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Abstract. This paper reviews recent advances in vibration energy harvesting with particular 
emphasis on the solutions by using dielectric electroactive polymers (DEAPs) and piezoelectric 
materials. These smart materials are in essence capable of converting wasted vibration energy 
in the environment to usable electrical energy. Much previous researches have been devoted to 
studying the technology of harvesting mechanical energy using piezoelectric materials. The 
recent introduction of the DEAPs that exhibits large displacements under electric activation has 
led to their consideration as promising replacement for conventional piezoelectric materials. 
The properties of the two materials are described in this paper together with a comparison of 
their performance in relation with energy harvesting. Finally comparisons are made in the 
applications of vibration energy harvesting using these two materials. This paper has been 
written with reference to a large number of published papers listed in the reference section. 

1.  Introduction 
Over the last decade there has been significant interest in the development of energy harvesting, 
seeking to capture energy from the surrounding energy sources, accumulating them and storing them 
for later use. Simply stated, vibration energy harvesting is the process by which wasted vibration is 
harvested and converted to some other useful energy, such as electrical energy. The investigation of 
vibration energy harvesting has become a major field of research, focusing on recycling the vibration 
energy to power small electronic devices [1]. Significant amount of researches has been devoted to 
studying the possibility of harvesting energy by means of various materials, such as the Tantalum-
Polymer [2], ionic polymer metal composite [3,4], conductive polymers [5,25], dielectric electroactive 
polymers (DEAPs) [6-10] and the piezoelectric materials [11-14]. Much previous researches activities 
focus on classical piezoelectric materials and more recently, the development of DEAPs offers a 
potential improvement over the conventional methods [15]. 

Piezoelectric materials literally refer to as crystal materials that produce electrical charges across 
their boundaries in response to applied mechanical stress. The piezoelectric effect was discovered in 
1880 by the Jacques and Pierre Curie brothers. They found that when a mechanical stress was applied 
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on crystals such as tourmaline, topaz and quartz, electrical charges appeared, and this voltage was 
proportional to the stress. 

DEAPs known as emerging polymer or compliant capacitor have shown great promise due to their 
low cost, lightweight, simply actuating structure and good performance in low frequencies with large 
deformation. In principle, they are materials in which actuation is driven by electrostatic forces 
between two electrodes which squeeze the polymer. When a voltage is applied, the polymer 
compresses in thickness and expands in area in the electric field. Earlier research has shown that some 
DEAPs can exhibit up to a 380% strain, which is much more than any ceramic actuator [44]. A large 
actuation voltage is generally required to produce high electric fields (hundreds to thousands of volts), 
with low electrical power consumption. No additional power is needed to keep the actuator at a given 
position.  

This paper reviews the application of vibration energy harvesting technologies using piezoelectric 
materials and DEAPs. The working principles are discussed to allow a comparison of their 
performance for the application of energy harvesting, and to demonstrate the advantages of DEAPs 
over piezoelectric materials. Finally recent advances of vibration energy harvesting using these two 
materials are discussed.  

2.  Working principles 

2.1.  Piezoelectric materials 
Piezoelectricity has two distinct effects. The direct effect is the polarization of the material under a 
mechanical stress and the inverse effect corresponds to a mechanical displacement when electric 
polarization is applied to the material. In generator mode, a resonant structure imposes deformations 
on a piezoelectric material, which converts this mechanical stress into electric charge [22]. 
 

 
Figure 1. Piezoelectric direct effect. [22] 

 

2.2.  Electrostrictive polymers 
Electrostrictive polymers and dielectric elastomers are two typical categories of DEAPs. Unlike 
piezoelectric materials, there is no direct effect on an electrostrictive polymer. This means that a stress 
does not induce electric polarization in the material. Electrostrictive materials are passive materials 
which need a primary electrical source to convert mechanical energy into electricity [45-49]. 

