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Abstract. In the supercritical speed range, nonlinear forced vibration of an axially moving 
viscoelastic beam in the presence of 3:1 internal resonance is investigated. The straight beam 
becomes buckled due to the supercritical moving speed. The governing equation is cast for 
motion around buckled configuration by using a coordinate transform. Moreover, the first two 
modes of the buckled beam are set to 3:1 by adjusting the axial moving speed. Then the 
corresponding equation is approximately analyzed by utilizing the multi-scale method. For the 
beam subjected to the primary resonances and super-harmonic resonance with internal 
resonance, frequency-amplitude relationship of steady-state responses is constructed. 
Numerical examples discovered the influence of internal resonance on the nonlinear dynamic 
characteristics of the axially moving beam. Specifically, the energy transfer between the first 
two order modes is found for an axially supercritical moving beam. Moreover, several typical 
nonlinear phenomenon, such as double jumping phenomenon, hysteretic phenomenon and 
saturation-like phenomenon, are discovered in the nonlinear vibration of the axially moving 
beam. By comparing with numerically simulative results via the finite difference method and 
the Galerkin method, it is confirmed that the method of multi-scale in the present work is quite 
credible. 

1. Introduction 
Model of axially moving continuums demonstrate so many devices which used after the first industrial 
revolution. The most typical device is belt-drive dynamics system. It is light, high efficient, and it is 
easy to design. However, the translating belt will vibration fiercely in some certain conditions. The 
vibration usually brings strong noise and reduces the service life of these devices. If the mechanism of 
the vibration is fully understood, the vibration is avoided or reduced during the design progress. 
Therefore, many researchers have paid their attention to the dynamics of axially moving continuums, 
specially axially moving beams. Moreover, many interesting phenomenon and meritorious conclusions 
have been found [1-4]. 

    As it is well-known, the internal resonance of the axially moving beam occur in certain conditions. 
By this moment, there is a commensurable relationship among the natural frequencies. Under the 
internal resonance condition, the nonlinear vibration of the beams become much more complex. 
Therefore, many researchers paid their attentions on the internal resonance of axially moving systems. 
By using the method of multiple scales Riedel and Tan researched the forced vibration of moving strip 
with 3:1 internal resonance [5]. Sze et al. investigated the forced response of an moving strip with 
internal resonance between the first two transverse vibration modes [6,7]. Ghayesh and his co-workers 
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made their contributions on the nonlinear vibration of the moving beams with the internal resonance. 
The transverse vibration [8], coupled longitudinal-transverse vibration [9], the nonlinear vibration of 
the Timoshenko beam [10] are studied by them. Tang et al. are analytically and numerically 
investigated the parametric resonance with 3:1 internal resonance of axially moving viscoelastic 
beams on elastic foundation [11]. Sahoo et al. analyzed the nonlinear transverse vibration of an axially 
moving beam subject to two frequency excitation, i.e. principal parametric resonance of first mode and 
combination parametric resonance, in presence of internal resonance [12].  

    However, all of above literatures only focused on nonlinear vibration of axially moving beams with 
the internal resonance in the subcritical speed range. On the other hand, Wickert worked on the non-
trivial equilibrium configuration of a supercritically moving beam [13]. Ding and his co-workers 
focused their attentions on the vibration of the supercritically axially moving beam, such as natural 
frequencies [14] and nonlinear forced transverse vibrations [15]. However, the nonlinear dynamics of 
a axially moving beam with the internal resonance in the supercritical regime hasn't drawn enough 
attentions. Ghayesh et al. numerically investigated the global dynamics of an axially moving beam 
subjected to a transverse harmonic excitation force with a three-to-one internal resonance. 

    The present work analytically and numerically studies the steady-state responses of a axially 
moving viscoelastic beam in the supercritical speed range with the 3:1 internal resonance. The steady-
state responses of the primary resonances and super-harmonic resonance with internal resonance are 
detailedly investigated. 

2. Mathematical models and non-trivial equilibrium configuration 

 
Figure 1. Diagram of the axially moving beam. 

