is expressed as:

Lq̈p +Rq̇p + vp = 0 (6)
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For simplicity and conciseness, only a single piezoceramic is considered and the system
dynamics in the vicinity of a specified i-th structural mode is examined. Substituting Eq. (6)
into Eq. (3) yields:[

1 0
0 L

] [
z̈
q̈p

]
+

[
γω2

sc 0
0 R

] [
ż
q̇p

]
+

[
ω2
sc +

κ2

Cp

κ
Cp

κ
Cp

1
Cp

] [
z
qp

]
=

[
fmod

0

]
(7)

where γω2
sc accounts for structural damping.

This resonant circuit allows attenuation of resonance vibration through proper tuning of
the electric parameters in the way analogous to a mechanical tuned mass damper. The tuned
resonant shunt circuit with optimal parameters Lres and Rres will be hereafter chosen as a
reference system for the construction of a nonlinear shunt circuit.

Lres =
1

ω2
isoCp

, Rres =

√
2K

ω2
isoCp

(8)

2.2.1. Configuration of the nonlinear shunt circuit
The nonlinear shunt circuit is characterized by intensional nonlinearity, which can be realized

by introducing a ferroelectric capacitance made of (Hf, Zr)-doped barium titanate ceramics, as
denoted by Cnl in Fig. 1(b). A physical description of the nonlinear voltage-charge characteristic
of the ferroelectric capacitance can be obtained as [17]:

vc(q) =
1

C0
q + αq3 (9)

where C0 is the linearized capacitance near q = 0.

R L

(a) resonant circuit

R L Cnl Cneg

(b) nonlinear circuit

Figure 1. Piezoelectric shunt circuits

R2
R1

_
+

Op-am

C2

Figure 2. Negative capacitance Cneg = −R1
R2

C2

The requirement of essential nonlinearity also implies that the stiffness terms should be non-
linearizable. Hence, a negative capacitance Cneg (see Fig. 2) is introduced into the nonlinear
circuit in Fig. 1(b); if not, the presence of the inherent capacitance of the piezoceramic
Cp will undermine the realization of essential nonlinearity. The negative capacitance needs
an operational amplifier to form a negative-impedance converter circuit with little power
consumption (see Fig. 2).

A combination of the inherent piezoelectric capacitance Cp, the linearized term C0 of the
ferroelectric capacitance and the negative capacitance Cneg in series results in the residual
capacitance Cres, with 1/Cres = δres/Cp. One can also express the inductance L and resistance R
in the nonlinear shunt circuit in terms of optimal parameters (Lres;Rres) for the resonant circuit
as εLres and βRres, respectively. The governing equation reads in this case:[
1 0
0 εLres

] [
z̈
q̈p

]
+

[
γω2

sc 0
0 βRres

] [
ż
q̇p

]
+

[
ω2
sc +

κ2

Cp

κ
Cp

κ
Cp

δres
Cp

] [
z
qp

]
+

[
0

αq3p

]
=

[
fmod

0

]
(10)
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It is noted that the item δres
Cp

qp is still retained in the second relation of Eq. (10). This linear

term, usually unavoidable, always appears in reality. Nevertheless, it is negligible as long as it
is many orders of magnitude smaller than the cubic term and it would not affect performance
of a NES device [4]. The equations of the piezoelectric structure will be subsequently developed
in a dimensionless form suitable for nonlinear analysis.

2.2.2. Dimensionless form of equations of motion
Determination of the order of magnitude of the nonlinear capacitance is of practical

significance for the nonlinear shunt circuit design. This issue can be simplified by defining
a critical nonlinear coefficient αcr so that

qp,max

Cp
= αcrq

3
p,max, where qp,max is the maximum

electric charges exhibited in Eq. (7) for the resonant circuit with optimal parameters (Lres;Rres).
Consequently the actual nonlinear coefficient α can be measured by αcr as α = θαcr.