Under constant-field boundary conditions, ambient mechanical energy can be harvested in an 
operating cycle [46]. First, the polymer is stretched under a primary electric field E0. Under maximal 
stress Tmax, the electric field increases to a higher value E1. Then, under this constant electric field E1, 
the stress is removed and the polymer is free to move to an equilibrium position. Finally, the electric 
field decreases to its initial value E0 and the polymer returns to its original dimensions. 
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2.3.  Dielectric elastomers 
Scavenging energy with dielectric elastomers needs energy cycles with a primary voltage source 
because of their passive nature [25, 50]. As illustrated in Figure 2, an energy cycle is composed of four 
phases: stretch, charge, active phase and discharge. The polymer is stretched in order to increase its 
capacity, showing in Phases A-B. Then, the material is charged by a voltage V and stores an input 
energy, showing in Phases B-C. To increase this stored energy, the material is relaxed and moves until 
equilibrium is reached between elastic and electrical stresses, showing in Phases C-D. The input 
electrical energy is amplified due to the mechanical movement. Finally, all charges are removed from 
the structure to enable the polymer to return to its initial dimensions, showing in Phases D-A.  

 
Figure 2. Scavenging cycle of a dielectric polymer. [25] 

 

3.  Comparison of the performance for energy harvesting 
Piezoelectric materials and DEAPs are two representative materials used in energy harvesting. 
However their performance for energy harvesting follows very different principles. It is thus important 
to make a comparison in order to have a clear vision of the advantages and disadvantages of each of 
them.  

Piezoelectric materials can be categorized into piezoelectric ceramic and piezoelectric polymers. 
Piezoceramics have the properties of mechanical simplicity, small volume, large useful bandwidth, 
efficient conversion between electrical energy and mechanical energy. PZT (lead zirconate-titanate) is 
a commonly used piezoelectric ceramic. Piezopolymers are polymer structures with integrated 
piezoelectric ceramics from which the piezoelectric effect is generated. These composites operate 
based on the mechanical flexibility of polymers and the high electromechanical coupling of the 
piezoelectric ceramics. 

Two typical categories of DEAPs are dielectric elastomers and electrostrictive polymer. In general, 
they are lightweight, flexible, ductile, low-cost, with a high strength-to-weight ratio and low 
mechanical impedance.  

Electrostrictive polymers can endure large strains, making them suitable for such high strain 
environments, and the ability to sustain large strains also allows the polymers to have a large stroke. 
Because of all these advantages, the use of electrostrictive devices has also attracted the attention of 
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the research community for energy harvesting systems [16-19]. Electrostrictive polymers have shown 
to be perfect candidates for smart materials with a great potential for harvesting mechanical energy. 

Dielectric elastomers possess similar advantages as electrostrictive polymers. These materials can 
be used as generators, converting mechanical strain energy into electrical energy using their capacitive 
behaviour [20,21]. These polymers exhibit excellent performance levels in generator mode, 
particularly dielectric polymers with an energy density of up to 3.2 J·cm−3. Thus they are best suited 
for scavenging applications. The operating principle of DE generators depends on the change in 
geometry of the elastomer capacitor and a certain amount of initial charge, which characterizes an 
electrostatic energy conversion principle. Acrylate and silicone are two kinds of commonly used 
dielectric elastomers. 

Table 1 sum up the main characteristics of five materials including piezoelectric materials and 
DEAPs. 

 
Table 1. Comparison of the performance of different materials 

 
 Piezoceramics 

[22,25,38] 
Piezopolymers 
[19,22,25] 

Electrostrictive 
polymers 
[19,23-25] 

Dielectric 
elastomer[20,21,23-25] 

 PZT PDVF P(VDF-TrFE- 
CTFE) 

Silicone Acrylic

Density 
(g·cm−3) 

about7 1.7-2.1 1.9 1 1 

Young's modulus  
(GPa) 

60 2.5-3.2 0.4-4 1×10-3 2×10-3 

Maximum stress 
(MPa) 

110 5 45 3 7.2 

Maximum strain 
(%) 

0.2 0.1 4 100 400 

Dielectric constant  
(at 1 kHz) 