As shown in figure 1, an axially moving beam with cross-sectional area A,  density ρ, viscoelastic 
coefficient Λ, initial tension P, moment of inertial I and Young’s modulus E, travels at the uniform 
constant transport speed V. The distance between the two simply supported ends is L and the 
excitation of the extraneous harmonic force F is written as Bcos(Ωt). The symbols B and Ω are the 
amplitude and the frequency, respectively. 

The governing equation of the transverse vibration of the moving beam and the simply supported 
boundary conditions are obtained as follows 
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where W(X,T) is the vertical displacement of the moving beam, and the comma preceding T or X 
denotes partial differentiation with respect to T or X. To cast governing equations and boundary 
conditions dimensionless, the dimensionless variables and the dimensionless parameters are 
introduced as below 
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Therefore, dimensionless governing equations and boundary conditions are led as  
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In the supercritical regime, the non-trivial equilibrium configurations are defined as 
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f
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Therefore, the governing equation of the supercritically axially moving beam is derived 
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The first four natural frequencies are calculated by using Galerkin method [14]. Furthermore, 
natural frequencies and 3:1 internal resonance condition between the first-two order modes are 
determined. If the dimensionless axially moving speed equal to 4.02795, the first frequency equal to 
10 and the second one equal to 30. 

3. Galerkin truncation & multi-scale method for the primary resonance 
In order to solve the governing equation (5), the Galerkin method is applied in this work. Suppose the 
solution of Eq. (5) as 

 ( ) ( ) ( )
1

, sin π , 1,2,...,
k

k
i

w x t q t i x i k
=

= =∑  (6) 

where qk(t) is the kth modal coordinate of the axially moving beam. The set of ordinary differential 
equations are derived 
 ( ) ( ) ( ) ( ) ( ) ( )1 =1 2 3 2 3Mq + Cq + R q + R + R q + K q + K + K q F    (7) 

where M is a k×k order identity mass matrix, C is a k×k order inertia coefficient matrix, R(1) is a k×
k order linear viscous damping coefficient matrix, R(2) is a k-order quadratic nonlinear damping force 
column vector, R(3) is a k×k order diagonal cubic nonlinear viscous damping coefficient matrix, K(1) 
is a k×k order diagonal linear stiffness matrix, K(2) is a k-order quadratic nonlinear elastic restoring 
force column vector, K(3) is a k×k order diagonal cubic nonlinear stiffness matrix, F is a k-order 
exciting force column vector.

 

    The steady-state responses of the moving beam are investigated by using the multi-scale method. 
The expansion of the perturbation solution is written as follows 

 2ε ε= + +0 1 2q q q q  (8) 
where T0=t, T1=εt, T2=ε2t. Therefore, 

It follows that the derivatives with respect to t become expansions in terms of the partial 
derivatives with respect to the time scales Tn according to 
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Furthermore, the forcing and damping are scaled as 
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The part of work in this study is the research to the primary response under the condition of 3:1 

internal resonance between the first two order natural frequencies. The 4th-order discrete functions of 
the moving beam system is written as follows 
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where 
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The V-belt derive systems are widely used today. Moreover, the belt is usually simplified as an 
axially moving beam. Table 1 shows the physical parameters of the V-belt. Therefore, k1=40, kf=0.8. 
Moreover, set b=0.5 and α=0.0001. 

 
Table 1. Physical parameters of a V-belt transmission. 
  

Item Notation  Value 

Cross-section area A 5.671×10-5 m2 

Moment of inertial I 2.775×10-9 m4 

Initial tension P 7 N 

Length of the belt L 0.35 m 

Young’s modulus E 200 MPa 
 

Instead of using the frequency of excitation Ω as a parameter,σ1 and σ2 are introduced as 

 2 2
2 1 1 1 2=3 , =ω ω ε σ ω ω ε σ+ +   (13) 

The approximate analytical solutions of the primary resonance is determined by using the multi-
scale method.Figure 2 shows the variation tendency of the response of q1 at the first order mode 
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changing with the excitation frequency. a1 and a2 here are the responses of natural modes respectively. 
As can be seen from figure 3, the curve is bended to the decreasing direction of the excitation 
frequency nears the external resonance. Therefore, the nonlinear characteristic is soft, although the 
system contains the cubic nonlinear restoring force. The analytical approximate solutions are 
compared with numerical simulations to confirm the accuracy of analytical results. All the numerical 
simulations in this paper are obtained by a set of four-order Galerkin truncated functions. Moreover, 
the simulation results are calculated by the 4th Runge-Kutta method. Compared with the simulation 
results, the analysis results are accurate. The dash line is on behalf of the unstable boundary. 