The parameter qmax also helps to rescale physical quantities. By using the relations in Eq. (5)
and Eq. (8), Eq. (10) can be rewritten in the dimensionless form as:[

1 0
0 ε

] [
x′′

q′′

]
+

[
λ 0

0 β
√
2K

] [
x′

q′

]
+

[
1 K
K δres

] [
x
q

]
+

[
0

θ κ2

K2 q
3

]
=

[
f
0

]
(11)

where the dimensionless quantities are defined as:

z = qmaxx, qp =
qmax√
Lres

q, fmod = qmaxω
2
isof, λ =

γω2
sc

ωiso
(12)

Differentiations in Eq. (11) are with respect to the eigentime τ = ωisot. In this dimensionless
form, system matrices largely depend on the generalized electro-mechanical coupling coefficient
K for the specified structural mode. Apparently, The parameter set (ε = 1, β = 1, δres =
1, θ = 0) corresponds to the tuned resonant circuit. It is reported that a grounded NES
configuration featured by: a) strong mass asymmetry between the primary subsystem and
nonlinear subsystem; b) essential stiffness nonlinearity [3]. The nonlinear shunt circuit is
constructed to reproduce the dynamics of a unground mechanical NES by setting essential
nonlinearity (i.e. δres ≪ 1 ) and small inductance (i.e. ε < 1). The dimensionless form of
equations of motion is suitable for nonlinear analysis. In an effort to understand the dynamics
of this coupled electromechanical system, electrical parameters of the nonlinear shunt circuit
will be further discussed in the following numerical studies.

3. Dynamics of the nonlinearly shunted piezo-mechanical system

Figure 3. Representation of a cantilevered
beam with bonded piezoceramics

X

Y

Z

Clamp

Piezoceramic

beam

(Mass element)

Figure 4. FE model of the piezo-mechanical
system

The nonlinearly shunted piezoelectric vibration absorber is built and applied in a cantilevered
aluminium beam, as sketched in Fig. 3. Two identical C-82 PZT patches (manufactured by
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FUJI Ceramics Co.) are perfectly glued on the top and bottom surface near the clamp in
order to enhance the energy conversion. Geometry and material properties of the beam and
piezoceramics are provided in Table 1. Both patches are polarized along the same thickness
direction. Deformation of piezoelectric patches along with bending movement of the beam will
thus create opposite electric field directions due to their relative location. The finite element
model discretized by SOLID 185 (for the beam) and SOLID 5 (for piezoceramics) in Ansys is
presented in Fig. 4. All electric dofs on each electrode are condensed into a unique master dof.
The electric dofs on the electrode surfaces bonded to the beam are grounded.

Table 1. Geometry and material properties of the beam and piezoceramics.

Description Value Description Value

Beam Piezoceramics
Mass density 2800 Kg/m3 Mass density 7500 Kg/m3

Young’s modulus 72 Gpa Young’s modulus E11 62 Gpa
Length lb 150 mm Young’s modulus E33 51 Gpa
width 60 mm Length lp 30 mm
Thickness 5 mm width 60 mm
Damping coefficient γ 0.004 Thickness 0.3 mm
Position l0 20 mm Piezoelectric constant d31 -266 pm/V
Position l1 15 mm Permittivity εS11 13.94 nF/m

Permittivity εS33 12.97 nF/m

Focus is then concentrated on the 1st bending mode of the clamped beam with a short circuit
natural frequency ωsc = 212.72Hz. After a modal reduction, electromechanical parameters of
the resonant circuit tuned for 1st bending mode are summarized in Table 2. It is stated that
the resonant shunt circuit with optimal parameters (Lres;Rres) is taken as a reference system.
The nonlinear shunt circuit can be therefore constructed in the manner presented in Sec. 2.2.
Rich dynamics of the linear mechanical structure coupled with a nonlinear shunted piezoelectric
attachment will be numerically investigated. First, special attention is paid to the harmonic
balance method since it is employed as a main numerical tool in this research.

Table 2. Electromechanical parameters of the resonant circuit tuned for 1st bending mode.

Description Value Description Value

Tot. capacitance 155.76 nF Natural Freq. ωiso 213.59 Hz
EMCC. K(%) 9.02 Resistance Rres 610.5 Ω
Coupling term κ 0.0478 Inductance Lres 3.5645 H
Natural Freq. ωsc 212.72 Hz

3.1. Numerical tool: harmonic balance method
The harmonic balance method (HBM) is a computationally efficient alternative to time marching
method for nonlinear structural analyses when the response is periodic in time [18, 19]. Rewrite
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Eq. 11 in the compact matrix form and denote y = [x, q]T:

My′′ +Dy′ +Ky + fnl(y) = f (13)

where f represents the external periodic excitation with a single fundamental frequency ω. The
harmonic balance method proceeds by first substituting a temporal Fourier series expansion of
the solution variables into the governing equations. In other words, the periodic solution y is
sought of the form:

y(t) = Y0 +
Nh∑
k=1

Yck cos(kωt) +Ysk sin(kωt) (14)

where Nh is the number of retained harmonics. Inserting the periodic solution into Eq. 13 yields
a set of 2 × (2Nh + 1) nonlinear algebraic equations G(Y, ω) = 0 for 2 × (2Nh + 1) unknowns
Y = [Y0,Yc1,Ys1, · · · ,Yck,Ysk, · · ·]T . The problem of searching for a periodic solution to the
nonlinear dynamic system Eq. (13) therefore boils down to finding zeros of an algebraic function.