  65 3 4.8 

Maximum energy 
scavenging density  
(J·cm−3) 

0.06 0.06 0.3-0.6 1.63 4.1 

 
As listed in the table, Young's modulus is a measure of the stiffness of an elastic material, and is a 

quantity used to evaluate materials. It is defined as the ratio of the stress along an axis to the strain 
along that axis in the range of stress. As can be seen in the table, the Young's modulus of PZT is about 
60 GPa [22], which is extremely high compared to piezoelectric polymers and electrostrictive 
polymers. And the Young's modulus of dielectric elastomer is about 1×10-3 Gpa to 2×10-3 Gpa, 
suggesting much better performance.  

The maximum stress of piezoceramics is about 110 MPa, which is much higher compare to 
dielectric elastomer, for the silicone is 3 MPa and acrylic is 7.2 MPa. On the contrary, dielectric 
elastomers have a higher maximum strain than piezoelectric materials, showing the great potential in 
the field that need large deformation.  

The energy density is a vital value for energy harvesting materials. The density of piezoelectric 
materials is about 60×10-3 J·cm−3, which is incomparable to electroactive polymers. Electrostrictive 
polymers are able to scavenge ten times more energy than piezoelectric materials, and dielectric 
elastomer can rather reach a higher level. Pelrine et al. [23] estimate the energy density of the 3M’s 
VHB 4910 polymer to be around 1.5 J·cm−3 in a scavenging application and Koh et al. [20] to be 
around 6.9 J·cm−3 at the maximum and 2.3 J·cm−3 for a specific cycle at constant charge Q. Jean-
Mistral C et al. [25] developed an adaptive model for dielectric polymers in generator mode, using 
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3M’s VHB 4910, reached the energy density of varies between 0.24 J·cm−3 and 3.2 J·cm−3. The 
maximum energy density (3.2 J·cm−3) is ten times greater than that obtained with electrostrictive 
polymers and the level of efficiency is good. 

In terms of the Young's modulus and the Maximum strain, DEAPs are much more suitable for 
energy harvesting devices, compared to piezoelectric materials. With their high flexibility, DEAPs can 
be obtained in many different shapes and over large surfaces.  

In particularly, dielectric elastomers are the best performing DEAPs in terms of energy density and 
maximum strain. Moreover, this technology is cheaper and very easy to apply for commercial 
purposes. New dielectric polymers are under development to improve the density of scavenged energy. 
These materials have a higher dielectric constant, a lower loss factor and Young’s modulus. 

As for piezoelectric materials, the applications using these materials are limited, for their inherent 
limitations include aging, stiffness, and brittleness. However, unlike DEAPs, piezoelectric materials 
can sustain much stress and impact, making them suitable in some places such as tires and shoe heels. 

This section compares the difference between piezoelectric materials and DEAPs in their density, 
Young's modulus, maximum stress, maximum strain, dielectric constant and maximum energy 
scavenging density. It is demonstrated that the DEAPs have the great potential for mechanical energy 
harvesting. Currently, piezoelectric materials are in common use for harvesting mechanical energy 
because of their compact configuration and compatibility. However, their inherent limitations 
including aging, depolarization, and brittleness restrict their development. In comparison, 
electrostrictive polymers with cellular polypropylene electrets are promising candidates for replacing 
piezoelectric materials for vibration energy harvesting. 

4.  Applications 

4.1.  Piezoelectric materials 
Piezoelectric materials can be used effectively in the development of smart systems. Significant 
research work has been devoted to investigating smart structures with piezoelectric actuation, with 
respect to strategies in practical applications in energy harvesting [30-36].  

D A van den Ende et al. [38] studied manufacturing energy harvesters inside automobile tires, 
using piezoelectric power generators. During a revolution of an automobile tire, the tread of the tire is 
deformed when it contacts the road surface, as shown in Figure 3. And the piezoelectric material 
attaching to the inside of the tire will generate energy as a result of this deformation. At present the 
PZT ceramic provide an estimated power of 30 μW·cm-2 at modest traveling speeds of 50 km·hr-1. The 
performance will be further enhanced in the development of materials. 