 

 

 

 
Figure 2. A-F curve of q1 at the first-order 

mode. 
 Figure 3. A-F curve of q1 at the second-order 

mode. 

 

 

 

Figure 4. A-b curve of q1 at the first-order 
mode 

 Figure 5. A-b curve of q1 at the second -order 
mode 

 

 

 
(a) response of the first-order mode  (b) response of the second-order mode 

Figure 6. Effect of detuning parameter σ1 

Figures 4 and 5 show the hysteresis phenomenon, the typical phenomenon of a nonlinear system, 
of the axially moving beam under forced and internal resonances. As the nonlinear character is soft, 
the hysteresis phenomenon occurs only while σ2 is negative. One thing should be particularly 
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revelatory is the saturated phenomenon in figure 5. The interesting phenomenon occurs at the first 
order primary resonance. Figure 6 is the responses of a1 and a2 with different σ1. As can be seen from 
the left figure, a1 changes very little. But the response at the second mode will increase as the detuning 
parameter is decreasing. 

4. Super-harmonic resonance by using the directly multi-scale method 
Substitution of T0=t, T1=εt, T2=ε2t.  into w(x, t) deduces following operators 
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The approximate solution of w(x, t) is written as 
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Equate the coefficients of ε0, ε1 and ε2 of both sides, three functions are derived as 
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The general solution of Eq. (16) can be written as 

 ( ) ( ) ( ) ( ) ( ) ( )1 0 2 0 0i i i
0 0 1 2 1 1 2 1 2 1 2 2, , , , e , e eT T Tw x T T T A T T x A T T x G x ccω ω ΩΘ Θ= + + +   (19) 

where cc is the complex conjugates of foregoing terms. A1(T1,T2) and A2(T1,T2) are undetermined 
functions and are solved by the solvable conditions. 

4.1. Harmonic component of 0Ω 

The quadratic nonlinearity in the governing function yields a constant. It is included in the particular 
solution of Eq. (17). It occurs at the first and the third modal shapes. Solid lines are on behalf of 
analytically stable solutions. The up-bifurcations are nearly straight for this component has the 
relationship with a12 and a22. 

 

 

 
(a) response of the first-order shape sin(πx)  (b) response of the second-order shape sin(3πx) 

Figure 7. Amplitude of harmonic component with frequency of 0Ω. 
 

4.2. Harmonic component of 1Ω 

 

 

 
(a) response of the first-order shape sin(πx)  (b) response of the second-order shape sin(2πx) 
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(c) response of the third-order shape sin(3πx)  (d) response of the forth-order shape sin(4πx) 

Figure 8. Amplitude of harmonic component with frequency of 1Ω.  
As the external frequency here is not equal to the first natural one, a harmonic response with 1Ω will 
occur. In figure 8, the responses at the first-four modal shapes are demonstrated. As can be seen from 
the figure, the curves are complicated. The upward branch is crossed with the backward one. 

 

4.3. Harmonic component of 2Ω 

As shown in figure 9, solid lines present the analytical solutions, crosses and circles present 
simulations. The simulation results are calculated by 4-order Galerkin method. It clearly demonstrates 
that analytical solutions fit the numerical simulations very well. Moreover, nonlinearity of this 
harmonic response in figure 6 is also soft. Furthermore, the jumping range is the same as primary 
resonance. However, anti-resonance occurs in these harmonic responses. Their positive and negative 
properties determined by σ2 bring this special phenomenon. 

 

 

 
(a) response of the first-order shape sin(πx)  (b) response of the second-order shape sin(2πx) 

 

 

 
(c) response of the third-order shape sin(3πx)  (d) response of the forth-order shape sin(4πx) 

Figure 9. Amplitude of harmonic component with frequency of 2Ω. 