Provided that a starting point (Y0, ω0) is found by directly solving G(Y0, ω0) = 0 at
a frequency point where the nonlinear effect is not dominant, this system is going to be
subsequently solved by an arc length continuation. Continuation allows numerically finding
a series of points (Yj , ωj) along a solution branch, which meet the convergence criterion
G(Yj , ωj) = 0. A predictor-corrector and adaptive step control scheme [20] has been adopted
to enhance and speed up the path-following process in order to search periodic solutions over a
range of values for ω. Stability of periodic solutions is determined by the Floquet theory in this
research. Further details about the continuation and Floquet theory can be found in Ref. [21].

3.2. Nonlinear normal modes
As it is known, dynamics of the free vibration of the coupled nonlinear system is governed
by the topological structure and bifurcations of nonlinear normal modes (NNM) [3]. NNMs
are universally defined as not necessarily synchronous periodic motions of the undamped
and unforced nonlinear system. A number of different numerical methods are developed for
calculations of NNMs [22]. Stemming from linear normal modes at low magnitude, NNMs of
the non-dissipative autonomous system (D = 0, f = 0) are computed by means of the harmonic
balance method combined with the arc-length continuation presented in this research. Nonlinear
shunt circuit parameters are given as (ε = 0.1, β = 1, δres = 0.01, θ = 0.1). Only cosine terms
are retained with Nh = 5 in the approximation of y in Eq. 14. This is deduced from a phase
condition in which the initial velocity y′(0) are set to zero.
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Figure 5. Frequency-Energy Plot of NNMs
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Figure 6. Estimation of Force Amplitude
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The outcome of NNM calculations is a Frequency-Energy Plot (FEP) that reveals the
evolution of the fundamental frequency of NNM versus the total conserved energy during the
periodic motion (see Fig. 5). It can be observed that the FEP is featured by two backbone
branches (S11+ for in-phase NNM and S11− for out-of-phase NNM) and tongues (S13− and
S15−) emanating from the backbone. In particular, motion along the S11− branch represents
the basic targeted energy transfer mechanism [3]. It relies on the mode localization in NNMs,
since NNMs may have their modal shapes varying with the oscillation frequency. As shown in
Fig. 7a-c, if the frequency is not close to 1, the motion is always localized to the piezoelectric
NES. In weakly damped dynamics, as the damped motion follows branch S11− with decreasing
energy, an irreversible energy transfer could accordingly take place from the mechanical structure
to the piezoceramics. The tongues S13− and S15− are subharmonic branches that consist of
multifrequency periodic solutions. For example, Fig. 7d also depicts period motions on the
S13− tongue. The tongues highlight that the NES has no preferential resonant frequency due
to the essential nonlinearity. They are capable of engaging in 1 : 3 or 1 : 5 internal resonance
with the mechanical structure. Theoretically it is demonstrated that there generally exist a
countable infinite of such internal resonance for nonlinear systems [3, 22]. Fig. 5 only gives the
approximation of 1 : 3 or 1 : 5 internal resonances due to the intrinsic low-pass filtering effect
of HBM by setting the retained harmonics Nh = 5. Nevertheless, it is sufficient to describe the
global trend of backbones.
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Figure 7. Periodic motions in: (a) S11-, ω = 0.8 ; (b) S11-, ω = 0.96 ; (c) S11+, ω = 1.2; (d)
S13-, ω = 0.35. ( x(t); q(t)).