 

 
Figure 3. The deformation that an automobile tire experiences during a revolution. [38] 
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way to decrease the power of polarization in order to obtain a good efficiency of the electromechanical 
conversion for energy harvesting. 

Lallart et al. [20] evaluated the energy scavenging abilities of P(VDF-TrFE-CFE) with 1% carbon. 
They also exhibit that the carbon filled terpolymer outperformed other investigated compositions, 
demonstrating a figure of merit as high as 2000 times higher than pure polyurethane. They extended 
their work to the AC-DC conversion for energy harvesting using electrostrictive polymer P(VDF-
TrFE-CFE) to make the practical application of such material for self-powered devices more realistic 
[37]. Their theoretical and experimental analysis showed that an energy harvesting module with AC-
DC conversion using a bias electric field of 10 V·μm-1 and a transverse strain of 0.2% is much more 
efficient than most of piezo-based harvesters. 

4.3.  Dielectric electroactive polymers 
Dielectric elastomers have shown considerable promise for harvesting energy from environmental 

sources such as ocean waves, wind, water currents, human motion, etc. Dielectric elastomers have 
better performance for a good mechanical matching when the vibration source presents high strain and 
low frequency behaviour. In addition to this high strain capabilities, dielectric elastomers are cheap, 
highly conformability, processing simply, and can be obtained in various shapes over large surfaces. 

Kee S. Moon et al. [27] designed the new kind of cantilever beam, which is made of a lead 
magnesium niobate-lead titanate (PMN-PT) material with polydimethylsiloxane (PDMS) coating 
applied. By bonding a ductile material to a brittle material, the stress reducing properties of the ductile 
material will reduce the stresses of the brittle material. PDMS increases the strength of PMN-PT by 
reducing the propagation of micro-cracks in the cantilever. The thin coating of PDMS evenly 
distributes stress along the cantilever and encourages uniform bending. These two factors allow the 
cantilever to have a greater deflection and therefore produce a higher voltage without fracture. Besides, 
they discuss the use of proof mass to decrease natural frequency of the harvester. According to the 
analysis the natural frequency will decrease by 115Hz for every milligram of mass placed on the tip of 
a 10 mm PMN-PT cantilever. 

Aschwanden and Stemmer [28] demonstrated a low-cost, electrically tuneable diffraction grating 
based on soft dielectric elastomers, namely VHB 9410, an acrylic by 3M. Until recently, the state of 
the art in tuneable diffraction gratings for telecommunications and display device applications has 
relied on standard hard piezoelectric materials. Planar expansion of dielectric elastomers was used to 
induce change in the period of these tuneable elastomeric diffraction gratings. A 1mm thick acrylic 
film was pre-stretched and mounted on a frame. The tuneable diffraction grating can achieve a 
continuous grating period change of 19.2% with applied voltages of 500 V, an improvement by a 
factor of 90 compared with conventional tuneable diffraction gratings based on hard materials. In 
addition this dielectric elastomer based device achieved a tuneable angular range exceeding 100mrad. 

Chiba S1 et al.[29] carried out ocean experiments on generating electric power from natural wave 
motion with the EAP generator installed on a buoy, as shown in Figure 5. The maximum measured 
electrical output capacity, verified in laboratory tests, was 12 J for one cycle of operation. Even with 
the small wave height of 10 cm, they were able to generate a peak power of 1.2 W with an average 
power of 0.25 W 

In addition, they found that these measurements were made with a bias voltage of 2000 V applied 
to the dielectric elastomers. These numbers were extrapolated to estimate the potential of an EAP 
generator mounted on a buoy. In the laboratory test, nine times more energy was obtained from a bias 
voltage of 6000 V than from 2000 V. By simply raising the applied voltage to the 6000 V limit that the 
roll can withstand before risk of electrical failure, a peak power of 11 W and an average power of 2.2 
W could have been generated under these same small wave conditions. 
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