4.4. Harmonic component of natural modes 

Figure 10 and 11 show the responses of the first-two natural modes. The coupling between the natural 
modes is weak. Response of the first mode at the first-order shape is sizable. The cubic nonlinearity 
plays the role of energy-transporting bridge. 
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(a) response of the first-order shape sin(πx)  (b) response of the second-order shape sin(2πx) 

 

 

 
(c) response of the third-order shape sin(3πx)  (d) response of the forth-order shape sin(4πx) 

Figure 10. Amplitude of harmonic component with frequency of ω1. 

 

 

 
(a) response of the first-order shape sin(πx)  (b) response of the second-order shape sin(2πx) 

 

 

 
(c) response of the third-order shape sin(3πx)  (d) response of the forth-order shape sin(4πx) 

Figure 11. Amplitude of harmonic component with frequency of ω2. 

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012117 doi:10.1088/1742-6596/744/1/012117

9



 
 
 
 
 
 

4.5. Harmonic component of 4Ω 

 

 

 
(a) response of the first-order shape sin(πx)  (b) response of the second-order shape sin(2πx) 

 

 

 
(c) response of the third-order shape sin(3πx)  (d) response of the forth-order shape sin(4πx) 

Figure 12. Amplitude of harmonic component with frequency of 4Ω.  

Figure 12 depicts the steady-state response amplitude-frequency curves of 4Ω. Solid line is in present 
of analytical results. It is coincide with simulations, the circles and crosses, very well. Besides, 
nonlinearity here is soft too. Jumping range is the same as the primary resonance. 

4.6. Harmonic component of 6Ω 

The amplitude of the resonance response is connected with the free vibration squared. The amplitude-
frequency curves are shown in figure 13. The numerical results in figure 13 show that the analytical 
solutions are feasible and credible. 

 

 

 

 
(a) response of the first-order shape sin(πx)  (b) response of the second-order shape sin(2πx) 
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(c) response of the third-order shape sin(3πx)  (d) response of the forth-order shape sin(4πx) 

Figure 13. Amplitude of harmonic component with frequency of 6Ω.  

4.7. Convergence of the Galerkin truncated for super-harmonic resonance 
To verify the convergence of the analytical solutions, time-domain responses with different numbers 
of harmonic components are compared with the simulations. As an example, the time-domain 
response of the first-order shape is shown in figure 14. The first one is composited with harmonic 
components of 0Ω, 1Ω and ω1. Solid line presenting analytical solution is near to the simulations. But 
it is not accurate enough. The second one in figure 14 is composited with two more components. They 
are responses with frequency of 2Ω and 4Ω. It is anastomotic to the simulations. So the analytical 
method used in this study can obtain the key components in the responses.  

 

 

 
(a) time domain response with three components  (b) time domain response with five components 

Figure 14. Comparison of four-order, six-order and eight-order truncated functions.  

5. Conclusions 
In the present work, the steady-state response of axially moving beam in the supercritical speed range 
under the condition of 3:1 internal resonance is firstly studied. By using the Galerkin method, the 
partial-integral differential governing equation of the axially moving beam is truncated into 4 degrees 
of freedom ordinary differential equations. The analytical approximate solutions are derived by the 
multi-scale method. Moreover, the analytical results are confirmed by numerical simulations.  

The approximate solutions discover some interesting phenomenon of the nonlinear forced vibration of 
the supercritically axially moving beam with the 3:1 internal resonance. Under the condition of 3:1 
internal resonance and 1/3 super-harmonic resonance, response of the system is complicated and 
multi-component. The numerical results also find that the nonlinear character of the primary resonance 
is soft. Energy transmits from the first order mode two the second one. Therefore, the 3:1 internal 
resonance plays a coupling role. Moreover, the hysteresis phenomenon of super-harmonic resonance 
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portrays the change of amplitudes according to amplitude of excitation. Furthermore, some harmonic 
components are aroused under the condition of 1/3 super-harmonic resonance. 
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