3.3. Correlation between NNMs and nonlinear forced responses
A grasp of NNMs gives insights into the dynamic characteristics of the underlying conservative
nonlinear system. In the linear modal analysis framework, structural forced responses can be
approximated based on linear normal modes by means of mode superposition. However, NNMs
can not be directly used to predict forced responses of the damped nonlinear system in the
same way. Correlation between NNMs and nonlinear forced response is explored by following an
energy balancing concept initially put forward by Hill et al [23] and recently further developed by
Kuether et al [24]. A fundamental property of NNMs lays the cornerstone of energy balancing:
they can be excited when a harmonic forcing cancels the damping force in the nonlinear system.
From an energy viewpoint, energy dissipation due to damping force over a periodic motion
should equal the energy input from a single-point harmonic forcing f(t) = [famp sinωt, 0]

T:

∫ 2π/ω

0
y′(t)Tf(t)dt =

∫ 2π/ω

0
y′(t)TDy′(t)dt (15)

With a knowledge of the damping matrix, energy balancing allows to estimate the harmonic
forcing amplitude famp that could excite a NNM y(t) of the nonlinear system at resonance, as
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shown in Fig. 6. One can observe the existence of a force amplitude threshold of fcr = 0.28, below
which it implies a single resonance in the vicinity of ω = 1, i.e. the 1st bending mode frequency
of the cantilevered beam. On the contrary, above this critical value, multiple resonances might
arise and the dynamics of the nonlinear system undergoes essential changes.

Prediction of this critical force amplitude is of practical significance for NES designs. Among
the main drawbacks of nonlinear energy sinks in a variety of research efforts are the multiplicity
of forced response regimes and energy-dependent performance. For example, the widely reported
high isolated response curves (IRCs) are intrinsic limitations for NES acting as nonlinear
vibration absorbers [12, 14]. Nevertheless, detecting an IRC outside the continued path is
beyond the capability of numerical continuation. Occurrence of undetectable IRCs with high
amplitudes is not acceptable for an effective NES design. The energy balancing technique offers
a useful tool for avoiding an underestimation of IRCs of high response level. By foreseeing a
single resonance for a harmonic forcing below the threshold value, one can ensure the reliability
and uniqueness of the main response branch obtained by continuation. It helps to design the
nonlinear dynamics such that high isolated response curves can be eliminated in some way.

3.4. Forced vibration of the coupled piezomechanical system
The frequency response function of the vertical displacement at the free end of the beam under
a single-point harmonic excitation fext applied in the middle area (see Fig. 3) is calculated by
HBM with Nh = 3 harmonics retained. For a purely numerical investigation, an external forcing
with constant amplitude will be used. The resultant dimensionless modal force amplitude famp is
0.181. As declared before, the nonlinear shunt circuit possesses four key parameters (ε, β, δres, θ).
An exhaustive exploration of forced responses in the high dimensional parameter space is a
challenge. Next, a strong dependency of forced response regimes on the individual parameters
will be shown, respectively.
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Figure 8. Frequency response function for
(ε = 0.1, β = 1, δres = 0.01, θ = 0.1)
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Figure 9. Frequency response function for
(ε = 0.1, β = 0.5, δres = 0.01, θ = 0.1)

To start our investigation, Fig. 8 gives a typical frequency response function in physical
coordinates with a parameter set (ε = 0.1, β = 1, δres = 0.01, θ = 0.1) for the nonlinear
shunt circuit. Note that the nonlinear shunt parameters are identical with those used for NNM
calculations in Fig. 5 and Fig. 6. The dimensionless modal force amplitude famp is far below
the threshold value fcr. Hence, it can be inferred that no isolated response curves exist and
therefore the solution branch traced by HBM in conjunction with continuation gives reliable
predictions of forced responses. They have also been confirmed in time-history simulations. The
performance of the well-tuned resonant shunt circuit and nonlinear shunt circuit are compared in
Fig. 8. ”Short circuit” denotes the response curve of the beam with electrodes of piezoceramics
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in short circuit. It appears that the nonlinear shunt circuit performs nearly as well as the tuned
resonant circuit in terms of vibration reduction. However, with a small inductance requirement
of ε = 0.1, the nonlinear circuit outperforms the linear resonant circuit.

The impacts of variations of the damping parameter β and nonlinear coefficient θ on forced
responses are now examined. The linear term δres remains invariable since essential nonlinearity
characterizes the nonlinear shunt circuit constructed in the framework of NES theory. A
decreasing damping parameter β = 0.5 significantly improves the damping performance of the
nonlinear shunt circuit, as shown in Fig. 9. While an increasing nonlinear coefficient θ = 0.2
induces drastic changes in forced responses in Fig. 10. Apparently, the nonlinearly shunted
piezoceramics fail to perform as an effective vibration absorber in this case.

We continue our investigation with an increasing inductance value, i.e. (ε = 0.3, β = 1, δres =
0.01, θ = 0.1). By monitoring Floquet multipliers, two Neimark-Sacker (NS) bifurcation points
are observed in the nonlinear frequency response curves (see Fig. 11). At these bifurcation
points, the branch of periodic solutions loses its stability and evolves into a branch of quasi-
periodic solutions, although the system is single-frequency excited. This phenomenon is in
agreement with the literatures, where quasi-periodic response regimes are extensively reported
and experimentally evidenced [14, 25, 26]. Quasi-periodic responses are predicted by a so-called
variable coefficient harmonic balance method developed in our previous research effort [27].
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Figure 10. Frequency response function for
(ε = 0.1, β = 1, δres = 0.01, θ = 0.2)
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Figure 11. Frequency response function for
(ε = 0.3, β = 1, δres = 0.01, θ = 0.1)

It should be pointed out that the topological structures of NNMs for systems presented in
Fig. 10 and Fig. 11 are supposed to be different from the backbone curves in Fig. 5, as well
as the resultant force amplitude threshold. Accordingly, the possibility of detached response
curves could not be excluded. In brief summary, the configuration of nonlinear shunt circuit
in Fig. 8 gives acceptable and efficient performance in terms of vibration mitigation. Since the
nonlinearly shunted piezoceramics are explored as vibration absorbers, their effective bandwidth
will be examined subsequently.

3.5. Robustness of nonlinear shunt circuit
Aiming at examining the effective bandwidth of the nonlinear shunt circuit, this section is
to unveil the forced responses of the global piezo-mechanical system in case of variations in
structural properties. To this end, the cantilevered beam is assumed to undergo a slight change
by the addition of a modified mass weighted 0.035 Kg (see Fig. 4). The modified piezo-mechanical
system experiences approximately 5% frequency drift for the 1st bending mode, as summarized
in Table 3. Performances of both the resonant circuit and nonlinear circuit with fixed electrical
parameters, are then revaluated and compared, as shown by dashed lines in Fig. 12.
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Table 3. Parameters of the modified system for 1st bending mode.

Description Value Description Value

EMCC. K(%) 9.02 Natural Freq. ωsc 202.22 Hz
Coupling term κ 0.0459 Natural Freq. ωiso 203.07 Hz

Fig. 12 clearly illustrates an appealing feature of the nonlinear shunt circuit, i.e. nonexistence
of a preferential resonance frequency. Correct tuning according to the structural frequency is
vital for a resonant circuit. The detuned resonant circuit loses its desired damping effectiveness
around the altered structural frequency of the modified system. On the contrary, the nonlinear
response curve globally shifts to the left-hand side. Furthermore, the damping performance
of the nonlinear shunt circuit seems to improve slightly in terms of vibrational amplitude
reduction. According to the NES theory, this phenomenon is attributed to the capability of NES
to resonantly interact with modes of the primary system at arbitrary frequency ranges. A robust
damping performance is therefore expected to withstand the evolving structural properties. It
results in a broad frequency bandwidth of the nonlinearly shunted piezoceramics performing as
a vibration absorber.
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Figure 12. Performances of resonant/nonlinear circuit integrated into different beams. solid
lines: original systems; dashed lines: modified systems

4. Conclusion
This research aims to numerically confirm the feasibility of exploring nonlinearly shunted
piezoceramic materials as effective vibration absorbers in the framework of NES theory.

A nonlinearly shunted piezoelectric vibration absorber is built and applied in a cantilevered
beam. Intensional introduction of essential nonlinearity into the conventional resonant circuits
characterizes this piezoelectric vibration absorber. However, it also gives rise to complex
dynamics for the integrated piezo-mechanical system under harmonic excitation. The energy
balancing technique is employed to gap the bridge between undamped nonlinear normal modes
and forced responses of the nonlinear system. Prediction of a harmonic forcing amplitude
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threshold raises the possibility of designing an effective NES device exempted from high
amplitude detached response curves.

A rough parameter study suggests an efficient configuration of the nonlinear shunt circuit.
It enables the nonlinearly shunted piezoceramics to work effectively and robustly in a broad
frequency band in terms of vibration mitigation. Above all, this paper provides a preliminary
numerical studies in depth for a nonlinearly shunted piezoelectric vibration absorber. It is
supposed to pave the way for experimental investigations that are currently in process.
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